Producing Open Source Software
Table of Contents
	Preface
		Why Write This Book?
	Who Should Read This Book?
	Sources
	Acknowledgements
		For the first edition (2005)
	For the second edition (2023)

	Disclaimer

	1. Introduction
		History
		The Rise of Proprietary Software and Free Software
	"Free" Versus "Open Source"

	The Situation Today

	2. Getting Started
		Starting From What You Have
		Choose a Good Name
	Have a Clear Mission Statement
	State That the Project is Free
	Features and Requirements List
	Development Status
	Downloads
	Version Control and Bug Tracker Access
	Communications Channels
	Developer Guidelines
	Documentation
	Demos, Screenshots, Videos, and Example Output
	Hosting

	Choosing a License and Applying It
		The "Do Anything" Licenses
	The GPL
	How to Apply a License to Your Software

	Setting the Tone
		Avoid Private Discussions
	Nip Rudeness in the Bud
	Practice Conspicuous Code Review
	Be Open From Day One

	Opening a Formerly Closed Project
	Announcing

	3. Technical Infrastructure
		What a Project Needs
	Web Site
		Canned Hosting

	Message Forums / Mailing Lists
		Choosing the Right Forum Management Software

	Version Control
		Version Control Vocabulary
	Choosing a Version Control System
	Using the Version Control System
	Receiving and Reviewing Contributions

	Bug Tracker
		Interaction with Email
	Pre-Filtering the Bug Tracker

	Real-Time Chat Systems
		Chat Rooms and Growth
	Nick-Flagging and Notifications
	Chat Bots

	Wikis
		Wikis and Spam
	Choosing a Wiki

	Translation Infrastructure
	Social Networking Services

	4. Social and Political Infrastructure
		Forkability
	Benevolent Dictators
		Who Can Be a Good Benevolent Dictator?

	Consensus-based Democracy
		Version Control Means You Can Relax
	When Consensus Cannot Be Reached, Vote
	When To Vote
	Who Votes?
	Polls Versus Votes
	Vetoes

	Writing It All Down
	Joining or Creating a Non-Profit Organization

	5. Organizations and Money: Businesses, Non-Profits, and Governments
		The Economics of Open Source
	Goals of Corporate Involvement
	Governments and Open Source
		Being Open Source From Day One is Especially Important for
Government Projects

	Hire for the Long Term
		Case study

	Appear as Many, Not as One
	Be Open About Your Motivations
	Money Can't Buy You Love
	Contracting
		Hiring From Within the Community
	Hiring From Outside The Community
	Contracting and Transparency
	Review and Acceptance of Changes
	Update Your RFI, RFP and Contract Language
	Open Source Quality Assurance (OSQA)
	Don't Surprise Your Lawyers

	Funding Non-Programming Activities
		Technical Quality Assurance (i.e., Professional Testing)
	Legal Advice and Protection
	Documentation and Usability
	Providing Build Farms and Development Servers
	Running Security Audits
	Sponsoring Conferences, Hackathons, and other Developer Meetings

	Marketing
		Open Source and Freedom from Vendor Lock-In
	Remember That You Are Being Watched
	Don't Bash Competing Vendors' Efforts
	"Commercial" vs "Proprietary"

	Open Source and the Organization
		Dispel Myths Within Your Organization
	Foster Pools of Expertise in Multiple Places
	Don't Let Publicity Events Drive Project Schedule
	The Key Role of Middle Management
	InnerSourcing

	Hiring Open Source Developers
		Hiring for Influence

	Evaluating Open Source Projects
	Crowdfunding and Bounties

	6. Communications
		Written Culture
	You Are What You Write
		Structure and Formatting
	Content
	Tone
	Recognizing Rudeness
	Face

	Avoiding Common Pitfalls
		Don't Post Without a Purpose
	Productive vs Unproductive Threads
	The Smaller the Topic, the Longer the Debate
	Avoid Holy Wars
	The "Noisy Minority" Effect
	Don't Bash Competing Open Source Products

	Difficult People
		Handling Difficult People
	Case study

	Handling Growth
		Conspicuous Use of Archives
	Codifying Tradition

	Choose the Right Forum
		Cross-Link Between Forums

	Publicity
		Announcing Releases and Other Major Events
	Announcing Security Vulnerabilities

	7. Packaging, Releasing, and Daily Development
		Release Numbering
		Release Number Components
	Semantic Versioning
	The Even/Odd Strategy

	Release Branches
		Mechanics of Release Branches

	Stabilizing a Release
		Dictatorship by Release Owner
	Voting on Changes

	Packaging
		Format
	Name and Layout
	Compilation and Installation
	Binary Packages

	Testing and Releasing
		Candidate Releases
	Announcing Releases

	Maintaining Multiple Release Lines
		Security Releases

	Releases and Daily Development
		Planning Releases

	8. Managing Participants
		Community and Motivation
		Delegation
	Praise and Criticism
	Prevent Territoriality
	The Automation Ratio
	Treat Every User as a Potential Participant
	Meeting In Person: Conferences, Hackfests, Code-a-Thons, Code Sprints, Retreats

	Share Management Tasks as Well as Technical Tasks
		"Manager" Does Not Mean "Owner"

	Transitions
	Committers
		Committers vs Maintainers
	Choosing Committers
	Revoking Commit Access
	Partial Commit Access
	Dormant Committers
	Avoid Mystery

	Credit
	Forks
		"Development Forks" versus "Hard Forks"
	Figuring Out Whether You're the Fork
	Handling a Fork
	Initiating a Fork

	9. Legal Matters: Licenses, Copyrights, Trademarks and Patents
		Terminology
	Aspects of Licenses
	The GPL and License Compatibility
	Choosing a License
		The GNU General Public License

	Contributor Agreements
		Doing Nothing
	Contributor License Agreements

	Proprietary Relicensing
		Problems with Proprietary Relicensing

	Trademarks
		Case study: Mozilla Firefox, the Debian Project, and Iceweasel
	Case study: The GNOME Logo and the Fish Pedicure Shop

	Patents
	Further Resources

	A. Copyright
		
Attribution-ShareAlike 4.0 International

		
Using Creative Commons Public Licenses

	
Creative Commons Attribution-ShareAlike 4.0 International Public
License

Producing Open Source Software

How to Run a Successful Free Software Project

2nd Edition

Karl Fogel

Copyright © 2005-2023 Karl Fogel, under the CreativeCommons Attribution-ShareAlike (4.0) license.

 Version: 2.3310 (24 Nov 2023)

 Home site: https://producingoss.com/

Dedication

This book is dedicated to two dear friends
without whom it would not have been possible: Karen Underhill and Jim
Blandy.

Preface

Why Write This Book?

At parties, people no longer give me a blank stare when I tell
them I work in open source software. "Oh, yes — like Linux?"
they say. I nod eagerly in agreement. "Yes, exactly! That's what I
do." It's nice not to be completely fringe anymore. In the past, the
next question was usually fairly predictable: "How do you make money
doing that?" To answer, I'd summarize the economics of free software:
that there are organizations in whose interest it is to have certain
software exist, but that they don't need to sell copies, they just
want to make sure the software is available and maintained, as a tool
instead of as a rentable monopoly.
The next question is not always about money, though. The
business case for open source software[1] is no longer so
mysterious, and even non-programmers already understand — or at
least are not surprised — that there are people employed at it
full time. Instead, the next question is often "Oh, what's
that like?"
I didn't have a satisfactory answer ready, and the harder I
tried to come up with one, the more I realized how complex a topic it
really is. Running a free software project is not exactly like
running a business (imagine having to constantly negotiate the nature
of your product with a group of random people of diverse motivations
and interests, most of whom you've never met!).
Nor, for various reasons, is it exactly like running a
traditional non-profit organization, nor a government. It has
similarities to all these things, but I have slowly come to the
conclusion that free software is sui
generis. There are many things with which it can be
usefully compared, but none with which it can be equated. Indeed,
even the assumption that free software projects can be "run" is a
stretch. A free software project can be started,
and it can be influenced by interested parties.
But its assets cannot be made the property of any single owner, and as
long as there are people somewhere — anywhere — interested in
continuing it, it can never be unilaterally shut down. Everyone has
infinite power; everyone has no power. It's an interesting situation.
That is why I wanted to write this book in the first place, and,
a decade later, wanted to update it. Free software projects have
evolved a distinct culture, an ethos in which the liberty to make the
software do anything one wants is a central tenet. Yet the result of
this liberty is not a scattering of individuals each going their own
separate way with the code, but enthusiastic collaboration and frequent compromise.
Indeed, competence at cooperation itself is one of the most highly valued
skills in free software. To manage these projects is to engage in a
kind of hypertrophied cooperation, where one's ability not only to
work with others but to come up with new ways of working together can
result in tangible benefits to the software and the community that develops it. This book attempts to
describe the techniques by which this may be done. It is by no means
complete, but it is at least a beginning.
Good free software is a worthy goal in itself, and I hope that
readers who come looking for ways to achieve it will be satisfied with
what they find here. But beyond that I also hope to convey something
of the sheer pleasure to be had from working with a motivated team of
open source developers, and from interacting with users in the
wonderfully direct way that open source encourages. Participating in
a successful free software project is a deep pleasure, and ultimately
that's what keeps the whole system going.

[1] The terms "open
source software" and "free software" are essentially synonymous in
this context; they are discussed more in the section called “"Free" Versus "Open Source"”.

Who Should Read This Book?

This book is meant for managers and software developers who are
considering starting an open source project, or who have started one
and are wondering what to do now. It should also be helpful for
people who just want to participate in an open source project but have
never done so before.
The reader need not be a programmer, but should know basic
software engineering concepts such as APIs, source code, compilers, and
patches.
Prior experience with open source software, as either a user or
a developer, is not necessary. Those who have worked in free software
projects before will probably find at least some parts of the book a
bit obvious, and may want to skip those sections. Because there's
such a potentially wide range of audience experience, I've made an
effort to label sections clearly, and to say when something can be
skipped by those already familiar with the material.

Sources

Much of the raw material for the first edition of this book came
from five years of working with the Subversion project (http://subversion.apache.org/).
Subversion is an open source
version control system, written from scratch, which was intended to (and did for a while) replace
CVS as the de facto version control
system of choice in the open source
community.[2] The project was
started by my employer, CollabNet (http://www.collab.net/), in early 2000,
and thank goodness
CollabNet understood right from the start how to run it as a truly
collaborative, distributed effort. We got a lot of
developer buy-in early on; today the majority of developers on the
project are not CollabNet employees.
Subversion is in many ways a classic example of an open source
project, and I ended up drawing on it more heavily than I originally
expected. This was partly a matter of convenience: whenever I needed
an example of a particular phenomenon, I could usually call one up
from Subversion right off the top of my head. But it was also a
matter of verification. Although I am involved in many other free software
projects to varying degrees, and talk to colleagues
involved in many more, one quickly realizes when writing for print
that all assertions need to be fact-checked. I didn't want to make
statements about events in other projects based only on what I could
read in their public discussion archives. If someone were to try
that with Subversion, I knew, she'd be right about half the time and
wrong the other half. So when drawing inspiration or examples from a
project with which I didn't have direct experience, I tried to first
talk to an informant there, someone I could trust to explain what was
really going on.
While Subversion was my full time job from 2000-2006, I've been
involved in free software for more than twenty-five years. Other projects and organizations that have influenced
this book include:
	The GNU Emacs text editor project at the Free
 Software Foundation.

	Concurrent Versions System (CVS), which I worked on
 intensely in 1994–1995 with Jim Blandy and was
 involved with intermittently for a few years afterwards.

	The collection of open source projects known as the
 Apache Software Foundation, especially the Apache Portable
 Runtime (APR) and Apache HTTP Server.

	The Launchpad.net project at Canonical, Ltd.

	Code for America and O'Reilly Media, which gave me
 an inside view on open source civic technology development
 starting in 2010, and kindly kept me in the loop after I
 became a full-time consultant at Open Tech Strategies, LLC
 around 2012.

	The many open source anti-surveillance and
 censorship-circumvention tools supported by the Open
 Internet Tools Project (OpenITP.org) and by the Open
 Technology Institute at the New America Foundation.

	Checkbook NYC, the municipal financial transparency
 software released by the New York City Office of the
 Comptroller.

	The Arches Project, an open source geospatial web
 application for inventorying and helping protect cultural
 heritage sites (e.g., historic buildings, archaeological
 sites, etc), created by the Getty Conservation Institute
 and World Monuments Fund.

	OpenOffice.org / LibreOffice.org, the Berkeley
 Database from Sleepycat, and MySQL Database; I have not been
 involved with these projects personally, but have observed
 them and, in some cases, talked to people there.

	Likewise various projects at the Mozilla Corporation,
 including but not limited to the Firefox web browser.

	GNU Debugger (GDB) (likewise).

	The Debian Project (likewise).

	The Hypothes.is Project (likewise).

This is far from a complete list. Many of the client
projects I work with through our consulting practice at Open Tech
Strategies, LLC have also influenced this book, and like most open source
programmers, I keep loose tabs on a variety of different projects of
interest to me, just to have a sense of the general state of things.
I haven't named all of them here, but they are mentioned in the text
where appropriate.

[2] Subversion was eventually supplanted by Git,
one of several systems that implement "distributed version control",
a style of working that is better suited to collaborative development
than Subversion's centralized model.

Acknowledgements

For the first edition (2005)

This book took four times longer to write than I thought it
would, and for much of that time felt rather like a grand piano
suspended above my head wherever I went. Without help from many
people, I would not have been able to complete it while staying
sane.
Andy Oram, my editor at O'Reilly, was a writer's dream. Aside
from knowing the field intimately (he suggested many of the topics),
he has the rare gift of knowing what one meant to say and helping one
find the right way to say it. It has been an honor to work with him.
Thanks also to Chuck Toporek for steering this proposal to Andy right
away.
Brian Fitzpatrick reviewed almost all of the material as I wrote
it, which not only made the book better, but kept me writing when I
wanted to be anywhere in the world but in front of the computer. Ben
Collins-Sussman and Mike Pilato also checked up on progress, and were
always happy to discuss — sometimes at length — whatever topic
I was trying to cover that week. They also noticed when I slowed
down, and gently nagged when necessary. Thanks, guys.
Biella Coleman was writing her dissertation at the same time
I was writing this book. She knows what it means to sit down and
write every day, and provided an inspiring example as well as a
sympathetic ear. She also has a fascinating anthropologist's-eye view
of the free software movement, giving both ideas and references that I
was able use in the book. Alex Golub — another anthropologist
with one foot in the free software world, and also finishing his
dissertation at the same time — was exceptionally supportive early
on, which helped a great deal.
Micah Anderson somehow never seemed too oppressed by his own
writing gig, which was inspiring in a sick, envy-generating sort of
way, but he was ever ready with friendship, conversation, and (on at
least one occasion) technical support. Thanks, Micah!
Jon Trowbridge and Sander Striker gave both encouragement and
concrete help — their broad experience in free software provided
material I couldn't have gotten any other way.
Thanks to Greg Stein not only for friendship and well-timed
encouragement, but for showing the Subversion project how important
regular code review is in building a programming community. Thanks
also to Brian Behlendorf, who tactfully drummed into our heads the
importance of having discussions publicly; I hope that principle is
reflected throughout this book.
Thanks to Benjamin "Mako" Hill and Seth Schoen, for various
conversations about free software and its politics; to Zack Urlocker
and Louis Suarez-Potts for taking time out of their busy schedules to
be interviewed; to Shane on the Slashcode list for allowing his post
to be quoted; and to Haggen So for his enormously helpful comparison
of canned hosting sites.
Thanks to Alla Dekhtyar, Polina, and Sonya for their unflagging
and patient encouragement. I'm very glad that I will no longer have
to end (or rather, try unsuccessfully to end) our evenings early to go
home and work on "The Book."
Thanks to Jack Repenning for friendship, conversation, and a
stubborn refusal to ever accept an easy wrong analysis when a harder
right one is available. I hope that some of his long experience with
both software development and the software industry rubbed off on this
book.
CollabNet was exceptionally generous in allowing me a flexible
schedule to write, and didn't complain when it went on far longer than
originally planned. I don't know all the intricacies of how
management arrives at such decisions, but I suspect Sandhya Klute, and
later Mahesh Murthy, had something to do with it — my thanks to
them both.
The entire Subversion development team has been an inspiration
for the past five years, and much of what is in this book I learned
from working with them. I won't thank them all by name here, because
there are too many, but I implore any reader who runs into a
Subversion committer to immediately buy that committer the drink of
their choice — I certainly plan to.
Many times I ranted to Rachel Scollon about the state of the
book; she was always willing to listen, and somehow managed to make
the problems seem smaller than before we talked. That helped a
lot — thanks.
Thanks (again) to Noel Taylor, who must surely have wondered why
I wanted to write another book given how much I complained the last
time, but whose friendship and leadership of Golosá helped keep
music and good fellowship in my life even in the busiest times.
Thanks also to Matthew Dean and Dorothea Samtleben, friends and
long-suffering musical partners, who were very understanding as my
excuses for not practicing piled up. Megan Jennings was constantly
supportive, and genuinely interested in the topic even though it was
unfamiliar to her — a great tonic for an insecure writer. Thanks,
pal!
I had four knowledgeable and diligent reviewers for this book:
Yoav Shapira, Andrew Stellman, Davanum Srinivas, and Ben Hyde. If I
had been able to incorporate all of their excellent suggestions, this
would be a better book. As it was, time constraints forced me to pick
and choose, but the improvements were still significant. Any errors
that remain are entirely my own.
My parents, Frances and Henry, were wonderfully supportive as
always, and as this book is less technical than the previous one, I
hope they'll find it somewhat more readable.
Finally, I would like to thank the dedicatees, Karen Underhill
and Jim Blandy. Karen's friendship and understanding have meant
everything to me, not only during the writing of this book but for the
last seven years. I simply would not have finished without her help.
Likewise for Jim, a true friend and a hacker's hacker, who first
taught me about free software, much as a bird might teach an airplane
about flying.

For the second edition (2023)

The acknowledgements for the second edition of this book include
more people and, undoubtedly, more unintentional omissions. If your
name should be here but is not, please accept my apologies (and let me
know, because we can at least fix the online copy).
Andy Oram of O'Reilly Media once again went above and beyond the
call of duty as an editor. He read closely and made many excellent
recommendations; his expertise both in expository writing in general
and in open source in particular were apparent in all his comments. I
can't thank him enough, and the book is much improved for his
attention.
James Vasile has been my friend and colleague for well over a decade
now, yet not a week goes in which I don't learn something new from
him. Despite having a busy job — I know firsthand,
because we're business partners — and young children at
home, he unhesitatingly volunteered to read through the manuscript and
provide feedback. Money can't buy that, and even if it could, I could
never afford James. Thanks, pal.
Cecilia Donnelly is both a wonderful friend and was a supremely
capable Open Source Specialist at the Open Tech Strategies office in
Chicago. It's a delight to be working with her, as our clients know
too, and her clear thinking and sharp observations have influenced
many parts of this book.
Karen Sandler has been unfailingly supportive, and provided
thoughtful and patient discussion about many of the topics (and even
some of the specific examples) in this book. As with James, I usually
learn something from Karen when we talk about free software, and when
we talk about other things too.
Bradley Kuhn's name appears several times in the commit logs for
this book, because he provided highly expert feedback on multiple
occasions, in one case practically writing the patch himself. As I
wrote in the log message for one of the commits, he is someone "whose
contributions to free software have been immeasurable and whose
dedication to our shared cause is a constant inspiration".
Karen and Bradley both work at the Software Freedom Conservancy
(https://sfconservancy.org/).
If you like this book and you want to help free software, donating to
the Conservancy is a fine first step. It's also a fine second
step.
Ben Reser provided a super-detailed and expert review of Chapters
6 and 7 that resulted in many improvements. Ben, thank you so much.
Michael Bernstein not only provided some detailed feedback
during the interregnum between the first and second editions, he also
helped a lot with organizing the Kickstarter campaign that made the
latter possible. Thank you, Michael.
Danese Cooper always keeps me on my toes, and in particular
brought me the message (which I was not at first willing to hear) that
innersourcing can work as a means of helping
organizations learn open source practices and eventually produce open
source software themselves. Thanks for that, Danese, and much
else.
Between the two editions, I spent a very educational stretch of
time working at O'Reilly Media, Code for America / Civic Commons
(while ensconced in the Open Plans office in New York City, thanks to
their very kind offer of desk space), and the New America Foundation
as Open Internet Tools Project Fellow. Much of what I learned through
that work ended up in the book, and in addition to the organizations
themselves I thank Tim O'Reilly, Jen Pahlka, Andrew McLaughlin, Philip
Ashlock, Abhi Nemani, Nick Grossman, Chris Holmes, Frank Hebbert, and
Andrew Hoppin for the ideas and perspectives they shared.
Sumana Harihareswara and Leonard Richardson have given frank and
helpful commentary about various open source goings-on over the years;
the book is better for their input, and I am the better for their
friendship.
Eben Moglen at the Software Freedom Law Center (https://softwarefreedom.org/)
taught me a lot about how to look at free software as a large-scale
social and economic phenomenon, and about how companies view free
software. He also provided a private working space on a few occasions
when it really made a difference. Thank you, Eben.
I do not understand how Dr. David A. Wheeler makes time to
answer my occasional questions when he is in demand from so many other
people as well, but he does, and his answers are always spot-on and
authoritative. Thanks as always, David.
Breena Xie's interest in open source led swiftly to trenchant
questions about it. Those questions were helpful to me in thinking
through certain topics in the book, but so was her patience on those
occasions when the book demanded more time than it should have (by
which I mean "than I said it would"). Thank you, Breena.
Many thanks to Radhir Kothuri and the rest of the HackIllinois
2017 crew, who provided a very timely motivational boost when they
proposed doing a print run of the new edition for their event at the
University of Illinois at Urbana-Champaign, Illinois in February 2017.
I appreciate the vote of confidence in the book, and hope the
HackIllinois attendees will be pleased with the results.
Camille Bégnis of http://neodoc.biz/ provided expert DocBook help in real time
one day, solving a long-standing technical problem in the online
version of the book that I'd been unable to fix for years. Merci
beaucoup, Camille.
My friend Jason A. Owen also provided timely and wonderfully
thorough help with some DocBook formatting issues and with the build
process, and is the reason it is now possible to generate PDFs of this
book suitable for printing on different page sizes. Independently of
that, Jason has been a valued collaborator on many open source
projects, and raises standards wherever he's involved. Thank you,
Jason.
Near the end of the preparation of the second edition, I
realized that the text badly needed a complete read-through, for typos
of the sort that can't easily be caught by automated means, and for
various expressive infelicities that I knew had crept in but couldn't
detect myself. Corin Duey undertook this task with good cheer and
magnificent attention to detail, and the book is noticeably improved
as a result. Corin, thank you so much.

The hardest part of these acknowledgements is realizing there
will never be enough space to do justice to all the knowledge people
have shared in the decade and a half since the first edition came out. I've been
working in open source the whole time since then, and have had
illuminating conversations with many clients, partners, interviewees,
expert consultants, and fellow travelers; some of them have
occasionally sent in concrete improvements to the book, too. I can't
imagine what this new edition would be without the benefit of that
collective mind, and will try to list some of those people below. I'm
sure the list is incomplete, and I apologize for that. For what it's
worth, I used a program to randomize the order, and accepted its first
output:

Nithya Ruff,
Jenn Brandel,
Joseph Lorenzo Hall,
Ben Wyss,
Kit Plummer,
Mark Atwood,
Vivien Deparday,
Sebastian Benthall,
Martin Michlmayr,
Derek Eder,
Hyrum Wright,
Stefano Zacchiroli,
Dan Risacher,
Stephen Walli,
Simon Phipps,
Francis Ghesquiere,
Sanjay Patil,
Tony Sebro,
Matt Doar,
Deb Nicholson,
Jon Phillips,
David Robinson,
Nathan Toone,
Alolita Sharma,
Jim McGowan,
Florian Effenberger,
Brian Warner,
Cathy Deng,
Allison Randal,
Ariel Núñez,
Jeremy Allison,
Thorsten Behrens,
Deb Bryant,
Zaheda Bhorat,
Holly St. Clair,
Jeff Ubois,
Dustin Mitchell,
Dan Schultz,
Luis Villa,
Jon Scott,
Dave Neary,
Mike Milinkovich,
Wolf Peuker,
Paul Holland,
Keith Casey,
Christian Spanring,
Bishwa Pandey,
Scott Goodwin,
Vivek Vaidya,
David Eaves,
Ed Sokolowski,
Chris Aniszczyk,
David Hemphill,
Emma Jane Hogbin Westby,
Ben Sheldon,
Guy Martin,
Michael Downey,
Charles-H. Schulz,
Vitorio Miliano,
Paul Biondich,
Richard Fontana,
Philip Olson,
Leslie Hawthorn,
Harlan Yu,
Gerard Braad,
Daniel Shahaf,
Matthew Turk,
Mike Hostetler,
Waldo Jaquith,
Jeffrey Johnson,
Eitan Adler,
Mike Linksvayer,
Smiljana Antonijevic,
Brian Aker,
Ben Balter,
Conan Reis,
Dave Crossland,
Nicole Boone,
Brandon Keepers,
Leigh Honeywell,
Tom "spot" Callaway,
Andy Dearing,
Scott Clark,
Tina Coleman,
William A Rowe Jr.,
Matthew McCullough,
Stuart Gill,
Robert Soden,
Chris Tucker,
Noel Hidalgo,
Mark Galassi,
Chris DiBona,
Gerhard Poul,
Christopher Whitaker,
James Tauber,
Justin Kestelyn,
Nadia Eghbal,
Mel Chua,
Tony Wasserman,
Robert Douglass,
Simone Dalmasso,
John O'Nolan,
Tom Marble,
Patrick Masson,
Arfon Smith,
Forest Gregg,
and Molly de Blanc.

The 2nd edition rewrite was funded through a Kickstarter
campaign. The response to that campaign was swift and generous, and
I'm immensely grateful to all the people who pledged. I hope they
will forgive me for taking almost four times longer than expected to
finish the revisions. Every backer of the campaign is acknowledged
below, using the name they provided via Kickstarter. The list is in
either ascending or descending order by pledge size, but I'm not going
to say which, because a little mystery should be retained in these
matters:

Pablo,
Cameron Colby Thomson,
Bethany Sumner,
Michael Lefevre,
Maxim Novak,
Adrian Smith,
Jonathan Corwin,
Laurie Voss,
James Williams,
Chris Knadler,
Zael,
Kieran Mathieson,
Teresa Gonczy,
Poramate Minsiri,
j. faceless user,
Michael,
Isaac Davis aka Hedron A. Davis,
James Dearing,
Kyle Simpson,
Laura Dragan,
Hilary Mason,
Tom Smith,
Michael Massie,
Erin Marchak,
Micke Nordin,
Xavier Antoviaque,
Michael Dudley,
Raisa,
Paul Booker,
Jack Moffitt,
Aaron Shaw,
maurine stenwick,
Ivan Habunek,
G. Carter Stokum,
Barry Solow,
mooware,
Harish Pillay,
Jim Randall,
Holger S.,
Alan Joseph Williams,
Erik Michaels-Ober,
David Parker,
Nick,
Niko Felger,
Fred Trotter,
Dorai Thodla,
William Theaker,
Hans Bakker,
Brad,
Bastien Guerry,
Miles Fidelman,
Grant Landram,
Michael Rogers,
mostsignificantbit,
Olivier Berger,
Fernando Masanori Ashikaga,
Naomi Goldenson,
Brian Fitzpatrick,
Eric Burns,
Mark V. Albert,
micah altman,
Richard Valencia,
Cody Bartlett Heisinger,
Nick Grossman,
cgoldberg,
Mike Linksvayer,
Simon Phipps,
Yoshinari Takaoka,
Christian Spanring,
Ross M Karchner,
Martin Karlsson,
Kaia Dekker,
Nóirín Plunkett,
Emma Jane,
Helior Colorado,
Fred Benenson,
George V. Reilly,
Lydia Pintscher,
Noel Hidalgo,
Albert White,
Keng Susumpow,
Mattias Wingstedt,
Chris Cornutt,
Zak Greant,
Jessy Kate Schingler,
James Duncan Davidson,
Chris DiBona,
Daniel Latorre,
Jeremiah Lee Cohick,
Jannis Leidel,
Chris Streeter,
Leonard Richardson,
Terry Suitor,
Trevor Bramble,
Bertrand Delacretaz,
John Sykora,
Bill Kendrick,
Emmanuel Seyman,
Paolo Mottadelli,
Gabriel Burt,
Adrian Warman,
Steve Lee,
Andrew Nacin,
Chris Ballance,
Ben Karel,
Lance Pollard,
richardj,
Brian Land,
Jonathan Markow,
Kat Walsh,
Jason Orendorff,
Jim Garrison,
Jared Smith,
Sander van der Waal,
Karen Sandler,
Matt Lee,
John Morton,
Frank Warmerdam,
Michael R. Bernstein,
John Yuda,
Jack Repenning,
Jonathan Sick,
Naser Sharifi,
Cornelius Schumacher,
Yao-Ting Wu,
Camille Acey,
Greg Grossmeier,
Zooko Wilcox-O'Hearn,
Joe,
Anne Gentle,
Mark Jaquith,
Ted Gould,
James Schumann,
Falkvinge,
Schuyler Erle,
Gordon Fyodor Lyon,
Tony Meyer,
Salvador Torres,
Dustin J. Mitchell,
Lindy Klein,
Dave Stanton,
Floyd DCosta,
Agog Labs,
Adrià Mercader,
KIMURA Wataru,
Paul Cooper,
alexML,
Stefan Heinz,
maiki,
BjornW,
Matt Soar,
Mick Thompson,
mfks,
Sebastian Bergmann,
Michael Haggerty,
Stefan Eggers,
Veronica Vergara,
Bradley Kuhn,
Justin Tallant,
dietrich ayala,
Nat Torkington,
David Jeanmonod,
Randy Metcalfe,
Daniel Kahn Gillmor,
George Chamales,
Erik Möller,
Tim Schumacher,
Koichi Kimura,
Vanessa Hurst,
Daniel Shahaf,
Stefan Sperling,
Gunnar Hellekson,
Denver Gingerich,
Iliana Weller,
adam820,
Garance Drosehn,
Philip Olson,
Matt Doar,
Brian Jepson,
J Aaron Farr,
Mike Nosal,
Kevin Hall,
Eric Sinclair,
Alex Rudnick,
Jim Brucker,
PEI-HAN LEE,
Michael Novak,
Anthony Ferrara,
Dan Scott,
Russell Nelson,
Frank Wiles,
Alex Gaynor,
Julian Krause,
termie,
Joel McGrady,
Christian Fletcher Smith,
Mel Chua,
William Goff,
Tom Liesenfeld,
Roland Tanglao,
Ross Gardler,
Gervase Markham,
Ingo Renner,
Rochelle Lodder,
Charles Adler,
Dave Hylands,
Daryn Nakhuda,
Francois Marier,
Kendric Evans,
Greg Price,
Carlos Martín Nieto,
Greg Stein,
Glen Ivey,
Jason Ray,
Ben Ubois,
Landon Jones,
Jason Sperber,
Brian Ford,
Todd Nienkerk,
Keith Casey,
Leigh Honeywell,
Aaron Jorbin,
Christoph Hochstrasser,
Miguel Ponce de Leon,
Dave Neary,
Eric Lawrence,
Dirk Haun,
Brian Burg,
Brandon Kraft,
Praveen Sinha,
ML Cohen,
Christie Koehler,
Ethan Jucovy,
Lawrence S Kemp,
Justin Sheehy,
Jonathan Polirer,
Ronan Barzic,
Greg Dunlap,
Darcy Casselman,
Jeremy G Kahn,
Sam Moffatt,
James Vasile,
Simon Fondrie-Teitler,
Mario Peshev,
Alison Foxall,
Jim Blandy,
Brandon Satrom,
Viktor Ekmark,
Tor Helmer,
Jeff Ubois,
Gabriela Rodriguez,
James Tait,
Michael Parker,
Stacy Uden,
Peter Martin,
Amy Stephen,
James Tauber,
Cameron Goodale,
Jessica,
Ben Sheldon,
Forest Gregg,
Ken McAuliffe,
Marta Rybczynska,
Sean Taylor,
John Genego,
Meeuw,
Mark MacLennan,
Kennis Koldewyn,
Igor Galić,
Henrik Dahlström,
Jorren Schauwaert,
Masahiro Takagi,
Ben Collins-Sussman,
Decklin Foster,
Étienne Savard,
Fabio Kon,
Ole-Morten Duesund,
Michael Downey,
Jacob Kaplan-Moss,
Nicola Jordan,
Ian Sullivan,
Roger W Turner,
Justin Erenkrantz,
Isaac Christoffersen,
Deborah Bryant,
Christopher Manning,
Luis Villa,
Judicaël Courant,
Leslie Hawthorn,
Mark R. Hinkle,
Danese Cooper,
Michael Tiemann,
Robert M. Lefkowitz,
Todd Larsen,
T Foote,
Ben Reser,
Dave Camp,
Scott Berkun,
Garrett Rooney,
Dinyar Rabady,
Damien Wyart,
Seth Schoen,
Rob Brackett,
Aisha,
Winnie Fung,
Donald A. Lobo,
Dan Robles,
Django Software Foundation,
Mark Atwood,
Krux Digital,
Stephen Walli,
Dave Crossland,
Tina,
and Thorsten Behrens.

Thank you all.

Disclaimer

The thoughts and opinions expressed in this book are my own.
They do not necessarily represent the views of clients, past
employers, partners, or the open source projects discussed herein.
Any errors that remain despite the efforts of the people mentioned in
the acknowledgements are my own as well.

Chapter 1. Introduction

Free software — open source
software[3] — has become the backbone of
modern information technology. It runs on your phone, on your laptop
and desktop computers, and in embedded microcontrollers for household
appliances, automobiles, industrial machinery and countless other
devices that we too often forget even have software. Open source is
especially prevalent on the servers that provide online services on
the Internet. Every time you send an email, visit a web site, or call
up some information on your smartphone, a significant portion of the
activity is handled by open source software.
Yet it is also largely invisible, even to many of the people who
work in technology. Open source's nature is to fade into the
background and go unnoticed[4] except by those whose work touches it
directly. It is the oxygen of computing. We all breathe, but few
of us stop to think about where the air comes from.
If you've read this far, though, you're already one of the
people who wonders where the oxygen comes from, and probably want to
create some yourself.
This book will examine not only how to do open source right, but
how to do it wrong, so you can recognize and correct problems early.
My hope is that after reading it, you will have a repertory of
techniques not just for avoiding common pitfalls, but for dealing with
the growth and maintenance of a successful project. Success is not a
zero-sum game, and this book is not about winning or getting ahead of
the competition. Indeed, an important part of running an open source
project is working smoothly with other, related projects. In the long
run, every successful project contributes to the well-being of the
overall, worldwide body of free software.
It would be tempting to say that when free software projects
fail, they do so for the same sorts of reasons proprietary software
projects do. Certainly, free software has no monopoly on unrealistic
requirements, vague specifications, poor staff management, ignoring
user feedback, or any of the other hobgoblins already well known to
the software industry. There is a huge body of writing on these
topics, and I will try not to duplicate it in this book. Instead, I
will attempt to describe the problems peculiar to free software. When
a free software project runs aground, it is often because the
participants did not appreciate the unique problems of open source
software development, even though they might be quite well-prepared
for the familiar difficulties that afflict software development
generally.
One of the most common mistakes is unrealistic expectations
about the benefits of open source itself. An open license does not
guarantee that hordes of active developers will suddenly devote their
time to your project, nor does open-sourcing a troubled project
automatically cure its ills. In fact, quite the opposite: opening up
a project can add whole new sets of complexities, and cost
more in the short term than simply keeping it
in-house.[5]
Opening up means arranging the code to be comprehensible to
complete strangers, writing development documentation, and setting
discussion forums and other collaboration tools (this is discussed in
more detail in Chapter 3, Technical Infrastructure).
All of this is work, and is pure overhead at first. If any
interested developers do show up, there is the
added burden of answering their questions for a while before seeing
any benefit from their presence. As developer Jamie Zawinski said
about the troubled early days of the Mozilla project:
Open source does work, but it is most definitely
 not a panacea. If there's a cautionary tale here, it is that
 you can't take a dying project, sprinkle it with the magic pixie
 dust of "open source," and have everything magically work
 out. Software is hard. The issues aren't that simple.
(from https://www.jwz.org/gruntle/nomo.html)

A related mistake is that of skimping on presentation and
packaging, figuring that these can always be done later, when the
project is well under way. Presentation and packaging comprise a wide
range of tasks, all revolving around the theme of clearing away
distractions and cognitive barriers for newcomers — reducing the
amount of work they need to do to get from wherever they are to "the
next step" of engagement. The web site has to look good, the
software's compilation, packaging, and installation should be as
automated as possible, etc.
Many programmers unfortunately treat this kind of work as being
of secondary importance to the code itself. There are a couple of
reasons for this. First, it can feel like busywork, because its
benefits are most visible to those least familiar with the
project — and vice versa: after all, the people who
develop the code don't really need the packaging. They already know
how to install, administer, and use the software, because they wrote
it. Second, the skills required to do presentation and packaging well
are often completely different from those required to write code.
People tend to focus on what they're good at, even if it might serve
the project better to spend a little time on something that suits them
less. Chapter 2, Getting Started discusses presentation and
packaging in detail, and explains why it's crucial that they be a
priority from the very start of the project.
Next comes the fallacy that little or no project management is
required in open source, or conversely, that the same management
practices used for in-house development will work equally well on an
open source project.
Management in an open source project isn't always very visible,
but in the successful projects it's usually happening behind the
scenes in some form or another. A small thought experiment suffices
to show why. An open source project consists of a random collection
of programmers — already a notoriously independent-minded
species — who have most likely never met each other, and who may
each have different personal goals in working on the project. The
thought experiment is simply to imagine what would happen to such a
group without management. Barring miracles, it
would collapse or drift apart very quickly. Things won't simply run
themselves, much as we might wish otherwise. But the management,
though it may be quite active, is often informal and subtle.
The only thing keeping an open source development group together is their shared
belief that they can do more in concert than individually. Thus the
goal of management is mostly to ensure that they continue to believe
this, by setting standards for communications, by making sure useful
developers don't get marginalized due to personal idiosyncrasies, and
in general by making the project a place developers want to keep
coming back to. Specific techniques for doing this are discussed
throughout the rest of this book.
Finally, there is a general category of problems that may be
called "failures of cultural navigation." Twenty years ago, even ten,
it would have been premature to talk about a global culture of free
software, but not anymore. A recognizable culture has slowly emerged,
and while it is certainly not monolithic — it is at least as prone
to internal dissent and factionalism as any geographically bound
culture — it does have a basically consistent core. Most
successful open source projects exhibit some or all of the
characteristics of this core. They reward certain types of behaviors
and punish others; they create an atmosphere that encourages unplanned
participation, sometimes at the expense of central coordination; they
have concepts of rudeness and politeness that can differ substantially
from those prevalent elsewhere. Most importantly, longtime
participants have generally internalized these standards, so that they
share a rough consensus about expected conduct. Unsuccessful projects
usually deviate in significant ways from this core, albeit
unintentionally, and often do not have a consensus about what
constitutes reasonable default behavior. This means that when
problems arise, the situation can quickly deteriorate, as the
participants lack an already established stock of cultural reflexes to
fall back on for resolving differences.
That last category, failures of cultural navigation, includes an
interesting phenomenon: certain types of organizations are
structurally less compatible with open source development than others.
One of the great surprises for me in preparing the second edition of
this book was realizing that, on the whole, experience indicates that
governments are less suited to participating in
free software projects than for-profit corporations are, with
non-profits somewhere in between the two. There are many reasons for
this (see the section called “Governments and Open Source”), and the
problems are certainly surmountable, but it's worth noting that when
an existing organization — particularly a hierarchical
one, and particularly a hierarchical,
risk-averse, and publicity-sensitive one — starts or
joins an open source project, the organization will usually have to
make some adjustments.
The extra effort required to run a project as open source instead of closed
is not great, but the effort is most noticeable right at the
beginning. What's less noticeable at the beginning are the benefits,
which are considerable and which become clearer as the project
progresses. There is the deep personal satisfaction it gives
developers, of course: the pleasure of doing one's work in the open,
able to appreciate and be appreciated by one's peers. It is no
accident that many open source developers continue to stay active on
the same projects — as part of their job — even after changing
employers. But there are also significant organizational benefits:
the open source projects your organization participates in are a
membrane through which your managers and developers are regularly
exposed to people and ideas outside your organizational hierarchy.
It's like having the benefits of attending a conference, but while
still getting daily work done and without incurring travel
expenses.[6] In a
successful open source project, these benefits, once they start
arriving, greatly outweigh the costs.
This book is a practical guide, not an anthropological study or
a history. However, a working knowledge of the origins of today's
free software culture is an essential foundation for any practical
advice. A person who understands the culture can travel far and wide
in the open source world, encountering many local variations in custom
and dialect, yet still be able to participate comfortably and
effectively everywhere. In contrast, a person who does not understand
the culture will find the process of organizing or participating in a
project difficult and full of surprises. Since the number of people
developing free software continues to grow, there are many people in
that latter category — this is largely a culture of recent
immigrants, and will continue to be so for some time. If you think
you might be one of them, the next section provides background for
discussions you'll encounter later, both in this book and on the
Internet. (On the other hand, if you've been working with open source
for a while, you may already know a lot of its history, so feel free
to skip the next section.)

History

Software sharing has been around as long as software itself. In
the early days of computers, manufacturers felt that competitive
advantages were to be had mainly in hardware innovation, and therefore
didn't pay much attention to software as a business asset. Many of
the customers for these early machines were scientists or technicians,
who were able to modify and extend the software shipped with the
machine themselves. Customers sometimes distributed their patches
back not only to the manufacturer, but to other owners of similar
machines. The manufacturers often tolerated and even encouraged this:
in their eyes, improvements to the software, from whatever source,
just made the hardware more attractive to other potential
customers.
Although this early period resembled today's free software
culture in many ways, it differed in two crucial respects. First,
there was as yet little standardization of hardware — it was a
time of flourishing innovation in computer design, but the diversity
of computing architectures meant that everything was incompatible with
everything else. Software written for one machine would
generally not work on another; programmers tended to acquire
expertise in a particular architecture or family of architectures
(whereas today they would be more likely to acquire expertise in a
programming language or family of languages, confident that their
expertise will be transferable to whatever computing hardware they
happen to find themselves working with). Because a person's expertise
tended to be specific to one kind of computer, their accumulation of
expertise had the effect of making that particular architecture
computer more attractive to them and their colleagues. It was
therefore in the manufacturer's interests for machine-specific code
and knowledge to spread as widely as possible.
Second, there was no widespread Internet. Though there were
fewer legal restrictions on sharing than there are today, the
technical restrictions were greater: the means of getting data from
place to place were inconvenient and cumbersome, relatively speaking.
There were some small, local networks, good for sharing information
among employees at the same lab or company. But there remained
barriers to overcome if one wanted to share with the world. These
barriers were overcome in many cases. Sometimes
different groups made contact with each other independently, sending
disks or tapes through land mail, and sometimes the manufacturers
themselves served as central clearing houses for patches. It also
helped that many of the early computer developers worked at
universities, where publishing one's knowledge was expected. But the
physical realities of data transmission meant there was always an
impedance to sharing, an impedance proportional to the distance (real
or organizational) that the software had to travel. Widespread,
frictionless sharing, as we know it today, was not possible.
The Rise of Proprietary Software and Free Software

As the industry matured, several interrelated changes occurred
simultaneously. The wild diversity of hardware designs gradually gave
way to a few clear winners — winners through superior technology,
superior marketing, or some combination of the two. At the same time,
and not entirely coincidentally, the development of so-called "high
level" programming languages meant that one could write a program
once, in one language, and have it automatically translated
("compiled") to run on different kinds of computers. The implications
of this were not lost on the hardware manufacturers: a customer could
now undertake a major software engineering effort without necessarily
locking themselves into one particular computer architecture. When
this was combined with the gradual narrowing of performance
differences between various computers, as the less efficient designs
were weeded out, a manufacturer that treated its hardware as its only
asset could look forward to a future of declining profit margins. Raw
computing power was becoming a fungible good, while software was
becoming the differentiator. Selling software, or at least treating
it as an integral part of hardware sales, began to look like a good
strategy.
This meant that manufacturers had to start enforcing the
copyrights on their code more strictly. If users simply continued to
share and modify code freely among themselves, they might
independently reimplement some of the improvements now being sold as
"added value" by the supplier. Worse, shared code could get into the
hands of competitors. The irony is that all this was happening around
the time the Internet was getting off the ground. So just when truly
unobstructed software sharing was finally becoming technically
possible, changes in the computer business made it economically
undesirable, at least from the point of view of any single company.
The suppliers clamped down, either denying users access to the code
that ran their machines, or insisting on non-disclosure agreements
that made effective sharing impossible.
Conscious Resistance

As the world of unrestricted code swapping slowly faded away, a
counterreaction crystallized in the mind of at least one programmer.
Richard Stallman worked in the Artificial Intelligence Lab at the
Massachusetts Institute of Technology in the 1970s and early '80s,
during what turned out to be a golden age and a golden location for
code sharing. The AI Lab had a strong "hacker
ethic",[7] and people were not only encouraged but
expected to share whatever improvements they made to the system. As
Stallman wrote later:
We did not call our software "free software",
 because that term did not yet exist; but that is what it was.
 Whenever people from another university or a company wanted to
 port and use a program, we gladly let them. If you saw someone
 using an unfamiliar and interesting program, you could always
 ask to see the source code, so that you could read it, change
 it, or cannibalize parts of it to make a new program.

(from https://www.gnu.org/gnu/thegnuproject.html)

This Edenic community collapsed around Stallman shortly after
1980, when the changes that had been happening in the rest of the
industry finally caught up with the AI Lab. A startup company hired
away many of the Lab's programmers to work on an operating system
similar to what they had been working on at the Lab, only now under an
exclusive license. At the same time, the AI Lab acquired new
equipment that came with a proprietary operating system.
Stallman saw the larger pattern in what was happening:
The modern computers of the era, such as the VAX
 or the 68020, had their own operating systems, but none of them
 were free software: you had to sign a nondisclosure agreement
 even to get an executable copy.
This meant that the first step in using a
 computer was to promise not to help your neighbor. A cooperating
 community was forbidden. The rule made by the owners of
 proprietary software was, "If you share with your neighbor, you
 are a pirate. If you want any changes, beg us to make them."

By some quirk of personality, he decided to resist the trend.
Instead of continuing to work at the now-decimated AI Lab, or taking a
job writing code at one of the new companies, where the results of his
work would be kept locked in a box, he resigned from the Lab and
started the GNU Project and the Free Software Foundation (FSF). The
goal of GNU[8] was to develop a completely free and open
computer operating system and body of application software, in which
users would never be prevented from hacking or from sharing their
modifications. He was, in essence, setting out to recreate what had
been destroyed at the AI Lab, but on a world-wide scale and without
the vulnerabilities that had made the AI Lab's culture susceptible to
disintegration.
In addition to working on the new operating system, Stallman
devised a copyright license whose terms guaranteed that his code would
be perpetually free. The GNU General Public License (GPL) is a clever
piece of legal judo: it says that the code may be copied and modified
without restriction, and that both copies and derivative works (i.e.,
modified versions) must, if they are distributed at all, be
distributed under the same license as the original, with no additional
restrictions.
In effect, the GPL uses
copyright law to achieve an effect opposite to that of traditional
copyright: instead of limiting the software's distribution, it
prevents anyone, even the author, from limiting
distribution. For Stallman, this was better than simply putting his
code into the public domain. If it were in the public domain, any
particular copy of it could be incorporated into a proprietary program
(as also sometimes happens to code under non-reciprocal[9] open
source copyright licenses). While such incorporation wouldn't in
any way diminish the original code's continued availability, it would
have meant that Stallman's efforts could benefit the
enemy — proprietary software. The GPL can be thought of as a form
of protectionism for free software, because it prevents non-free
software from taking full advantage of GPLed code. The GPL and its
relationship to other free software licenses are discussed in detail
in Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks and Patents.
With the help of many programmers, some of whom shared
Stallman's ideology and some of whom simply wanted to see a lot of
free code available, the GNU Project began releasing free replacements
for many of the most critical components of an operating system.
Because of the now-widespread standardization in computer hardware and
software, it was possible to use the GNU replacements on otherwise
non-free systems, and many people did. The GNU text editor (Emacs)
and C compiler (GCC) were particularly successful, gaining large and
loyal followings not on ideological grounds, but simply on their
technical merits. By about 1990, GNU had produced most of a free
operating system, except for the kernel — the part that the
machine actually boots up and is responsible for managing memory,
disk, and other system resources.
Unfortunately, the GNU project had chosen a kernel design that
turned out to be harder to implement than expected. The ensuing delay
prevented the Free Software Foundation from making the first release
of an entirely free operating system. The final piece was put into
place instead by Linus Torvalds, a Finnish computer science student
who, with the help of developers around the world, had completed a
free kernel using a more conservative design. He named it Linux, and
when it was combined with the existing GNU programs and other free
software (especially the X Windows System), the result was a
completely free operating system. For the first time, you could boot
up your computer and do work without using any proprietary
software.[10]
Much of the software on this new operating system was not
produced by the GNU project. In fact, GNU wasn't even the only group
working on producing a free operating system (for example, the code
that eventually became NetBSD and FreeBSD was already under
development by this time). The importance of the Free Software
Foundation was not only in the code they wrote, but in their political
rhetoric. By talking about free software as a cause instead of a
convenience, they made it difficult for
programmers not to have a political consciousness
about it. Even those who disagreed with the FSF had to engage the
issue, if only to stake out a different position. The FSF's
effectiveness as propagandists lay in tying their code to a message,
by means of the GPL and other texts. As their code spread widely,
that message spread as well.

Accidental Resistance

There were many other things going on in the nascent free
software scene, however, and not all were as explicitly ideological as
Stallman's GNU Project. One of the most important was
the Berkeley Software Distribution
(BSD), a gradual re-implementation of the Unix
operating system — which up until the late 1970's had been a
loosely proprietary research project at AT&T — by programmers
at the University of California at Berkeley. The BSD group did not
make any overt political statements about the need for programmers to
band together and share with one another, but they
practiced the idea with flair and
enthusiasm, by coordinating a massive distributed development effort
in which the Unix command-line utilities and code libraries, and
eventually the operating system kernel itself, were rewritten from
scratch mostly by volunteers. The BSD project became an early example
of non-ideological free software development, and also served as a
training ground for many developers who would go on to remain active
in the open source world.
Another crucible of cooperative development was the X
Window System, a free, network-transparent graphical
computing environment, developed at MIT in the mid-1980's in
partnership with hardware vendors who had a common interest in being
able to offer their customers a windowing system. Far from opposing
proprietary software, the X license deliberately allowed proprietary
extensions on top of the free core — each member of the consortium
wanted the chance to enhance the default X distribution, and thereby
gain a competitive advantage over the other members. X
Windows[11] itself was free
software, but mainly as a way to level the playing field between
competing business interests and to increase standardization, not out of
some desire to end the dominance of proprietary software.
Yet another example, predating the
GNU project by a few years, was TeX, Donald Knuth's free,
publishing-quality typesetting system. He released it under terms
that allowed anyone to modify and distribute the code, but not to call
the result "TeX" unless it passed a very strict set of compatibility
tests (this is an example of the "trademark-protecting" class of free
licenses, discussed more in Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks and Patents). Knuth wasn't
taking a stand one way or the other on the question of
free-versus-proprietary software; he just needed a better typesetting
system in order to complete his
real goal — a book on computer
programming — and saw no reason not to release his system to the
world when done.

Without listing every project and every license, it's safe to
say that by the late 1980's, there was a lot of free software
available under a wide variety of licenses. The diversity of licenses
reflected a corresponding diversity of motivations. Even some of the
programmers who chose the GNU GPL were much less ideologically driven
than the GNU project itself was. Although they enjoyed working on free
software, many developers did not consider proprietary software a
social evil. There were people who felt a moral impulse to rid the
world of "software hoarding" (Stallman's term for non-free software),
but others were motivated more by technical excitement, or by the
pleasure of working with like-minded collaborators, or even by a
simple human desire for glory. Yet by and large these disparate
motivations did not interact in destructive ways. This may be
because software, unlike other creative forms like prose or the visual
arts, must pass semi-objective tests in order to be considered
successful: it must run, and be reasonably free of bugs. This gives
all participants in a project a kind of automatic common ground, a
reason and a framework for working together without worrying too much
about qualifications or motivations beyond the technical.
Developers had another reason to stick together as well: it
turned out that the free software world was producing some very
high-quality code. In some cases, it was demonstrably technically
superior to the nearest non-free alternative; in others, it was at
least comparable, and of course it always cost less to
acquire — and you didn't have to worry about the
manufacturer going out of business. While only a few
people might have been motivated to run free software on strictly
philosophical grounds, a great many people were happy to run it
because it did a better job. And of those who used it, some
percentage were always willing to donate their time and skills to help
maintain and improve the software.
This tendency to produce good code was certainly not universal,
but it was happening with increasing frequency in free software
projects around the world. Businesses that depended heavily on
software gradually began to take notice. Many of them discovered that
they were already using free software in day-to-day operations, and
simply hadn't known it (upper management isn't always aware of
everything the developers and the IT department do). Corporations began to take a more
active and public role in free software projects, contributing time
and equipment, and sometimes even directly funding the development of
free programs. Such investments could, in the best scenarios, repay
themselves many times over. The sponsor only pays a small number of
expert programmers to devote themselves to the project full time, but
reaps the benefits of everyone's contributions,
including work from programmers being paid by other corporations and
from volunteers who have their own disparate motivations.

"Free" Versus "Open Source"

As the corporate world gave more and more attention to free
software, programmers were faced with new issues of public presentation. One
was the word "free" itself. On first hearing the term "free software"
many people mistakenly think it means just "zero-cost software." It's
true that all free software is zero-cost,[12]
but not all zero-cost software is free as in "freedom" — that is,
the freedom to share and modify for any purpose. For example, during the
battle of the browsers in the 1990s, both Netscape and Microsoft gave
away their competing web browsers at no charge, in a scramble to gain
market share. Neither browser was free in the "free software" sense.
You couldn't get the source code, and even if you could, you didn't
have the right to modify or redistribute it.[13]
The only thing
you could do was download an executable and run it. The browsers were
no more free than shrink-wrapped software bought in a store; they
merely had a lower price.
This confusion over the word "free" is due entirely to an
unfortunate ambiguity in the English language. Most other tongues
distinguish low prices from liberty (the distinction between
gratis and libre is
immediately clear to speakers of Romance languages, for example). But
English's position as the de facto bridge language of the Internet
means that a problem with English is, to some degree, a problem for
everyone. The misunderstanding around the word "free" was so
prevalent that free software programmers eventually evolved a standard
formula in response: "It's free as in
freedom — think free
speech, not free beer." Still, having
to explain it over and over is tiring. Many programmers felt, with
some justification, that the ambiguous word "free" was hampering the
public's understanding of this software.
But the problem went deeper than that. The word "free" carried
with it an inescapable moral connotation: if freedom was an end in
itself, it didn't matter whether free software also happened to
be better, or more profitable for certain businesses in certain
circumstances. Those were merely pleasant side effects of a motive
that was, at its root, neither technical nor mercantile, but moral.
Furthermore, the "free as in freedom" position forced a glaring
inconsistency on corporations who wanted to support particular free
software in some areas of their business but continue marketing
proprietary software in others.
These dilemmas came to a community that was already poised for
an identity crisis. The programmers who actually
write free software have never been of one mind
about the overall goal, if any, of the free software movement. Even
saying that opinions run from one extreme to the other would be
misleading, in that it would falsely imply a linear range where there
is instead a multidimensional scattering. However, two broad
categories of belief can be distinguished, if we are willing to ignore
subtleties for the moment. One group takes Stallman's view, that the
freedom to share and modify is the most important thing, and that
therefore if you stop talking about freedom, you've left out the core
issue. Others feel that the software's quality itself is the most important
argument in its favor, and are uncomfortable with proclaiming
proprietary software inherently bad. Some, but not all, free
software programmers believe that the author (or employer, in the case
of paid work)
should have the right to control the terms of
distribution, and that no moral judgement need be attached to the
choice of particular terms. Others don't believe this.
For a long time, these differences did not need to be carefully
examined or articulated, but free software's burgeoning success in the
business world made the issue unavoidable. In 1998, the term
open source was coined by Christine Peterson as an alternative
to "free", during meetings of a coalition that eventually became the
Open Source Initiative (OSI).[14] The OSI's position was
not only that "free software" was potentially confusing, but that the
word "free" was just one symptom of a general problem: that the
movement needed a marketing program to pitch it to the corporate
world, and that talk of morals and the social benefits of sharing
would never fly in corporate boardrooms. In their own words at the
time:
The Open Source Initiative is a marketing
 program for free software. It's a pitch for "free software" on
 solid pragmatic grounds rather than ideological
 tub-thumping. The winning substance has not changed, the losing
 attitude and symbolism have. ...
The case that needs to be made to most techies
 isn't about the concept of open source, but the name. Why not
 call it, as we traditionally have, free software?
One direct reason is that the term "free
 software" is easily misunderstood in ways that lead to
 conflict. ...
But the real reason for the re-labeling is a
 marketing one. We're trying to pitch our concept to the
 corporate world now. We have a winning product, but our
 positioning, in the past, has been awful. The term "free
 software" has been misunderstood by business persons, who
 mistake the desire to share with anti-commercialism, or worse,
 theft.
Mainstream corporate CEOs and CTOs will never
 buy "free software." But if we take the very same tradition, the
 same people, and the same free-software licenses and change the
 label to "open
 source" — that, they'll
 buy.
Some hackers find this hard to believe, but
 that's because they're techies who think in concrete,
 substantial terms and don't understand how important image is
 when you're selling something.
In marketing, appearance is reality. The
 appearance that we're willing to climb down off the barricades
 and work with the corporate world counts for as much as the
 reality of our behavior, our convictions, and our
 software.
(from https://www.opensource.org/. Or
 rather, formerly from that
 site — the OSI has apparently taken down the
 pages since then, although they can still be seen at
 https://web.archive.org/web/20021204155057/http://www.opensource.org/advocacy/faq.php
 and
 https://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing [sic].)

The tips of many icebergs of controversy are visible in that
text. It refers to "our convictions", but smartly avoids spelling out
exactly what those convictions are. For some, it might be the
conviction that code developed according to an open process will be
better code; for others, it might be the conviction that all
information should be shared. There's the use of the word "theft" to
refer (presumably) to illegal copying — a usage that many object
to, on the grounds that it's not theft if the original possessor still
has the item afterwards. There's the tantalizing hint that the free
software movement might be mistakenly accused of anti-commercialism,
but the question of whether such an accusation would have any basis in
fact is left carefully unexamined.
None of which is to say that the OSI's rhetoric is inconsistent
or misleading. It wasn't. Rather, it was an example of exactly what
the OSI claimed had been missing from the free software movement: good
marketing, where "good" means "viable in the business world." The
Open Source Initiative gave a lot of people exactly what they had been
looking for — a vocabulary for talking about free software as a
development methodology and business strategy, instead of as a moral
crusade.

The appearance of the Open Source Initiative changed the
landscape of free software. It formalized a dichotomy that had long
been unnamed, and in doing so forced the movement to acknowledge that
it had internal politics as well as external. The effect today is
that both sides have had to find common ground, since most projects
include programmers from both camps, as well as participants who don't
fit any clear category. This doesn't mean people never talk about
moral motivations — lapses in the traditional "hacker ethic" are
sometimes called out, for example. But it is rare for a free software
/ open source developer to openly question the basic motivations of
others in a project. The contribution trumps the contributor. If
someone writes good code, you don't ask them whether they do it for
moral reasons, or because their employer paid them to, or because
they're building up their résumé, or whatever. You evaluate
the contribution on technical grounds, and respond on technical
grounds. Even explicitly political organizations like the Debian
project, whose goal is to offer a 100% free (that is, "free as in
freedom") computing environment, are fairly relaxed about integrating
with third-party non-free code and cooperating with programmers who don't share
exactly the same goals.[15]

[3] The terms are synonymous, as mentioned in

the Preface. See the section called “"Free" Versus "Open Source"” for
more.

[4] See "Spot The Pattern: Commoditization", by James Vasile, at
https://blog.opentechstrategies.com/2019/10/commoditization/

[5] In 2018 my partner James Vasile and I worked
with the Mozilla Corporation on some research that eventually became
the report Open Source Archetypes: A Framework For
Purposeful Open Source (https://opentechstrategies.com/archetypes). That research and
resultant report have been very helpful to us (and, so we hear,
to others) in thinking about the strategic use of
open source to achieve larger organizational purposes. If you think
that might be useful to you, then take a look at the report. Since
this book is not about those kinds of strategy questions
per se, I don't discuss the archetypes
much here. However, they may be useful to you, in conjunction with
this book, if the questions you're trying to answer are not only about
how to run a successful open source project but
about why to do so in the first
place.

[6] Of course, it's still a good idea for them to
attend real conferences once in a while too; see the section called “Meeting In Person: Conferences, Hackfests, Code-a-Thons, Code Sprints, Retreats”.

[7] Stallman uses the word "hacker" in the sense of
"someone who loves to program and enjoys being clever about it," not
the somewhat newer meaning of "someone who breaks into
computers."

[8] It stands for "GNU's Not Unix", and the
"GNU" in that expansion stands for an infinitely long
footnote.

[9] See the section called “Terminology” for more about "non-reciprocal" licensing
versus GPL-style "reciprocal" or "copyleft" licensing. The opensource.org FAQ is also
a good resource on this — see https://opensource.org/faq#copyleft.

[10] Technically, Linux was not the first. A free
operating system for IBM-compatible computers, called 386BSD, had come
out shortly before Linux. However, it was a lot harder to get 386BSD
up and running. Linux made such a splash not only because it was
free, but because it actually had a high chance of successfully
booting your computer after you installed it.

[11] They prefer it to be called the "X Window
System", but in practice, people usually call it "X Windows".

[12] One may charge
a fee for giving out copies of free software, but since one cannot
stop the recipients from offering it at no charge afterwards, the
price is effectively driven to zero immediately.

[13] The source
code to Netscape Navigator
was eventually released under an open source
license, in 1998, and became the foundation for the Mozilla Firefox web
browser. See https://www.mozilla.org/.

[14] OSI's web home is https://www.opensource.org/.

[15] See also the section called “Terminology”, which discusses how "free software"
and "open source" are almost entirely synonymous
when used to describe licensing and distribution
terms.

The Situation Today

When running a free software project, you won't need to talk
about such weighty philosophical matters on a daily basis.
Programmers will not insist that everyone else in the project agree
with their views on all things (those who do insist on this quickly
find themselves unable to work in any project). But you do need to be
aware that the question of "free" versus "open source" exists, partly
to avoid saying things that might be inimical to some of the
participants, and partly because understanding developers' motivations
is key to managing a project well.
Free software is a culture by choice. To operate successfully
in it, you have to understand why people choose to be in it in the
first place. Coercive techniques don't work. If people are unhappy in
one project, they will just wander off to another one. Free software
is remarkable even among intentional communities for its lightness of
investment. Many of the people involved have never actually met the
other participants face-to-face. The normal conduits by which humans bond
with each other and form lasting groups are narrowed down to a tiny
channel: the written word, carried over electronic wires. Because of
this, it can take a long time for a cohesive and dedicated group to
form. Conversely, it's quite easy for a project to lose a potential
participant in the first five minutes of acquaintanceship. If a project
doesn't make a good first impression, a newcomer may wait a long time
before giving it a second chance.
This potential transience of relationships is perhaps the single most daunting task
facing a new project. What will persuade all these people to stick
together long enough to produce something useful? The answer to that
question is complex enough to occupy the rest of this book, but if it
had to be expressed in one sentence, it would be this:
People should feel that their connection to a
 project, and influence over it, is directly proportional to
 their contributions.

No class of developers, or potential developers, should ever
feel discounted or discriminated against for non-technical
reasons.[16]
Clearly, projects with corporate
sponsorship and/or salaried developers need to be especially careful
in this regard, as Chapter 5, Organizations and Money: Businesses, Non-Profits, and Governments discusses in detail. Of
course, this doesn't mean that if there's no corporate sponsorship
then you have nothing to worry about. Money is merely one of many
factors that can affect the success of a project. There are also
questions of what programming languages to choose, what license, what development
process, precisely what kind of infrastructure to set up, how to
publicize the project's inception effectively, and much more.
Starting a project out on the right foot is the topic of the next chapter.

[16] There can be cases where you discriminate
against certain developers due to behavior which, though not related
to their technical contributions, has the potential to harm the
project. That's reasonable: their behavior is relevant because in the
long run it will have a negative effect on the project. The varieties
of human culture being what they are, I can give no single, succinct
rule to cover all such cases, except to say that you should try to be
welcoming to all potential contributors and, if you must discriminate,
do so only on the basis of actual behavior in the project, not on the basis of a
contributor's group affiliation or group identity.

Chapter 2. Getting Started

Starting a free software project is a twofold task. The
software needs to acquire users, and to acquire developers. These two
needs are not necessarily in conflict, but the interaction between
them adds some complexity to a project's initial presentation. Some
information is useful for both audiences, some is useful only for one
or the other. Both kinds of information should subscribe to the
principle of scaled presentation: the degree of detail presented at
each stage should correspond to the amount of time and effort put in
by the reader at that stage. More effort should always result in more
reward. When effort and reward do not correlate reliably, people
lose faith and stop investing effort.
The corollary to this is that appearances
matter. Programmers, in particular, often don't like to
believe this. Their love of substance over form is almost a point of
professional pride. It's no accident that so many programmers exhibit
an antipathy for marketing and public relations work, nor that
professional graphic designers are often horrified at the designs
programmers come up with on their own.
This is a pity, because there are situations where form
is substance, and project presentation is one of
them. For example, the very first thing a visitor learns about a
project is what its home page looks like. This information is
absorbed before any of the actual content on the site is
comprehended — before any of the text has been read or links
clicked on. However unjust it may be, people cannot stop themselves
from forming an immediate first impression. The site's appearance
signals what kind of care was taken in organizing the project's
presentation. Humans have extremely sensitive antennae for detecting
the investment of care. Most of us can tell in one quick glance whether a
home page was thrown together quickly or was given serious thought.
This is the first piece of information your project puts out, and the
impression it creates will carry over to the rest of the project by
association.
Thus, while much of this chapter talks about the content your
project should start out with, remember that its look and feel matter
too. Because the project web site has to work for two different types
of visitors — users and developers — special attention
must be paid to clarity and directedness. Although this is not the
place for a general treatise on web design, one principle is important
enough to deserve mention, particularly when the site serves multiple
(if overlapping) audiences: people should have a rough idea where a
link goes before clicking on it. For example, it should be obvious
from looking at the links to user documentation
that they lead to user documentation, and not to, say, developer
documentation. Running a project is partly about supplying
information, but it's also about supplying comfort. The mere presence
of certain standard offerings, in expected places, reassures users and
developers who are deciding whether they want to get involved. It
says that this project has its act together, has anticipated the
questions people will ask, and has made an effort to answer them in a
way that requires minimal exertion on the part of the asker. By
giving off this aura of preparedness, the project sends out a message:
"Your time will not be wasted if you get involved," which is exactly
what people need to hear.
What We Mean by Users and Developers

The terms user and
developer here refer to someone's relationship
to the open source software project in question, not to her identity
in the world at large.
For example, if the open source project is a Javascript library
intended for use in web development, and someone is using the library
as part of her work building web sites, then she is a "user" of the
library (even though professionally her title might be "software
developer"). But if she starts contributing bugfixes and enhancements
back upstream — that is, back into the project
 — then, to the extent that she becomes involved in the project's
maintenance, she is also a "developer" of the project.
It's common for developers in an open source projects to be
users as well, but it's not always the case. Especially with large
projects started by organizations to meet enterprise-scale software
needs, the developers may not always be direct users of the software,
although they are usually somehow connected with the team that deploys that
software within their organization.
In projects meant primarily for programmers, the boundary
between user and developer is very porous: every
user is a potential developer. But even in projects meant for
non-technical people, some percentage of the users are still potential
developers. Open source projects should be run in such a way as to
make that transition available to anyone who's interested.

If you use a "canned hosting" site (see the section called “Canned Hosting”), one advantage of that
choice is that those sites have a default layout that is similar from
project to project and is pretty well-suited to presenting a project
to the world. That layout can be customized, within certain
boundaries, but the default design prompts you to include the
information visitors are most likely to be looking for.
But First, Look Around

Before starting an open source project, there is one important
caveat:
Always look around to see if there's an existing project that
does what you want. The chances are pretty good that whatever problem
you want solved now, someone else wanted solved before you. If they
did solve it, and released their code under a free license, then
there's no reason for you to reinvent the wheel today. There are
exceptions, of course: if you want to start a project as an
educational experience, pre-existing code won't help; or maybe the
project you have in mind is so specialized that you know there is zero
chance anyone else has done it. But generally, there's no point not
looking, and the payoff can be huge.[17]
Even if you don't find exactly what you were looking for, you
might find something so close that it makes more sense to join that
project and add functionality to it than to start from scratch yourself.
See the section called “Evaluating Open Source Projects” for a
discussion of how to evaluate an existing open source project
quickly.

Starting From What You Have

You've looked around, found that nothing out there really fits
your needs, and decided to start a new project.
What now?
The hardest part about launching a free software project is
transforming a private vision into a public one. You or your
organization may know perfectly well what you want, but expressing
that goal comprehensibly to the world is a fair amount of work. It is
essential, however, that you take the time to do it. You and the
other founders must decide what the project is really about — that
is, decide its limitations, what it won't do as
well as what it will — and write up a mission
statement.[18] This
part is usually not too hard, though it can sometimes reveal unspoken
assumptions and even disagreements about the nature of the project,
which is fine: better to resolve those now than later. The next step
is to package up the project for public consumption, and this is,
basically, pure drudgery.
What makes it so laborious is that it consists mainly of
organizing and documenting things everyone already
knows — "everyone", that is, who's been involved in the project so
far. Thus, for the people doing the work, there is no immediate
benefit. They do not need a README file giving
an overview of the project, nor a design document.
They do not need an organized code tree conforming to the
informal but widespread standards of software source distributions.
Whatever way the source code is arranged is fine for them, because
they're already accustomed to it anyway, and if the code runs at all,
they know how to use it. It doesn't even matter, for them, if the
fundamental architectural assumptions of the project remain
undocumented; they're already familiar with those too.
Newcomers, on the other hand, need all these things. Fortunately,
they don't need them all at once. It's not necessary for you to
provide every possible resource before taking a project public. In a
perfect world, perhaps, every new open source project would start out
life with a thorough design document, a complete user manual (with
special markings for features planned but not yet implemented),
beautifully and portably packaged code capable of running on any
computing platform, and so on. In reality, taking care of all these
loose ends would be prohibitively time-consuming, and anyway, it's
work that one can reasonably hope others will help with once the
project is under way.
What is necessary, however, is to put enough
investment into presentation that newcomers can get past the
initial obstacle of unfamiliarity. Think of it as the first step in a
bootstrapping process, to bring the project to a kind of minimum
activation energy. I've heard this threshold called the
hacktivation energy: the amount of energy a
newcomer must put in before she starts getting something back. The
lower a project's hacktivation energy, the better. Your first task is
bring the hacktivation energy down to a level that encourages people
to get involved.
Each of the following subsections describes one aspect
of starting a new project. They are presented roughly in the order
that a new visitor would encounter them, though of course the order in
which you actually implement them might be different. You can treat
them as a checklist. When starting a project, just go down the list
and make sure you've got each item covered, or at least that you're
comfortable with the potential consequences if you've left one
out.
Choose a Good Name

Put yourself in the shoes of someone who's just heard about your
project, perhaps by having stumbled across it while searching for
software to solve some problem. The first thing they'll encounter is
the project's name.
A good name will not automatically make your project successful,
and a bad name will not doom it.[19] However, a bad name can slow
down adoption of the
project, either because people don't take it seriously, or because
they simply have trouble remembering it.
A good name:

	Gives some idea what the project does, or at least
 is related in an obvious way, such that if one knows the
 name and knows what the project does, the name will come
 quickly to mind thereafter.

	Is easy to remember. Here, there is no getting
 around the fact that English has become the default
 language of the Internet: "easy to remember" usually means
 "easy for someone who can read English to remember."

	Does not depend on native or high-level fluency in
 English, nor on a particular regional pronunciation.
 Names that are puns, for example, do not always travel well.
 If the pun is particularly compelling and memorable, it
 may still be worth it; just keep in mind that not everyone
 who sees the name will hear it in their head in the same
 way.

	Is not the same as some other project's name, and
 does not infringe on any trademarks. This is just good
 manners, as well as good legal sense. You don't want to
 create identity confusion. It's hard enough to keep track
 of everything that's available on the Net already, without
 different things having the same name.
The resources mentioned earlier in
 the section called “But First, Look Around” are useful in
 discovering whether another project already has the name
 you're thinking of. For the U.S., trademark searches are
 available at http://www.uspto.gov/.

	If possible, is available as a domain name in the
 .com,
 .net, and
 .org top-level domains. You
 should pick one, probably .org,
 to advertise as the official home site for the project;
 the other two should forward there and are simply to
 prevent third parties from creating identity confusion
 around the project's name. Even if you intend to host the
 project at some other site (see
 the section called “Hosting”), you
 can still register project-specific domains and forward
 them to the hosting site. It helps users a lot to have a
 simple URL to remember.[20]

	If possible, is available as a username on https://twitter.com/ and other
 microblog sites. See the section called “Own the Name in the Important Namespaces” for
 more on this and its relationship to the domain name.

Own the Name in the Important Namespaces

For large projects, it is a good idea to own the project's name
in as many of the relevant namespaces on the Internet as you can. By
namespaces, I mean not just the global Domain Name System, but also online
services in which the account name (username) is the publicly visible
handle by which people refer to the project. If you have the same
name in all the places where people would look for you, you make it
easier for people to sustain a mild interest in the project until
they're ready to become more involved.
For example, the Gnome free desktop project has the https://gnome.org/ domain
name,[21] the https://twitter.com/gnome Twitter handle, the https://github.com/gnome username at
GitHub.com,[22] and on the Libera.chat IRC
network (see the section called “Real-Time Chat Systems”) they have the channel
#gnome, although they also maintain their own IRC servers
(where they control the channel namespace, of course).
All this makes the Gnome project splendidly easy to find: it's
usually right where a potential contributor would expect it to be. Of
course, Gnome is a large and complex project with thousands of
contributors and many subdivisions; the advantage to Gnome of being
easy to find is greater than it would be for a newer project, since by
now there are so many ways to get involved in Gnome. But it will
certainly never harm your project to own its name
in as many of the relevant namespaces as it can, and it can sometimes
help. So when you start a project, think about what its online handle
should be and register that handle with the online services you think
you're likely to care about. The ones mentioned above are probably a
good initial list, but you may know others that are relevant for the
particular subject area of your project.

Have a Clear Mission Statement

Once they've found the project's home site, the next thing people
will look for is a quick description or mission statement, so they can
decide (within 30 seconds) whether or not they're interested in
learning more. This should be prominently placed on the front page,
preferably right under the project's name.
The description should be concrete, limiting, and above all,
short. Here's an example of a good one, from https://hadoop.apache.org/:
The Apache™ Hadoop® project develops open-source
 software for reliable, scalable, distributed computing.
The Apache Hadoop software library is a framework
 that allows for the distributed processing of large data sets across
 clusters of computers using simple programming models. It is
 designed to scale up from single servers to thousands of machines,
 each offering local computation and storage. Rather than rely on
 hardware to deliver high-availability, the library itself is
 designed to detect and handle failures at the application layer, so
 delivering a highly-available service on top of a cluster of
 computers, each of which may be prone to failures.

In just four sentences, they've hit all the high points, largely
by drawing on the reader's prior knowledge. That's an important
point: it's okay to assume a minimally informed reader with a baseline
level of technical preparedness. A reader who doesn't know what "clusters" and
"high-availability" mean in this context probably can't make much use
of Hadoop anyway, so there's no point writing for a reader who knows
any less than that. The phrase "designed to detect and handle
failures at the application layer" will stand out to engineers who
have experience with large-scale computing clusters — when they
see those words, they'll know that the people behind Hadoop understand
that world, and the first-time visitor will thus be likely to give
Hadoop further consideration.
Those who remain interested after reading the mission statement
will next want to see more details, perhaps some user or developer
documentation, and eventually will want to download something. But
before any of that, they'll need to be sure it's open source.

State That the Project is Free

The front page must make it unambiguously clear that
the project is open source. This may seem obvious, but you
would be surprised how many projects forget to do it. I have seen
free software project web sites where the front page not only did not
say which particular free license the software was distributed under,
but did not even state outright that the software was free at all.
Sometimes the crucial bit of information was relegated to the
Downloads page, or the Developers page, or some other place that
required one more mouse click to get to. In extreme cases, the
license was not given anywhere on the web site at all — the only
way to find it was to download the software and look at a license file
inside.
Please don't make this mistake. Such an omission can lose many
potential developers and users. State up front, in or near the
mission statement, that the project is "free software" or "open source
software", and give the exact license. A quick guide to choosing a
license is given in
the section called “Choosing a License and Applying It”, and
licensing issues are discussed in detail in Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks and Patents.
By this point, our hypothetical visitor has
determined — probably in a minute or less — that she's
interested in spending, say, at least five more minutes investigating
this project. The next sections describe what she should encounter in
those five minutes.

Features and Requirements List

There should be a brief list of the features the software
supports (if something isn't completed yet, you can still list it, but
put "planned" or
"in progress" next to it), and the kind of
computing environment required to run the software. Think of the
features/requirements list as what you would give to someone asking
for a quick summary of the software. It is often just a logical
expansion of the mission statement. For example, the mission
statement might say:
Scanley is an open source full-text indexer and
 search engine with a rich API, for use by programmers in providing
 search services for large collections of text files.

The features and requirements list would give the details,
clarifying the mission statement's scope:
Features:
	Searches plain text, HTML, JSON,
 XML, and other formats

	Word or phrase searching

	(planned) Fuzzy matching

	(planned) Incremental index
 updates

	(planned) Indexing of remote web
 sites

Requirements:
	Python 3.9 or higher

	Enough disk space to hold the indexes
 (approximately 2x original data size)

With this information, readers can quickly get a feel for
whether this software might be what they're looking for, and they can
consider getting involved as developers too.

Development Status

Visitors usually want to know how a project is doing. For new
projects, they want to know the gap between the project's promise and
current reality. For mature projects, they want to know how actively
it is maintained, how often it puts out new releases, how responsive
it is to bug reports, etc.
There are a couple of different ways to provide answers to
these questions. One is to have a development status page, listing
the project's near-term goals and what kinds of expertise are expected
from participating developers at the current stage. The page
can also give a history of past releases, with feature lists, so
visitors can get an idea of how the project defines "progress", and
how quickly it makes progress according to that definition. Some
projects structure their development status page as a roadmap that
includes the future: past events are shown on the dates they actually
happened, future ones on the approximate dates the project hopes they
will happen.
The other way — not mutually exclusive with the
first, and in fact probably best done in combination with
it — is to have various automatically-maintained
counters and indicators embedded in the project's front page and/or
its developer landing page, showing various pieces of information
that, in the aggregate, give a sense of the project's development
status and progress. For example, an Announcements or News panel
showing recent news items, a Twitter or other microblog stream showing
notices that match the project's designated hashtags, a timeline of
recent releases, a panel showing recent activity in the bug tracker
(bugs filed, bugs responded to), another showing mailing list or
discussion forum activity, etc. Each such indicator should be a
gateway to further information of its type: for example, clicking on
the "recent bugs" panel should take one to the full bug tracker, or at
least to an expanded view into bug tracker activity.
Really, there are two slightly different meanings of
"development status" being conflated here. One is the formal sense:
where does the project stand in relation to its stated goals, and how
fast is it making progress. The other is less formal but just as
useful: how active is this project? Is stuff going on? Are there
people here, getting things done? Often that latter notion is what a
visitor is most interested in. Whether or not a project met its most
recent milestone is often not as interesting as the more
fundamental question of whether it has an active community of
developers around it.
These two notions of development status are, of course, related,
and a well-presented project shows both kinds. The information can be
divided between the project's front page (show enough there to give an
overview of both types of development status) and a more
developer-oriented page.
Development Status Should Always Reflect Reality

Don't be afraid of looking unready, and never give in to the
temptation to inflate or hype the development status. Everyone knows that
software evolves by stages; there's no shame in saying "This is alpha
software with known bugs. It runs, and works at least some of the
time, but use at your own risk." Such language won't scare away the
kinds of developers you need at that stage. One of the
worst things a project can do is attract users before the software is
ready for them. A reputation for instability or bugginess is very
hard to shake, once acquired. Conservatism pays off in the long
run; it's always better for the software to be
more stable than the user expected rather than less, and
pleasant surprises produce the best kind of word-of-mouth.
Alpha and Beta

The term alpha usually means a first
 release, with which users can get real work done and which has all
 the intended functionality, but which also has known bugs. The main
 purpose of alpha software is to generate feedback, so the developers
 know what to work on. Alpha releases are generally free to change
 APIs and functionality.
The next stage, beta, means the
 software's APIs are finalized and its serious known bugs fixed, but
 it has not yet been tested enough to certify for production release.
 The purpose of beta software is to either become the official
 release, assuming no bugs are found, or provide detailed feedback to
 the developers so they can reach the official release quickly. In a
 series of beta releases, APIs and functionality should not change
 except when absolutely necessary.

Downloads

The software should be downloadable as source code in standard
formats. When a project is first getting started, binary (executable)
packages are not necessary, unless the software has such complicated
build requirements or dependencies that merely getting it to run would
be a lot of work for most people. (But if this is the case, the
project is going to have a hard time attracting developers
anyway!)
The distribution mechanism should be as convenient, standard,
and low-overhead as possible. If you were trying to eradicate a
disease, you wouldn't distribute the medicine in such a way that it
requires a non-standard syringe size to administer. Likewise,
software should conform to standard build and installation methods;
the more it deviates from the standards, the more potential users and
developers will give up and go away confused.
That sounds obvious, but many projects don't bother to
standardize their installation procedures until very late in the game,
telling themselves they can do it any time: "We'll sort all
that stuff out when the code is closer to being ready."
What they don't realize is that by putting off the boring work of
finishing the build and installation procedures, they are actually
making the code take longer to get ready — because they
discourage developers who might otherwise have contributed to the
code, if only they could build and test it. Most insidiously, the
project won't even know it's
losing all those developers, because the process is an accumulation of
non-events: someone visits a web site, downloads the software, tries
to build it, fails, gives up and goes away. Who will ever know it
happened, except the person themselves? No one working on the project
will realize that someone's interest and good will have been silently
squandered.
Boring work with a high payoff should always be done early, and
significantly lowering the project's barrier to entry through good
packaging brings a very high payoff.
When you release a downloadable package, give it a unique
version number, so that people can compare any two releases and know
which supersedes the other. That way they can report bugs against a
particular release (which helps respondents to figure out if the bug
is already fixed or not). A detailed discussion of version
numbering can be found in the section called “Release Numbering”, and the
details of standardizing build and installation procedures are covered
in the section called “Packaging”.

Version Control and Bug Tracker Access

Downloading source packages is fine for those who just want to
install and use the software, but it's not enough for those who want
to debug or add new features. Nightly source snapshots can help, but
they're still not fine-grained enough for a thriving development
community. People need real-time access to the latest sources, and a
way to submit changes based on those sources.
The solution is to use a version control
system — specifically, an online, publicly-accessible
version controlled repository, from which anyone can check out the
project's materials and subsequently get updates. A version control
repository is a sign — to both users and developers — that
this project is making an effort to give people what they need to
participate. As of this writing, many open source projects use https://github.com/, which offers unlimited
free public version control hosting for open source projects. While
GitHub is not the only choice, nor even the only good choice, it's a
reasonable one for most projects[23].
Version control infrastructure is discussed in detail in the section called “Version Control”.
The same goes for the project's bug tracker. The importance of
a bug tracking system lies not only in its day-to-day usefulness to
developers, but in what it signifies for project observers. For many
people, an accessible bug database is one of the strongest signs that
a project should be taken seriously — and the higher
the number of bugs in
the database, the better the project looks. That
might seem counterintuitive, but remember that the number of bug
reports filed really depends mostly on two things: the number of people
using the software and the convenience with which those people can report bugs.
Any software of sufficient size and complexity has an
essentially arbitrary number of bugs waiting to be discovered. The
real question is, how well will the project do at receiving, recording, and
prioritizing those bugs? A project with a large and well-maintained
bug database ("well-maintained" meaning bugs are responded to promptly, duplicate bugs
are unified, etc) therefore makes a much better impression than a project
with no bug database or with a nearly empty database.
Of course, if your project is just getting started, then the bug
database will contain very few bugs, and there's not much you can do
about that. But if the status page emphasizes the project's youth,
and if people looking at the bug database can see that most filings
have taken place recently, they can extrapolate from that the project
still has a healthy rate of filings, and they
will not be unduly alarmed by the low absolute number of bugs
recorded.[24]
Note that bug trackers are often used to track not only software
defects, but also enhancement requests, documentation changes, pending tasks,
and more. The details of running a bug tracker are covered in
the section called “Bug Tracker”, so I won't
go into them here. The important thing from a presentation point of
view is mainly to have a bug tracker and to use it — and to make
sure that it is easy to find.

Communications Channels

Visitors usually want to know how to reach the human beings
involved with the project. Provide the addresses of mailing lists,
chat rooms, and any other forums where others
involved with the software can be reached.[25]
Make it clear that you and
the other maintainers of the project are subscribed to these mailing
lists, so people see there's a way to give feedback that will reach
the developers. Your presence on the lists does not imply a
commitment to answer all questions or implement all feature requests.
In the long run, probably only a fraction of users will use the forums
anyway, but the others will be comforted to know that they
could if they ever needed to.
In the early stages of a project, there's usually no need to have
separate user and developer forums. It's much better to have everyone
involved with the software talking together, in one "room." Among
early adopters, the distinction between developer and user is often
fuzzy; to the extent that the distinction can be made, the ratio of
developers to users is usually much higher in the early days of the
project than later on. While you can't assume that every early
adopter is a programmer who wants to hack on the software, you can
assume that they are at least interested in following development
discussions and in getting a sense of the project's direction.
As this chapter is only about getting a project started, it's
enough merely to say that these communications forums need to exist.
Later, in the section called “Handling Growth”, we'll examine where
and how to set up such forums, the ways in which they might need
moderation or other management, and how, when the time comes, to
separate user forums from developer forums without creating an
unbridgeable gulf.

Developer Guidelines

If someone is considering contributing to the project, she'll
look for developer guidelines. Developer guidelines are not so much
technical as social: they explain how the developers interact with
each other and with the users, and ultimately how things get
done.
This topic is covered in detail in
the section called “Writing It All Down”, but the basic
elements of developer guidelines are:

	pointers to forums for interaction with other
 developers

	instructions on how to report bugs and submit
 patches

	some indication of how
 development is usually done and how decisions are
 made — is the project a benevolent dictatorship, a
 democracy, or something else

No pejorative sense is intended by "dictatorship", by the way. It's
perfectly okay to run a tyranny where one particular developer has
veto power over all changes. Many successful projects work this way.
The important thing is that the project come right out and say so. A
tyranny pretending to be a democracy will turn people off; a tyranny
that says it's a tyranny will do fine as long as the tyrant is
competent and trusted. (See the section called “Forkability”
for why dictatorship in open source projects doesn't have the same
implications as dictatorship in other areas of life.)
http://subversion.apache.org/docs/community-guide/
is an example of particularly thorough developer guidelines; the
LibreOffice guidelines at https://wiki.documentfoundation.org/Development are also a good
example.
If the project has a written Code of Conduct (see the section called “Codes of Conduct”), then the developer guidelines should
link to it.
The separate issue of providing a programmer's introduction to
the software is discussed in the section called “Developer Documentation”.

Documentation

Documentation is essential. There needs to be
something for people to read, even if it's
rudimentary and incomplete. This falls squarely into the "drudgery"
category referred to earlier, and is often the first area where a new
open source project falls down. Coming up with a mission statement
and feature list, choosing a license, summarizing development
status — these are all relatively small tasks, which can be
definitively completed and usually need not be revisited once done.
Documentation, on the other hand, is never really finished, which may
be one reason people sometimes delay starting it at all.
Insidiously, documentation's utility to
those writing it is the inverse of its utility to those reading
it. The most important documentation for initial users is the basics:
how to quickly set up the software, an overview of how it works,
perhaps some guides to doing common tasks. Yet these are exactly the
things the writers of the documentation know all
too well — so well that it can be difficult for them to see
things from the reader's point of view, and to laboriously spell out
the steps that (to the writers) seem so obvious as to be unworthy of
mention.
There's no magic solution to this problem. Someone just needs
to sit down and write the stuff, and then, most importantly,
incorporate feedback from readers. Use a simple, easy-to-edit format
such as Markdown, HTML, plain text, ReStructuredText, or
Asciidoc — something that's convenient for lightweight,
quick improvements on the spur of the moment.[26] This is not only to remove any
overhead that might impede the original writers from making
incremental improvements, but also for those who join the project
later and want to work on the documentation.
One way to ensure basic initial documentation gets done is to
limit its scope in advance. That way, writing it at least won't feel
like an open-ended task. A good rule of thumb is that it should meet
the following minimal criteria:
	Tell the reader clearly how much technical
 expertise they're expected to have.

	Describe clearly and thoroughly how to set up
 the software, and tell the user how to run some sort of
 diagnostic test or simple command to confirm that
 they've set things up correctly. Startup
 documentation is in some ways more important than
 actual usage documentation. The more effort someone has
 invested in installing and getting started with the
 software, the more persistent she'll be in figuring out
 advanced functionality that's not well-documented.
 When people abandon, they abandon early; therefore,
 it's the earliest stages, like installation, that need
 the most support.

	Give one tutorial-style example of how to do a
 common task. Obviously, many examples for many tasks
 would be even better, but if time is limited, pick one
 task and walk through it thoroughly. Once someone
 sees that the software can be
 used for one thing, they'll start to explore what else
 it can do on their own — and, if you're lucky,
 start filling in the documentation themselves. Which
 brings us to the next point...

	Label the areas where the documentation is known
 to be incomplete. By showing the readers that you are
 aware of its deficiencies, you align yourself with
 their point of view. Your empathy reassures them that
 they won't struggle to convince the project of
 what's important. These labels needn't represent
 promises to fill in the gaps by any particular date — it's
 equally legitimate to treat them as open
 requests for help.

The last point is of wider importance, actually, and can be
applied to the entire project, not just the documentation. An
accurate accounting of known deficiencies is the norm in the open
source world. You don't have to exaggerate the project's
shortcomings, just identify them scrupulously and dispassionately when
the context calls for it (whether in the documentation, in the bug
tracking database, or on a mailing list discussion). No one will
treat this as defeatism on the part of the project, nor as a
commitment to solve the problems by a certain date, unless the project
makes such a commitment explicitly. Since anyone who uses the
software will discover the deficiencies for themselves, it's much
better for them to be psychologically prepared — then the
project will look like it has a solid knowledge of how it's
doing.
Maintaining a FAQ

A FAQ ("Frequently Asked Questions"
 document) can be one of the best investments a project makes in
 terms of educational payoff. FAQs are highly tuned to the questions
 users and developers actually ask — as opposed to the questions
 you might have expected them to ask — and
 therefore, a well-maintained FAQ tends to give those who consult it
 exactly what they're looking for. The FAQ is often the first place
 users look when they encounter a problem, often even in preference
 to the official manual, and it's probably the document in your
 project most likely to be linked to from other sites.
Unfortunately, you cannot make the FAQ at the start of the
 project. Good FAQs are not written, they are grown. They are by
 definition reactive documents, evolving over time in response to
 the questions people ask about the software. Since it's impossible
 to correctly anticipate those questions, it is impossible to sit
 down and write a useful FAQ from scratch.
Therefore, don't waste your time trying to. You may, however,
 find it useful to set up a mostly blank FAQ template with just a few
 questions and answers, so there will
 be an obvious place for people to contribute questions and answers
 after the project is under way. At this stage, the most important
 property is not completeness, but convenience:
 if the FAQ is easy to
 add to, people will add to it. (Proper FAQ maintenance is a
 non-trivial and intriguing problem: see the section called “"Manager" Does Not Mean "Owner"”,
 the section called “Wikis”, and the section called “Treat All Resources Like Archives”.)

Availability of Documentation

Documentation should be available from two places: online
(directly from the web site), and in the
downloadable distribution of the software (see
the section called “Packaging”). It needs to be
online, in browsable form, for two reasons: one, people often read
documentation before downloading software for the
first time, as a way of helping them decide whether to download at
all, and two, Internet search engines will often give results that
land people directly in the docs. But documentation
should also be accompany the software, on the principle that downloading
should supply (i.e., make locally accessible) everything one needs to
use the package.
For online documentation, make sure that there is a link that
brings up the entire documentation in one HTML
page (put a note like "monolithic" or "all-in-one" or "single large
page" next to the link, so people know that it might take a while to
load). This is useful because people often want to search for a
specific word or phrase across the entire documentation. Generally,
they already know what they're looking for; they just can't remember
what section it's in. For such people, nothing is more frustrating
than encountering one HTML page for the table of contents, then a
different page for the introduction, then a different page for
installation instructions, etc. When the pages are broken up like
that, their browser's search function is useless. The separate-page
style is useful for those who already know what section they need, or
who want to read the entire documentation from front to back in
sequence. But this is not necessarily the most common way
documentation is accessed. Often, someone who is basically
familiar with the software is coming back to search for a specific
word or phrase, and to fail to provide them with a single, searchable
document would only make their lives harder.

Developer Documentation

Developer documentation is written by programmers to help other
programmers
understand the code, so they can repair and extend it. This is
somewhat different from the developer guidelines
discussed earlier, which are more social than technical. Developer
guidelines tell programmers how to get along with each other;
developer documentation tells them how to get along with the code
itself. The two are often packaged together in one document for
convenience (as with the https://subversion.apache.org/docs/community-guide/ example given
earlier), but they don't have to be.
Although developer documentation can be very helpful, there's no
reason to delay a release to do it. As long as the original authors
are available (and willing) to answer questions about the code, that's
enough to start with. In fact, having to answer the same questions
over and over is a common motivation for writing documentation. But
even before it's written, determined contributors will still manage to
find their way around the code. The force that drives people to spend
time learning a codebase is that the code does something useful for
them. If people have faith in that, they will take the time to figure
things out; if they don't have that faith, no amount of developer
documentation will get or keep them.
So if you have time to write documentation for only one
audience, write it for users. All user documentation is, in effect,
developer documentation as well; any programmer who's going to work on
a piece of software will need to be familiar with how to use it too.
Later, when you see programmers asking the same questions over and
over, take the time to write up some separate documents just for
them.
Some projects use wikis for their initial documentation, or even
as their primary documentation. In my experience, this works best
if the wiki is actively maintained by a few people who agree on how
the documentation is to be organized and what sort of "voice" it
should have. See
the section called “Wikis” for
more.
If the infrastructure aspects of documentation workflow seem
daunting, consider using https://readthedocs.org/. Many projects now depend on it to automate
the process of presenting their documentation online. The site takes
care of format conversion, integration with the project's version
control repository (so that documentation rebuilds happen
automatically), and various other mundane tasks, so that you and your
contributors can focus on content.

Demos, Screenshots, Videos, and Example Output

If the project involves a graphical user interface, or if it
produces graphical or otherwise distinctive output, put some samples
up on the project web site. In the case of an interface, this means
screenshots or, better yet, a brief (4 minutes or fewer) video with
subtitles or a narrator. For output, it might be screenshots or just
sample files to download. For web-based software, the gold standard
is a demo site, of course, assuming the software is amenable to
that.
The main thing is to cater to people's desire for instant
gratification in the way they are most likely to expect. A single
screenshot or video can be more convincing than paragraphs of
descriptive text and mailing list chatter, because it is proof
that the software works. The code may still be
buggy, it may be hard to install, it may be incompletely documented,
but image-based evidence shows people that if one puts in enough effort,
one can get it to run.
Keep Videos Brief, and Say They're
 Brief

If you have a video demonstration of your project, keep the
 video under 4 minutes long, and make sure people can see the
 duration before they click on it. This is in
 keeping with the "principle of scaled presentation" mentioned
 at the beginning of this chapter: make the decision to watch the video an easy
 one by removing as much risk as possible. Visitors are more likely to click on
 a link that says "Watch our 3 minute video" than on one that just
 says "Watch our video", because in the former case they know what
 they're getting into before they click — and they'll
 watch it better, because they've mentally prepared the necessary
 amount of attention commitment beforehand, and thus won't tire mid-way
 through the video.
As to where the four-minute limit came from: it's a scientific
 fact, determined through many attempts by the same experimental
 subject (who shall remain unnamed) to watch project videos. The
 limit does not apply to tutorials or other instructional material,
 of course; it's just for introductory videos.
In case you don't already have preferred software for
 recording desktop interaction videos: If you use the GNOME 3 desktop
 manager, you can use its built-in screen recording capability (see
 https://help.gnome.org/users/gnome-help/stable/screen-shot-record.html.en#screencast — essentially,
 do
 Ctl+Alt+Shift+R
 to start recording, and then do
 Ctl+Alt+Shift+R
 again to stop). There are many open source video editors; OpenShot
 has been fine for post-capture editing in my experience.

There are many other things you could put on the project web
site, if you have the time, or if for one reason or another they are
especially appropriate: a news page, a project history page, a related
links page, a site-search feature, a donations link, etc. None of
these are necessities at startup time, but keep them in mind for the
future.
Hosting

Where on the Internet should you put the project's materials?
A web site, obviously — but the full answer
is a little more complicated than that.
Many projects distinguish between their primary public user-facing
web site — the one with the pretty pictures and the
"About" page and the gentle introductions and videos and guided tours
and all that stuff — and their developers' site, where
everything's grungy and full of closely-spaced text in monospace fonts
and impenetrable abbreviations.
In the early stages of
your project it is not so important to distinguish between these two
audiences. Most of the interested visitors you get will be
developers, or at least people who are comfortable trying out new
code. Over time, you may find it makes sense to have a user-facing
site (of course, if your project is a code library, those "users"
might be other programmers) and a somewhat separate collaboration area
for those interested in participating in development. The
collaboration site would have the code repository, bug tracker,
development wiki, links to development mailing lists, etc. The two
sites should link to each other, and in particular it's important that
the user-facing site make it clear that the project is open source and
where the open source development activity can be
found.
In the past, many projects set up the developer site and
infrastructure themselves. Over the last decade or so, however, most
open source projects — and almost all the new
ones — just use one of the "canned hosting" sites that
have sprung up to offer these services for free to open source
projects. By far the most popular such site, as of early 2018,
is GitHub (https://github.com/), and
if you don't have a strong preference about where to host, you should
probably just choose GitHub; many developers are already familiar with
it and have personal accounts there. See the section called “Canned Hosting” for a more detailed
discussion of the questions to consider when choosing a canned hosting
site and for an overview of the most popular ones.

[17] If the usual
Internet search engines don't turn up anything, another good place to
look is the Free Software Foundation's directory of free software at
https://directory.fsf.org/, which the FSF actively
maintains.

[18] See the section called “Have a Clear Mission Statement”.

[19] Well, a
really bad name probably could do that, but we
start from the assumption that no one here is actively trying to make
their project fail.

[20] The importance of
 top-level domain names seems to be declining. A number of
 projects now have just their name in the
 .io TLD, for example, and don't
 bother with .com,
 .net, or
 .org. I can't predict what the
 brand psychology of domain names will be in the future, so
 just use your judgement, and if you can get the name in
 all the important TLDs, do so.

[21] They didn't manage to get gnome.com or gnome.net,
but that's okay — if you only have one, and it's .org,
it's fine. That's usually the first one people look for when they're
seeking the open source project of that name. If they couldn't get
"gnome.org" itself, a typical solution would be to get
"gnomeproject.org" instead, and many projects solve the problem that
way.

[22] While the authoritative copy of Gnome's source code
is at https://git.gnome.org/, they
maintain a mirror at GitHub, since so many developers are already
familiar with GitHub.

[23] Although GitHub is
based on Git, a popular open source version control system, the code
that runs GitHub's web services is not itself open source. Whether
this matters for your project is a complex question, and is addressed
in more depth in the section called “Canned Hosting”

[24] For a more thorough argument that bug reports
should be treated as good news, see http://www.rants.org/2010/01/10/bugs-users-and-tech-debt/,
which is about how the accumulation of bug reports does
not represent technical debt (in the sense of
https://en.wikipedia.org/wiki/Technical_debt) but rather
user engagement.

[25] See Chapter 3, Technical Infrastructure.

[26] Don't
worry too much about choosing the right format the first time. If you
change your mind later, you can always do an automated conversion
using Pandoc (https://pandoc.org/).

Choosing a License and Applying It

This section is intended to be a very quick, very rough guide to
choosing a license. Read Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks and Patents to understand
the detailed legal implications of the different licenses, and how the
license you choose can affect people's ability to mix your software
with other software.
Synonyms: "free software license", "FSF-approved", "open
 source license", and "OSI-approved"

The terms "free software license" and "open source license"
 are essentially synonymous, and I treat them so throughout this
 book.
Technically, the former term refers to licenses confirmed by
 the Free Software Foundation as meeting the "four freedoms"
 of the Free Software Definition (FSD, see https://www.gnu.org/philosophy/free-sw.html), while the latter term refers
 to licenses approved by the Open Source Initiative as meeting the
 Open Source Definition (OSD, see https://opensource.org/osd). However, if you read the FSD
 and the OSD, it becomes obvious that the two definitions delineate the
 same freedoms — which is not surprising, given the
 historical background explained in the section called “"Free" Versus "Open Source"”. The inevitable, and in
 some sense deliberate, result is that the two organizations have
 approved the same set of licenses.[27]

There are a great many free software licenses to choose from.
Most of them we needn't consider here, as they were written to satisfy
the particular legal needs of some corporation or person, and wouldn't
be appropriate for your project. We will restrict ourselves to just
the most commonly used licenses; in most cases, you will want to
choose one of them.
The "Do Anything" Licenses

If you're comfortable with your project's code potentially being
used in proprietary programs, then use
an MIT-style license. It is the simplest of
several minimal licenses that do little more than assert nominal
copyright (without actually restricting copying) and specify that the
code comes with no warranty. See
the section called “Choosing a License” for details.

The GPL

If you don't want your code to be used in proprietary programs,
use the GNU General Public License, version 3 (https://www.gnu.org/licenses/gpl.html). The GPL is probably the most
widely recognized free software license in the world today. This is
in itself a big advantage, since many potential users and contributors
will already be familiar with it, and therefore won't have to spend
extra time to read and understand your license. See the section called “The GNU General Public License” for details.

If users interact with your code primarily over a
network connection — that is, the software is usually part of a hosted
service, rather than being distributed to run client-side — then consider
using the GNU Affero GPL instead. The AGPL is
just the GPL with one extra clause establishing network accessibility
as a form of distribution for the purposes of the license. See the section called “The GNU Affero GPL: A Version of the GNU GPL for Server-Side Code” for more.

How to Apply a License to Your Software

Once you've chosen a license, you'll need to apply it to the
software.
The first thing to do is state the license clearly on the
project's front page. You don't need to include the actual text of
the license there; just give its name and make it link to the full
license text on another page. That tells the public what license you
intend the software to be released
under — but it's not quite sufficient for legal purposes. The
other step is that the software itself should include the
license.
The standard way to do this is to put the full license text in a
file called LICENSE (or
COPYING) included with the source code, and then
at the top of each source file put a short notice in a comment, naming
the copyright date, holder, and license, and saying where to find the
full text of the license.
There are many variations on this pattern, so we'll look at just
one example here. The GNU GPL says to put a notice like this at the
top of each source file:
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it
 and/or modify it under the terms of the GNU General Public License
 as published by the Free Software Foundation, either version 3 of
 the License, or (at your option) any later version.
This program is distributed in the hope that it will be
 useful, but WITHOUT ANY WARRANTY; without even the implied
 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 See the GNU General Public License for more details.
You should have received a copy of the GNU General Public
 License along with this program. If not, see
 <http://www.gnu.org/licenses/>

It does not say specifically that the copy of the license you
received along with the program is in the file
COPYING or LICENSE, but
that's where it's usually put. (You could change the above notice to
state that directly, but there's no real need to.)
In general, the notice you put in each source file does not have
to look exactly like the one above, as long as it starts with the same
notice of copyright holder and date,[28]
states the name of the license, and
makes clear where to view the full license terms. It's always best to
consult a lawyer, of course, if you can afford one.

[27] There actually are
 some minor differences between the sets of approved licenses, but
 they are not significant for our purposes — or
 indeed for most practical purposes. In some cases, one or the other
 organization has simply not gotten around to considering a given
 license, usually a license that is not widely-used anyway. There
 are also a few rarely-used licenses that have clauses that formally
 conflict with the letter, if not the spirit, of one or the other
 definition.

 For example, the OSD requires the license to
 allow redistribution under the exact same terms the software
 originally came with, instead of just under some set of
 OSD-compliant terms, whereas the FSD goes the other way on this
 question. These differences are exotic edge cases, however. For
 any license you are likely to be using, the terms "OSI-approved" and
 "FSF-approved" can be treated as implying each
 other.

[28] There is some
leeway on exactly what the dates should indicate, and of course this
book does not provide legal advice. The strictest legal
interpretation I've heard is that the date should show the years in
which the file was modified for copyright purposes. In other words,
for a file modified in 2012, 2018, and 2021, you would write "2012,
2018, 2021" — not "2012-2021",
because the file wasn't modified in most of the years in that range.
Some projects just use a range anyway, with one end being the file's
creation year and the other end being the year of most recent
modification, as that's so much shorter and easier.

Setting the Tone

So far we've covered one-time tasks you do during project setup:
picking a license, arranging the initial web site, etc. But the most
important aspects of starting a new project are dynamic. Choosing a
mailing list address is easy; ensuring that the list's conversations
remain on-topic and productive is another matter entirely. For
example, if the project is being opened up after years of closed,
in-house development, its development processes will change, and you
will have to prepare the existing developers for that change.
The first steps are the hardest, because precedents and
expectations for future conduct have not yet been set. Stability in a
project does not come from formal policies, but from a shared,
hard-to-pin-down collective wisdom that develops over time. There are
often written rules as well, but they tend to be essentially a
distillation of the intangible, ever-evolving agreements that really
guide the project. The written policies do not define the project's
culture so much as describe it, and even then only
approximately.
There are a few reasons why things work out this way. Growth
and high turnover are not as damaging to the accumulation of social
norms as one might think. As long as change does not happen
too quickly, there is time for new arrivals to
learn how things are done, and after they learn, they will help
reinforce those ways themselves. Consider how children's songs
survive for centuries. There are children today singing roughly the
same rhymes as children did hundreds of years ago, even though there
are no children alive now who were alive then. Younger children hear
the songs sung by older ones, and when they are older, they in turn
will sing them in front of other younger ones. The children are not
engaging in a conscious program of transmission, of course, but the
reason the songs survive is nonetheless that they are transmitted
regularly and repeatedly. The time scale of free software projects
may not be measured in centuries (we don't know yet), but the dynamics
of transmission are much the same. The turnover rate is faster,
however, and must be compensated for by a more active and deliberate
transmission effort.
This effort is aided by the fact that people generally show up
expecting and looking for social norms. That's just how humans are
built. In any group unified by a common endeavor, people who join
instinctively search for behaviors that will mark them as part of the
group. The goal of setting precedents early is to make those
"in-group" behaviors be ones that are useful to the project; once
established, they will be largely self-perpetuating.
Following are some examples of specific things you can do to set
good precedents. They're not meant as an exhaustive list, just as
illustrations of the idea that setting a collaborative mood early
helps a project tremendously. Physically, every developer may be
working separately, but you can do a lot to make
them feel like they're all working together in
the same room. The more they feel this way, the more time they'll
want to spend on the project. I chose these particular examples
because situations like these seem to come up in most open source
projects, and should be seen as opportunities to start things off on
the right foot.
Avoid Private Discussions

Even after you've taken the project public, you and the other
founders will often find yourselves wanting to settle difficult
questions by private communications among an inner circle. This is
especially true in the early days of the project, when there are so
many important decisions to make, and, usually, few people
qualified to make them. All the obvious disadvantages of public
discussions will loom palpably in front of you: the delay inherent in
email conversations, the need to leave sufficient time for consensus
to form, the hassle of dealing with naive newcomers who think they
understand all the issues but actually don't (every project has these;
sometimes they're next year's star contributors, sometimes they stay
naive forever), the person who can't understand why you only want to
solve problem X when it's obviously a subset of larger problem Y, and
so on. The temptation to make decisions behind closed doors and
present them as faits accomplis, or at
least as the firm recommendations of a united and influential voting
block, will be very great.
Don't do it.
As slow and cumbersome as public discussion can be, it's
almost always preferable in the long run. Making important decisions
in private is like spraying contributor repellent on your project. No
serious contributor would stick around for long in an environment where
a secret council makes all the big decisions behind closed doors. Furthermore, public
discussion has beneficial side effects that will last beyond whatever
ephemeral technical question was at issue:

	The discussion will help train and educate new developers.
 You never know how many eyes are watching the conversation;
 even if most people don't participate, many may be lurking
 silently, gleaning information about the software.

	The discussion will train you in the art
 of explaining technical issues to people who are not as
 familiar with the software as you are. This is a skill that
 requires practice, and you can't get that practice by talking
 to people who already know what you know.

	The discussion and its conclusions will be available in public
 archives forever after, enabling future discussions to avoid
 retracing the same steps. See
 the section called “Conspicuous Use of Archives”.

Finally, there is the possibility that someone on the list may
make a real contribution to the conversation, by coming up with an
idea you never anticipated. It's hard to say how likely this is; it
just depends on the complexity of the code and degree of
specialization required. But if anecdotal evidence may be permitted,
I would hazard that this is more likely than you might
expect. In the Subversion project, we (the founders) believed we
faced a deep and complex set of problems, which we had been thinking
about hard for several months, and we frankly doubted that anyone on
the newly created mailing list was likely to make a real contribution
to the discussion. So we took the lazy route and started batting some
technical ideas back and forth in private emails, until an observer of
the project[29] caught wind of what
was happening and asked for the discussions to be moved to the public
list. Rolling our eyes a bit, we did — and were stunned by the
number of insightful comments and suggestions that quickly resulted.
In many cases people offered ideas that had never even occurred to us.
It turned out there were some very smart people
on that list; they'd just been waiting for the right bait. It's true
that the ensuing discussions took longer than they would have if we
had kept the conversation private, but they were so much more
productive that it was well worth the extra time.
Without descending into hand-waving generalizations like "the
group is always smarter than the individual" (we've all met enough
groups to know better), it must be acknowledged that there are certain
activities at which groups excel. Massive peer review is one of them;
generating large numbers of ideas quickly is another. The quality of
the ideas depends on the quality of the thinking that went into them,
of course, but you won't know what kinds of thinkers are out there
until you stimulate them with a challenging problem.
Naturally, there are some discussions that must be had
privately; throughout this book we'll see examples of those. But the
guiding principle should always be: If there's no reason for
it to be private, it should be public.
Making this happen requires action. It's not enough merely to
ensure that all your own posts go to the public list. You also have
to nudge other people's unnecessarily private conversations to the
list too. If someone tries to start a private discussion with you and
there's no reason for it to be private, then it is incumbent on you to open
the appropriate meta-discussion immediately. Don't even comment on
the original topic until you've either successfully steered the
conversation to a public place, or ascertained that privacy really was
needed. If you do this consistently, people will catch on pretty
quickly and start to use the public forums by
default — and will promote this norm to others where
necessary.

Nip Rudeness in the Bud

From the very start of your project's public existence, you
should maintain a zero-tolerance policy toward rude or insulting
behavior in its forums. Zero-tolerance does not mean technical
enforcement per se. You don't have to remove people from the mailing
list when they flame another subscriber, or take away their commit
access because they made derogatory comments. (In theory, you might
eventually have to resort to such actions, but only after all other
avenues have failed — which, by definition, isn't the case at the
start of the project.) Zero-tolerance simply means never letting bad
behavior slide by unnoticed. For example, when someone posts a
technical comment mixed together with an ad
hominem attack on some other developer in the project,
it is imperative that your response address the ad
hominem attack as a separate issue unto itself,
separate from the technical content.
It is unfortunately very easy, and all too typical, for
constructive discussions to lapse into destructive flame wars.
People will say things in email that they would never say
face-to-face. The topics of discussion only amplify this effect: in
technical issues, people often feel there is a single right answer to
most questions, and that disagreement with that answer can only be
explained by ignorance, stupidity, or laziness. It's a short distance from
calling someone's technical proposal stupid to calling the person
themselves stupid. In fact, it's often hard to tell where technical
debate leaves off and character attack begins, which is one reason why
drastic responses or punishments are not a good idea. Instead, when
you think you see it happening, make a post that stresses the
importance of keeping the discussion friendly, without accusing anyone
of being deliberately poisonous. Such "Nice Police" posts do have an
unfortunate tendency to sound like a kindergarten teacher lecturing a
class on good behavior:
First, let's please cut down on the
 (potentially) ad hominem comments; for example, calling J's
 design for the security layer "naive and ignorant of the basic
 principles of computer security." That may be true or it may
 not, but in either case it's no way to have the discussion. J
 made his proposal in good faith. If it has deficiencies, point
 them out, and we'll fix them or get a new design. I'm sure M
 meant no personal insult to J, but the phrasing was unfortunate,
 and we try to keep things constructive around here.

Now, on to the proposal. I think M was right
 in saying that...

As stilted as such responses sound, they have a noticeable
effect. If you consistently call out bad behavior, but don't demand
an apology or acknowledgement from the offending party, then you leave
people free to cool down and show their better side by behaving more
decorously next time — and they will.
One of the secrets of
doing this successfully is to never make the meta-discussion the main
topic. It should always be an aside, a brief preface to the main
portion of your response. Point out in passing that "we don't do
things that way around here," but then move on to the real content, so
that you're giving people something on-topic to respond to. If
someone protests that they didn't deserve your rebuke, simply refuse
to be drawn into an argument about it. Either don't respond (if you
think they're just letting off steam and don't require a response), or
say you're sorry if you overreacted and that it's hard to detect
nuance in email, then get back to the main topic. Never, ever insist
on an acknowledgement, whether public or private, from someone that
they behaved inappropriately. If they choose of their own volition to
post an apology, that's great, but demanding that they do so will only
cause resentment.
The overall goal is to make good etiquette be seen as one of the
"in-group" behaviors. This helps the project, because developers can
be driven away (even from projects they like and want to support) by
flame wars. You may not even know that they were driven away; someone
might lurk on the mailing list, see that it takes a thick skin to
participate in the project, and decide against getting involved at
all. Keeping forums friendly is a long-term survival strategy, and
it's easier to do when the project is still small. Once it's part of
the culture, you won't have to be the only person promoting it. It
will be maintained by everyone.

Codes of Conduct

In the decade since the first edition of this book in 2006, it
has become somewhat more common for open source projects, especially
the larger ones, to adopt an explicit code of
conduct. I think this is a good trend. As open source
projects become, at long last, more diverse, the presence of a code of
conduct can remind participants to think twice about whether a joke is
going to be hurtful to some people, or whether — to
pick a random example — it contributes to a welcoming
and inclusive atmosphere when an open source image processing
library's documentation just happens to use yet another picture of a
pretty young woman to illustrate the behavior of a particular
algorithm. Codes of conduct remind participants that the maintenance
of a respectful and welcoming environment is everyone's
responsibility.
An Internet search will easily find many examples of codes of
conduct for open source projects. The most popular one is probably
the one at https://contributor-covenant.org/, so naturally there's a positive
feedback dynamic if you choose or adapt that one: more developers will be
already familiar with it, plus you get its translations into other
languages for free, etc.
A code of conduct will not solve all the
interpersonal problems in your project. Furthermore, if it is
misused, it has the potential to create new
problems — it's always possible to find people who
specialize in manipulating social norms and rules to harm a community
rather than help it (see the section called “Difficult People”), and
if you're particularly unlucky some of those people may find their way
into your project. It is always up to the project leadership, by
which I mean those whom others in the project tend to listen to the
most, to enforce a code of conduct, and to see to it that a code of
conduct is used wisely. (See also the section called “Recognizing Rudeness”.)
Some participants may genuinely disagree with the need to adopt
a code at all, and argue against it on the grounds that it could do
more harm than good. Even if you feel they're wrong, it is imperative
that you help make sure they're able to state their view without being
attacked for it. After all, disagreeing with the need for a code of
conduct is not the same as — is, in fact, entirely
unrelated to — engaging in behavior that would be a
violation of the proposed code of conduct. Sometimes people confuse
these two things, and need to be reminded of the
distinction.[30]
In some projects, a code of conduct specifically for
organizational or commercial participants — often one
implies the other, but not always — may also be called
for. If you see organizational actors participating in your project
in ways that might not be conducive to the project's long-term health,
consider creating a Commercial Code of Conduct
(CCoC, sometimes also expanded as
Corporate Code of Conduct) or
Organizational Code of Conduct
(OCoC). Two
examples[31] are the General Guidelines
for Commercial Entities and Others Deploying Arches
(on https://www.archesproject.org/code-of-conduct/) and the
Bytecode Alliance's Organizational Code of
Conduct (which appears to still be a draft under
consideration as of this writing, but the draft text is available at
https://github.com/bytecodealliance/rfcs/blob/main/ORG_CODE_OF_CONDUCT.md
and is a representative example).

Practice Conspicuous Code Review

One of the best ways to foster a productive development
community is to get people looking at each others'
code — ideally, to get them looking at each others'
code changes as those changes arrive.
Commit review (sometimes just called
code review) is the practice of reviewing
commits as they come in, looking for bugs and possible
improvements.
There are a couple of reasons to focus on reviewing changes,
rather than on reviewing in-place code that's already in source files. First,
it just works better socially: when someone reviews your change, she
is interacting with work you did recently. That means if she comments
on it right away, you will be maximally interested in hearing what she
has to say; six months later, you might not feel as motivated to
engage, and in any case might not remember the change very well.
Second, looking at what changes in a codebase is a gateway to looking
at the rest of the code anyway: reviewing a change
often causes one to look at the surrounding code, at the affected
callers and callees elsewhere, at related module interfaces,
etc.[32]
Commit review thus serves several purposes simultaneously. It's
the most direct example of peer review in the open source world, and
helps to maintain software quality. Every bug that ships in
a piece of software got there by being committed and not detected;
therefore, the more eyes watch commits, the fewer bugs will ship. But
commit review also serves an indirect purpose: it confirms to people
that what they do matters, because one obviously wouldn't take time to
review a commit unless one cared about its effect. People do their
best work when they know that others will take the time to evaluate
it.
Reviews should be public. Even on occasions when I have been
sitting in the same physical room with another developer, and one of
us has made a commit, we take care not to do the review verbally in
the room, but to send it to the appropriate online review forum
instead. Everyone benefits from seeing the review happen. People
follow the commentary and sometimes find flaws in it; even when they
don't, it still reminds them that review is an expected, regular
activity, like washing the dishes or mowing the lawn.
Some technical infrastructure is required to do change-by-change
review effectively. In particular, setting up commit notifications is
extremely useful. The effect of commit notifications is that every
time someone commits a change to the central repository, an email or
other subscribable notification goes out showing the log message and
diffs (unless the diff is too large; see diff, in the section called “Version Control Vocabulary”).
The review itself might take place on a mailing list, or in a review
tool such as Gerrit or the GitHub "pull request" interface. See the section called “Commit Notifications / Commit Emails” for details.
Case study

In the Subversion project, we did not at first make a regular
practice of code review. There was no guarantee that every commit
would be reviewed, though one might sometimes look over a change if
one were particularly interested in that area of the code. Bugs
slipped in that really could and should have been caught. A developer
named Greg Stein, who knew the value of code review from past work,
decided that he was going to set an example by reviewing every line of
every single commit that went into the code
repository. Each commit anyone made was soon followed by an email to
the developer's list from Greg, dissecting the commit, analyzing
possible problems, and occasionally praising a clever bit of code. Right
away, he was catching bugs and non-optimal coding practices that would
otherwise have slipped by without ever being noticed. Pointedly, he
never complained about being the only person reviewing every commit,
even though it took a fair amount of his time, but he did sing the
praises of code review whenever he had the chance. Pretty soon, other
people, myself included, started reviewing commits regularly too.
What was our motivation? It wasn't that Greg had consciously shamed
us into it. But he had proven that reviewing code was a valuable way
to spend time, and that one could contribute as much to the project by
reviewing others' changes as by writing new code. Once he
demonstrated that, it became expected behavior, to the point where any
commit that didn't get some reaction would cause the committer to
worry, and even ask on the list whether anyone had had a chance to
review it yet. Later, Greg got a job that didn't leave him as much
time for Subversion, and had to stop doing regular reviews. But by
then, the habit was so ingrained for the rest of us as to seem that it
had been going on since time immemorial.

Start doing reviews from the very first commit. The sorts of
problems that are easiest to catch by reviewing diffs are security
vulnerabilities, memory leaks, insufficient comments or API
documentation, off-by-one errors, caller/callee discipline mismatches,
and other problems that require a minimum of surrounding context to
spot. However, even larger-scale issues such as failure to abstract
repeated patterns to a single location become spottable after one has
been doing reviews regularly, because the memory of past diffs informs
the review of present diffs.
Don't worry that you might not find anything to comment on, or
that you don't know enough about every area of the code. There will
usually be something to say about almost every commit; even where you
don't find anything to question, you may find something to praise.
The important thing is to make it clear to every committer that what
they do is seen and understood, that attention is being paid. Of
course, code review does not absolve programmers of the responsibility
to review and test their changes before committing; no one should
depend on code review to catch things she ought to have caught on her
own.

Be Open From Day One

Start your project out in the open from the very first day. The
longer a project is run in a closed source manner, the harder it is to
open source later.[33]
Being open source from the start doesn't mean your developers
must immediately take on the extra responsibilities of community
management. People often think that "open source" means "strangers
distracting us with questions", but that's
optional — it's something you might do down the road,
if and when it makes sense for your project. It's under your control.
There are still major advantages to be had by running the project out
in open, publicly-visible forums from the beginning. Conversely, the
longer the project is run closed-source, the more difficult it will be
to open up later.
I think there's one underlying cause for this:
At each step in a project, programmers face a choice: to do that
step in a manner compatible with a hypothetical future open-sourcing,
or do it in a manner incompatible with open-sourcing. And every time
they choose the latter, the project gets just a little bit harder to
open source.
The crucial thing is, they can't help choosing the latter
occasionally — all the pressures of development propel
them that way. It's very difficult to give a future event the same
present-day weight as, say, fixing the incoming bugs reported by the
testers, or finishing that feature the customer just added to the
spec. Also, programmers struggling to stay on budget will inevitably
cut corners here and there. In Ward Cunningham's phrase, they will
incur "technical debt" (https://en.wikipedia.org/wiki/Technical_debt), with the
intention of paying back that debt later.
Thus, when it's time to open source, you'll suddenly find there
are things like:
	Customer-specific configurations and passwords checked
 into the code repository;
	Sample data constructed from live (and confidential)
 information;
	Bug reports containing sensitive information that cannot
 be made public;
	Comments in the code expressing perhaps overly-honest
 reactions to the customer's latest urgent request;
	Archives of correspondence among the developer team, in
 which useful technical information is interleaved with
 personal opinions not intended for strangers;
	Licensing issues due to dependency libraries whose terms
 might have been fine for internal deployment (or not even
 that), but aren't compatible with open source
 distribution;
	Documentation written in the wrong format (e.g., that
 proprietary internal wiki your department uses), with no
 tool available to easily transform it into formats
 appropriate for public distribution;
	Non-portable build dependencies that only become apparent
 when you try to move the software out of your internal
 build environment;
	Modularity violations that everyone knows need cleaning
 up, but that there just hasn't been time to take care of
 yet...
	(This list could go on for a long time.)

The problem isn't just the work of actually doing the cleanups;
it's the extra decision-making they require. For example, if
sensitive material was checked into the code repository in the past,
your team now faces a choice between cleaning it out of the historical
revisions entirely, so you can open source the entire (sanitized)
history, or just cleaning up the latest revision and open-sourcing
from that (sometimes called a "top-skim"). Neither method is wrong or
right — and that's the problem: now you've got one
more discussion to have and one more decision to make. In some
projects, that decision gets made and reversed several times before
the final release. The thrashing itself is part of the cost.
Waiting Just Creates an Exposure Event

The other problem with opening up a developed codebase is that
it creates a needlessly large exposure event. Whatever issues there
may be in the code (modularity corner-cutting, security
vulnerabilities, etc), they are all exposed to public scrutiny at
once — the open-sourcing event becomes an opportunity
for the technical blogosphere to pounce on the code and see what they
can find.
Contrast that with the scenario where development was done in
the open from the beginning: code changes come in one at a time, so
problems are handled as they come up (and are often caught sooner,
since there are more eyeballs on the code). Because changes reach the
public at a low, continuous rate of exposure, no one blames your
development team for the occasional corner-cutting or flawed code
checkin. Everyone's been there, after all; these tradeoffs are
inevitable in real-world development. As long as the technical debt
is properly recorded in "FIXME" comments and bug reports, and any
security issues are addressed promptly, it's fine. Yet if those same
issues were to appear suddenly all at once, unsympathetic observers
may jump on the aggregate exposure in a way they never would have if
the issues had come up piecemeal in the normal course of
development.
(These concerns apply even more strongly to government software
projects; see the section called “Being Open Source From Day One is Especially Important for
Government Projects”.)

The good news is that these are all unforced errors. A project
incurs little extra cost by avoiding them in the simplest way
possible: by running in the open from Day One.
"In the open" means the following things are publicly
accessible, in standard formats, from the first day of the project:
the code repository, bug tracker, design documents, user
documentation, wiki (if any), and developer discussion forums. It also means
the code and documentation are placed under an open source license, of
course. And it means that your team's day-to-day work takes place in the
publicly visible area.
"In the open" does not have to mean: allowing strangers to check
code into your repository (they're free to copy it into their own
repository, if they want, and work with it there); allowing anyone to
file bug reports in your tracker (you're free to choose your own QA
process, and if allowing reports from strangers doesn't help you, you
don't have to do it); reading and responding to every bug report
filed, even if you do allow strangers to file; responding to every
question people ask in the forums (even if you moderate them through);
reviewing every patch or suggestion posted, when doing so may cost
valuable development time; etc.
Think of it this way:

You open source your code, not your time.

Your code is infinitely replicable; your time is not, and you may protect
it however you need to. You get to determine the point at which
engaging with outside users and developers makes sense for your
project. In the long run it usually does, and most of this book is
about how to do it effectively. But the pace of engagement is always
under your control. Developing in the open does not change this, it
just ensures that everything done in the project is, by definition,
done in a way that's compatible with being open source.

[29] Credit where credit is due: the observer
was Brian Behlendorf, and he was correctly insistent about
the general importance of keeping all discussions public unless there
was a specific need for privacy.

[30] There's an excellent post by Christie
Koehler at https://subfictional.com/2016/01/25/the-complex-reality-of-adopting-a-meaningful-code-of-conduct/
discussing this in much more depth.

[31] Disclosure: My company was involved in
drafting both.

[32] None of this is an argument against top-to-bottom
code review, of course, for example to do a security audit. But while
that kind of review is important too, it's more of a generic
development best practice, and is not as specifically relevant to
running an open source project as change-by-change review
is.

[33] This section started out as a blog
post, http://archive.civiccommons.org/2011/01/be-open-from-day-one/index.html, though
it's been edited a lot for inclusion here.

Opening a Formerly Closed Project

It's best to
avoid being in the situation of opening up a closed project in the
first place; just start the project in the open if you can. But if
it's too late for that and you find yourself opening up an existing
project, perhaps with active developers accustomed to working in a
closed-source environment, there are certain common issues that tend
to arise. You can save a lot of time and trouble if you are prepared
for them.
Some of these issues are essentially mechanical, and for them
the section called “Be Open From Day One” can serve as a checklist. For
example, if your code depends on proprietary libraries that are not
part of the standard distribution of your target operating system(s),
you will need to find open source replacements; if there is
confidential content — e.g., unpublishable comments,
passwords or site-specific configuration information that cannot
easily be changed, confidential data belonging to third parties,
etc — in the project's version control history, then
you may have to release a "top-skim" version, that is, restart the
version history afresh from the current version as of the moment you
open source the code; and so on.
But there can be social and managerial issues too, and they are
often more significant in the long run than the mere mechanical
concerns. You need to make sure everyone on the development team
understands that a big change is coming — and you
need to understand how it's going to feel from their point of view.
Try to imagine how the situation looks to them: formerly, all
code and design decisions were made with a group of other programmers
who knew the software more or less equally well, who all received the
same pressures from the same management, and who all know each others'
strengths and weaknesses. Now you're asking them to expose their code
to the scrutiny of random strangers, who will form judgements based
only on the code, with no awareness of what business pressures may
have forced certain decisions. These strangers will ask lots of
questions, questions that jolt the existing developers into realizing
that the documentation they worked so hard on is
still inadequate (this is inevitable). To top it
all off, the newcomers are unknown, faceless entities. If one of your
developers already feels insecure about his skills, imagine how that
will be exacerbated when newcomers point out flaws in code he wrote,
and worse, do so in front of his colleagues. Unless you have a team
of perfect coders, this is unavoidable — in fact, it will probably
happen to all of them at first. This is not because they're bad
programmers; it's just that any program above a certain size has bugs,
and peer review will spot some of those bugs (see
the section called “Practice Conspicuous Code Review”).
At the same time, the newcomers
themselves won't be subject to much peer review at first, since they
can't contribute code until they're more familiar with the project.
To your developers, it may feel like all the criticism is incoming,
never outgoing. Thus, there is the danger of a siege mentality taking
hold among the old hands.
The best way to prevent this is to warn everyone about what's
coming, explain it, tell them that the initial discomfort is perfectly
normal, and reassure them that it's going to get better. Some of
these warnings should take place privately, before the project is
opened. But you may also find it helpful to remind people on the
public lists that this is a new way of development for the project,
and that it will take some time to adjust. The very best thing you
can do is lead by example. If you don't see your developers answering
enough newbie questions, then just telling them to answer more isn't
going to help. They may not have a good sense of what warrants a
response and what doesn't yet, or it could be that they don't have a
feel for how to prioritize coding work against the new burden of
external communications. The way to get them to participate is to
participate yourself. Be on the public mailing lists, and make sure
to answer some questions there. When you don't have the
expertise to field a question, then visibly hand it off to a developer
who does — and watch to make sure she follows up with an answer,
or at least a response. It will naturally be tempting for the
longtime developers to lapse into private discussions, since that's
what they're used to. Make sure you're subscribed to the internal
mailing lists on which this might happen, so you can ask that such
discussions be moved to the public lists right away.
If you expect the newly-public project to start involving
developers who are not paid directly for their
work — and there are usually at least a few such
developers on most successful open source
projects — see Chapter 5, Organizations and Money: Businesses, Non-Profits, and Governments for discussion
of how to mix paid and unpaid developers successfully.

Announcing

Once the project is presentable — not perfect, just
presentable — you're ready to announce it to the world.
This is a simpler process than you might expect. First, set up
the announcement pages at your project's home site, as described in
the section called “Announcing Releases and Other Major Events”). Then, post announcements
in the appropriate forums. There are two kinds of forums: generic
forums that display many kinds of new project announcements, and
topic-specific forums where your project would be welcome news.
Make sure the announcement includes key words and phrases that
will help people find your project in search engines. A good test is
that if someone does a search for "open source foo bar baz", and your
project is a credible offering for foo, bar, and baz, then it should
be on the first page of results. (Unless you have a lot of open
source competitors — but you don't, because you read
the section called “But First, Look Around”, right?)
As of early 2022, the best general forum for announcements is probably https://news.ycombinator.com/.
While you are welcome to submit your project there, note that it will
have to successfully climb the word-of-mouth / upvote tree to get
featured on the front page. The subreddit forums related to https://www.reddit.com/r/opensource/, https://www.reddit.com/r/programming/, and https://www.reddit.com/r/software/
work in a similar way. While it's good news for your project if you
can get mentioned in a place like that, I hesitate to contribute to
the marketing arms race by suggesting any concrete steps to accomplish
this. Use your judgement and try not to spam.
You might also consider submitting an entry for your project at
the FSF's Free Software Directory https://directory.fsf.org/, though that is more about helping its
long-term findability rather than about soliciting attention at the
moment of launch.
Topic-specific forums are probably where you'll get the
most interest, of course. Think of discussion forums where an
announcement of your project would be on-topic and of
interest — you might already be a member of some of
them — and post there. Be careful to make exactly
one post per forum, and to direct people to your
project's own discussion areas for follow-up discussion (when posting
by email, you can do this by setting the
Reply-to header). Your announcement should
be short and get right to the point, and the Subject line should make
it clear that it is an announcement of a new project:

To: discuss@some.forum.about.search.indexers
Subject: [ANNOUNCE] Scanley, a new open source full-text indexer.
Reply-to: dev@scanley.org

This is a one-time post to announce the creation of the Scanley
project, an open source full-text indexer and search engine with a
rich API, for use by programmers in providing search services for
large collections of text files. Scanley already has running code,
is under active development, and is looking for both developers and
testers.

Home page: http://www.scanley.org/

Features:
 - Searches plain text, HTML, and XML
 - Word or phrase searching
 - (planned) Fuzzy matching
 - (planned) Incremental updating of indexes
 - (planned) Indexing of remote web sites
 - (planned) Long-distance mind-reading

Requirements:
 - Python 3.9 or higher
 - SQLite 3.34 or higher

For more information, please come find us at scanley.org!

Thank you,
-J. Random

(See the section called “Publicity” for advice on announcing
subsequent releases and other project events.)
There is an ongoing debate in the free software world about
whether it is necessary to begin with running code, or whether a
project can benefit from being announced even during the
design/discussion stage. I used to think starting with running code
was crucial, that it was what separated successful projects from toys,
and that serious developers would only be attracted to software that
already does something concrete.
This turned out not to be the case. In the Subversion project,
we started with a design document, a core of interested and
well-connected developers, a lot of fanfare, and
no running code at all. To my complete surprise,
the project acquired active participants right from the beginning, and
by the time we did have something running, there were quite a few
developers already deeply involved. Subversion is not the
only example; the Mozilla project was also launched without running
code, and is now a successful and popular web browser.
On the evidence of this and other examples, I have to back away
from the assertion that running code is absolutely necessary for
launching a project. Running code is still the best foundation for
success, and a good rule of thumb would be to wait until you have it
before announcing your project.[34] However, there may be circumstances where
announcing earlier makes sense. I do think that at least a
well-developed design document, or else some sort of code framework,
is necessary — of course it may be revised based on public
feedback, but there has to be something concrete, something more
tangible than just good intentions, for people to sink their teeth
into.
Whenever you announce, don't expect a horde of participants to
join the project immediately afterward. Usually, the result of
announcing is that you get a few casual inquiries, a few more people
join your mailing lists, and aside from that, everything continues
pretty much as before. But over time, you will notice a gradual
increase in participation from both new code contributors and users.
Announcement is merely the planting of a seed. It can take a long
time for the news to spread. If the project consistently rewards
those who get involved, the news will spread,
though, because people want to share when they've found something
good. If all goes well, the dynamics of exponential communications
networks will slowly transform the project into a complex community,
where you don't necessarily know everyone's name and can no longer
follow every single conversation. The next chapters are about working
in that environment.

[34] Note that
announcing your project usually comes long after you
have open sourced the code. My advice to consider carefully the
timing of your announcement should not be taken as advice to delay
open sourcing the code — ideally, your project should
be open source and publicly visible from the very first moment of its
existence, and this is entirely independent of when you announce it.
See the section called “Be Open From Day One” for
more.

Chapter 3. Technical Infrastructure

Free software projects rely on collaboration
technologies: tools that support the selective capture and
integration of digitally-expressed human intentions about a shared
project. The more skilled you are at using these tools, and at
persuading others to use them, the more successful your project will
be.
This only becomes
more true as the project grows. Smart information management is what
prevents open source projects from collapsing under the weight of
Brooks' Law,[35]
which states that adding more people to a late software project makes it
later. Fred Brooks observed that the complexity of communications in
a project
increases as the square of the number of
participants. When only a few people are involved, everyone can easily
talk to everyone else, but when hundreds of people are involved, it is
no longer possible for each person to remain constantly aware of what
everyone else is doing. If good free software project management is
about making everyone feel like they're all working together in the
same room, the obvious question is: what happens when everyone in a
crowded room tries to talk at once?
This problem is not new. In real-world crowded rooms, the
solution is parliamentary procedure: formal
guidelines for how to have real-time discussions in large groups, how
to make sure important dissents are not lost in floods of "me-too"
comments, how to form subcommittees, how to recognize and record when
decisions
are made, etc. An important part of parliamentary procedure is
specifying how the group interacts with its information management
system. Some remarks are made "for the record", others are not. The
record itself is subject to direct manipulation, and is understood to
be not a literal transcript of what occurred but rather a representation of
what the group is willing to agree occurred. The
record is not monolithic; it takes different forms for different
purposes. It comprises the minutes of individual meetings, the
complete collection of all minutes of all meetings, summaries, agendas
and their annotations, committee reports, reports from correspondents
not present, lists of action items, etc.
Because the Internet is not really a room, we can dispense with
those parts of parliamentary procedure that
keep some people quiet while others are speaking. But when it comes
to information management techniques, well-run open source projects
are parliamentary procedure on steroids. Since almost all
communication in open source projects happens in writing, elaborate
systems have evolved for routing and labeling data appropriately, for
minimizing repetitions so as to avoid spurious divergences, for
storing and retrieving data, for correcting bad or obsolete
information, and for associating disparate bits of information with
each other as new connections are observed.
Active participants in
open source projects internalize many of these techniques, and will
often perform complex manual tasks to ensure that information is
routed correctly. But the whole endeavor ultimately depends on
sophisticated software support. As much as possible, the
communications media themselves should do the routing, labeling, and
recording, and should make the information available to humans in the
most convenient way possible. In practice, of course, humans will
still need to intervene at many points in the process, and it's
important that the software make such interventions convenient too.
But in general, if the humans take care to label and route information
accurately on its first entry into the system, then the software
should be configured to make as much use of that metadata as
possible.
The advice in this chapter is intensely practical, based on
experiences with specific software and usage patterns. But the point
is not just to teach a particular collection of techniques. It is
also to demonstrate, by means of many small examples, the overall
attitude that will best encourage good information management in your
project. Promoting this attitude will involve a combination of technical skills
and people skills. The technical skills are essential because
information management software always requires configuration, plus a
certain amount of ongoing maintenance and tweaking as new needs arise
(for example, see the discussion of how to handle project growth in
the section called “Pre-Filtering the Bug Tracker”). The people skills are necessary
because the human community also requires maintenance: it's not always
immediately obvious how to use these tools to full advantage, and in
some cases projects have conflicting conventions (for example, see the
discussion of setting Reply-to headers on
outgoing mailing list posts, in the section called “Message Forums / Mailing Lists”).
Everyone involved with the project will need to be encouraged, at the
right times and in the right ways, to do their part to keep the
project's information well organized. The more interested the
contributor, the more complex and specialized the techniques she will
be willing to learn.
The right techniques for your project may change over time, as
collaboration technology changes and as your project changes.
You may finally get everything configured just
the way you want it, and have most of the community participating, but
then project growth will make some of those practices unscalable. Or
project growth may stabilize, and the developer and user communities
settle into a comfortable relationship with the technical
infrastructure, but then someone will come along and invent a whole
new information management service, and pretty soon newcomers will be
asking why your project doesn't use it — for example, this
happened to a lot of free software projects that predate the invention
of the wiki (see https://en.wikipedia.org/wiki/Wiki), and more recently has been
happening to projects whose workflows were developed before the rise
of GitHub PRs (see the section called “Pull Requests / Merge Requests”) as the canonical
way to package proposed contributions. Many infrastructure questions
are matters of judgement, involving tradeoffs between the convenience
of those producing information and the convenience of those consuming
it, or between the time required to configure information management
software and the benefit it brings to the project.
Beware of the temptation to over-automate, that is, to automate
things that really require human attention. Technical infrastructure
is important, but what makes a free software project work is
care — and intelligent expression of that care — by the humans
involved. The technical infrastructure is really about giving humans
easy opportunities to apply care.

What a Project Needs

Most open source projects offer at least this minimum, standard set
of tools for managing information:
	Web site
	Primarily a centralized, one-way conduit of
 information from the project out to the public and to
 participants. The web site may also serve as a portal
 leading to other project tools. See
 the section called “Web Site”.

	Message forums / Mailing lists
	Usually the most active communications forum in the
 project, and the "medium of record." See
 the section called “Message Forums / Mailing Lists”.

	Version control
	Enables developers to manage code changes conveniently,
 including reverting and "change porting". Enables
 everyone to watch what's happening to the code. See
 the section called “Version Control”.

	Bug tracking
	Enables developers to keep track of what they're working
 on, coordinate with each other, and plan releases. Enables
 everyone to query the status of bugs and record
 information (e.g., reproduction recipes) about particular
 bugs. Can be used for tracking not only bugs, but also
 tasks, releases, new features, etc. See
 the section called “Bug Tracker”.

	Real-time chat
	A place for quick, lightweight discussions and
 question/answer exchanges. Not always archived
 completely. See the section called “Real-Time Chat Systems”.

Each tool in this set addresses a distinct need, but their functions
are also interrelated, and the tools must be made to work together.
Below we will examine how they can do so, and more importantly, how to
get people to use them.
You may be able to avoid a lot of the headache of choosing and
configuring many of these tools by using a canned
hosting site: an online service that offers prepackaged,
templatized web services with some or all of the collaboration tools
needed to run a free software project. See
the section called “Canned Hosting” for a discussion of the advantages and
disadvantages of canned hosting.

[35] From his book The Mythical Man
Month, 1975. See https://en.wikipedia.org/wiki/The_Mythical_Man-Month, https://en.wikipedia.org/wiki/Brooks_Law, and
https://en.wikipedia.org/wiki/Fred_Brooks.

Web Site

For our purposes, the web site means web
pages devoted to helping people participate in the project as
developers, documenters, etc. Note that this may be different from the
main user-facing web site. In many projects, users have different
needs and often (statistically speaking) a different mentality from
the developers. The kinds of web pages most helpful to users are not
always the same as those helpful for developers. Don't try to make a
"one size fits all" web site just to save some writing and maintenance
effort: you'll end up with a site that is not quite right for either
audience.
The two types of sites should cross-link, of course, and in
particular it's important that the user-oriented site have, tucked a
way in a corner somewhere, a clear link to the developers' site, since
most new developers will start out at the user-facing pages and look
for a path from there to the developers' area.
An example may make this clearer. As of this writing in
February 2022, the office suite LibreOffice has its main user-oriented
web site at https://www.libreoffice.org/, as you'd expect. If you were a user wanting
to download and install LibreOffice, you'd start there, go straight to
the "Download" link, and so on. But if you were a developer looking
to fix a bug in LibreOffice, you might
start at https://www.libreoffice.org/, but you'd be looking for a link that says
something like "Developers", or "Development", or "Get
Involved" — in other words, you'd be looking for the
gateway to the development area.
LibreOffice, like other large projects, has a few different
gateways to developer-land. There's a prominent link partway down the
page that says "Get Involved", and at the top there's also a dropdown
menu named "Improve It" that offers a number of paths to
participation, including a "Developers" item.
The "Get Involved" page is aimed at the broadest possible range of
potential contributors: developers, yes, but also documenters,
quality-assurance testers, marketing helpers, web infrastructure
experts, financial or in-kind donors, interface designers, support
forum helpers, etc. This frees up the "Developers" page to target
the rather narrower audience of programmers interested
in improving the LibreOffice code. The set of links and short
descriptions provided on both pages is admirably clear and concise:
you can tell immediately from looking whether you're in the right
place for what you want do, and if so what the next thing to click on
is. The "Development" page gives some information about where to find
the code, how to contact the other developers, how to file bugs, and
things like that, but most importantly it points to what most seasoned
open source contributors would instantly recognize as the
real gateway to actively-maintained development
information: the development wiki at https://wiki.documentfoundation.org/Development.
This division into two contributor-facing gateways, one for all
kinds of contributions and another for coders specifically, is
probably right for a large, multi-faceted project like LibreOffice.
You'll have to use your judgement as to whether that kind of
subdivision is appropriate for your project; at least at the
beginning, it probably isn't. It's better to start with one unified
contributor gateway, aimed at all the types of contributors you
expect, and if that page ever gets large enough or complex enough to
feel unwieldy — listen carefully for complaints about
it, since you and other long-time participants will be naturally
desensitized to weaknesses in introductory
pages! — then you can divide it up however seems
best.
From a technical point of view there is not much to say about
setting up the project web site. Web hosting is easy to come by,
and most of the important things to say about layout
and arrangement were covered in the previous chapter. The web site's
main function is to present a clear and welcoming overview of the
project, and to bind together the various collaboration tools (the
version control system, bug tracker, etc). To save time and effort,
many projects just use one of the canned hosting services, as
described below.
Canned Hosting

A canned hosting site is an online
service that offers some or all of the online collaboration tools
needed to run a free software project. At a minimum, a canned hosting
site offers public version control repositories and bug tracking; most
also offer wiki space, many offer mailing list
hosting[36] too, and some
offer continuous integration testing[37] and other
services[38]. For many projects, canned hosting provides a
perfectly adequate developer-oriented entry point to the project, and
there is no need to set up a separate web site.
There are two main advantages to using a canned site. The first
is server maintenance: uptime monitoring, operating system upgrades,
etc. Having someone else handle that is one less thing to worry
about. The second advantage is simplicity. They have already chosen
a bug tracker, a version control system, perhaps discussion forum
software, and everything else you need to run a project. They've
configured the tools, arranged single-sign-on authentication where
appropriate, are taking care of backups for all the data stored in the
tools, etc. You don't need to make many decisions. All you have to
do is fill in a registration form, press a button, and suddenly you've
got a project development web site.
These are pretty significant benefits. The disadvantage, of
course, is that you must accept their choices and
configurations, even if something different would be better for your
project. Usually canned sites are adjustable within certain narrow
parameters, but you will never get the fine-grained control you would
have if you set up the site yourself and had full administrative
access to the server.
A perfect example of this is the handling of generated files.
Certain project web pages may be generated files — for example,
there are systems for keeping FAQ data in an easy-to-edit master
format, from which HTML, PDF, and other presentation formats can be
generated. As explained in
the section called “Version Everything”,
you wouldn't want to version the generated formats, only the master
file. But when your web site is hosted on someone else's server, it
may be difficult to set up a custom hook to regenerate the online
HTML version of the FAQ whenever the master file is changed.
If you choose a canned site, try to leave open the option of
switching to a different site later, by using a custom domain name as the
project's development home address. You can forward that URL to the
canned site, or have a fully customized development home page at the
main URL and link to the canned site for specific functionality. Just
try to arrange things such that if you later decide to use a different
hosting solution, the project's main address doesn't need to
change.
If you're not sure whether to use canned hosting, then you
should probably use canned hosting. These sites have integrated their
services in myriad ways (just one example: if a commit mentions a bug
ticket number using a certain format, then people browsing that commit
later will find that it automatically links to that ticket), ways that
would be laborious for you to reproduce, especially if it's your first
time running an open source project. The universe of possible
configurations of collaboration tools is vast and complex, but the
same set of choices has faced everyone running an open source project
and there are some settled solutions now. Each of the canned hosting
sites implements a reasonable subset of that solution space, and
unless you have reason to believe you can do better, your project will
probably run best by just using one of those sites.
Choosing a Canned Hosting Site

There are now so many sites providing free-of-charge canned
hosting for projects released under open source licenses that there is
not space here to review the field.
So I'll make this easy:
If you don't know what to choose, then choose GitHub (https://github.com/). It's by far the most
popular and appears set to stay that way for some years to come. It
has a good set of features and integrations. Many developers are
already familiar with GitHub and have an account there. It offers
APIs at
https://develop.github.com/ for interacting
programmatically with project resources, and starting in 2020 it
introduced message forums.[39]
If you're not convinced by GitHub (for example because your
project uses, say, Mercurial instead of Git for version control), but
you aren't sure where to host, take a look at Wikipedia's thorough
comparison at https://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities; it's
the first place to look for up-to-date, comprehensive information on
open source project hosting options.

Hosting on Fully Open Source Infrastructure

Although all the canned hosting sites use plenty of free
software in their stack, most of them also wrote some proprietary
code to glue it all together. In these cases the hosting environment
itself is not fully open source, and thus cannot be easily reproduced
by others. For example, while Git itself is free software, GitHub is
a hosted service running partly with proprietary
software — if you leave GitHub, you can't take a copy
of their infrastructure with you, at least not all of it.
Some projects would prefer a canned hosting site that runs an
entirely free software infrastructure. This might be to preserve and
signal their commitment to software freedom, and in some cases might
also be due to immediate utilitarian
considerations — for example, politically sensitive
projects that are worried about being deplatformed want to know that
they can reproduce their project's hosting independently should it
ever become necessary.
Fortunately, there are places to obtain fully free-software
commercial hosting. I will list a few examples below (as of early
2020), albeit with no pretense of completeness.
	GitLab (https://gitlab.com/)
	GitLab offers an excellent collaboration platform that
 comes in two versions: fully free-software (they call this
 their "Community Edition") and proprietary (which they call
 their "Enterprise Edition".[40]
 The proprietary edition is hosted by GitLab.com, and has a few
 features the open source edition doesn't have. Interestingly,
 GitLab.com themselves don't offer hosting of the strictly open
 source edition, but some other companies do. Two of them are
 GitLabHost BV (https://www.gitlabhost.com/) and 2nd Watch (https://www.2ndwatch.com/); you can
 probably find others by searching https://partners.gitlab.com/. (It's also pretty easy to set up
 your own instance of GitLab. My own company did so at https://code.librehq.com/ and it was fairly simple,
 although we have to perform security upgrades frequently. This
 does not mean that GitLab is disproportionately likely to have
 security problems; it just means that GitLab is very popular
 and therefore a lot of people are available to detect and
 report problems.)

	Sourcehut (https://sourcehut.org/ and https://sr.ht/)
	Sourcehut offers project hosting with both Git and
 Mercurial available as version control systems. It is designed
 to be light, fast, and developer-focused: there is no tracking
 nor advertising, all of its features work without in-browser
 Javascript, and many of its features work without even
 requiring a user account (e.g., some email-driven interactions
 with the bug tracker). As of late 2023, it's officially still
 in "public alpha", but it is stable and is fine for projects
 that need reliable hosting.

	Codeberg (https://codeberg.org/)
	Codeberg offers zero-cost project hosting for free and
 open source projects. It's run by a non-profit organization in
 Germany that supports free (libre) culture, is featureful,
 and is under active development as of late 2023. Codeberg's
 underlying platform is Forgejo (codeberg.org/forgejo/forgejo), which is itself a
 community fork made in reaction to an unexpected corporate move
 in another free software project (see forgejo.org/2022-12-15-hello-forgejo for
 details).

Should you host your project on fully open source
infrastructure? I can't answer that question for you, since it
ultimately depends on you and your project's philosophical positions.
However, as a practical matter, I cannot say I've seen any evidence
that the degree of software-freedom of the hosting platform has much
effect on a project's success. The vast majority of developers who
work on free software projects seem to be willing to participate
through a non-free hosting platform when that's what the project is
using.
Whether the hosting platform is itself free software or not, it
is crucial to be able to interact with project data in automatable
ways, and to have a way to export data out of the hosting platform. A
site that meets these criteria can never truly lock you in, and will
even be somewhat extensible, via its programmatic interface.
Of course, all the above applies only to the servers of the
hosting site. Your project itself should never require participants
to run proprietary software on their own
machines.[41]

Anonymity and Involvement

A problem that is not strictly limited to the canned sites, but
is most often found there, is the over-requirement of user
registration to participate in various aspects of the project. The
proper degree of requirement is a bit of a judgement call. User
registration helps prevent spam, for one thing, and even if every
commit gets reviewed you still probably don't want
anonymous[42] strangers
pushing changes into your repository, for example.
But sometimes user registration ends up being required for tasks
that ought to be permitted to unregistered visitors, especially the
ability to file tickets in the bug tracker, and to comment on existing
tickets. By requiring a logged-in username for such actions, the
project raises the involvement bar for what should be quick,
convenient tasks. It also changes the demographics of who files bugs,
since those who take the trouble to set up a user account at the
project site are hardly a random sample even from among users who are
willing to file bugs (who in turn are already a biased subset of all
the project's users). Of course, one wants to be able to contact
someone who's entered data into the ticket tracker, but having a field
where she can enter her email address (if she wants to) would be sufficient for that.
If a new user spots a bug and wants to report it, she'll only be
annoyed at having to fill out an account creation form before she can
enter the bug into the tracker. She may simply decide not to file the
bug at all.
If you have control over which actions can be done anonymously,
make sure that at least all read-only actions are
permitted to non-logged-in visitors, and if possible that data entry
portals, such as the bug tracker, that tend to bring information from
users to developers, can also be used anonymously, although of course
anti-spam techniques, such as captchas, may still be necessary.

[36] Note that even when a canned hosting site
doesn't offer message forums as a standalone feature, it will usually
offer rich notification and subscription/watch features attached to
its bug tracker and version control system, such that participants can
effectively have a message-forum-style discussion centered around a
particular bug or change. While these features are very useful, they
are not a full substitute for first-class message forums as described
in the section called “Message Forums / Mailing Lists”.

[37] See automated-testing.

[38] Note that for successful free software
projects, interested commercial entities will eventually often step up
to fund many of these services anyway; see the section called “Providing Build Farms and Development Servers” for further discussion of
this.

[39] That is, message forums as in
the section called “Message Forums / Mailing Lists”. The feature's name is "GitHub
Discussions"; you have to turn it on for your repository, as
it's not currently on by default.

[40] See the section called “"Commercial" vs "Proprietary"” for
 why this terminology deserves scare quotes.

[41] The exception to this is proprietary
Javascript code that is received from the hosting site and run
confined or "sandboxed" in one tab in the user's browser. The
question of whether such code is conceptually an extension of the
server, or should be thought of as running on the client machine even
though in some senses it has more access to server resources than it does to
client resources, is a deep and ongoing debate. We won't settle it
here, but the issue is at least more complex than just which CPU is executing
the instructions.

[42] Pseudonymous is another
matter. As long as a consistent identity has accrued reputation, you
may not need to know who it actually is.

Message Forums / Mailing Lists

Not all projects need to use discussion forum software. For
relatively small, focused projects that are organized around a single
code repository, the email gateway features of the bug tracker (as
discussed in the section called “Bug Tracker” later in this chapter) may
be enough to sustain most conversations. When a non-technical topic
needs to be discussed, someone can just create an issue
ticket — a fake bug report,
essentially — for the topic and conduct the discussion
there. So if you think your project will get along fine without
forums, you can skip this section and just try that. It will be
obvious pretty quickly if you do need them.
Larger and more complex projects, however, will almost always
benefit from having dedicated discussion forums. This is partly
because there will be many conversations that are not attached to a
specific bug, and partly because the larger the project, the more
important it is to keep the bug tracker focused on actual bugs and
have a separate place for other kinds of discussions.
For a long time, discussion forums were mainly mailing lists,
but the distinction between mailing lists and Web-based forums is,
thankfully, slowly disappearing. Services like Google Groups (https://groups.google.com/), which

is not itself open source, and Discourse (http://www.discourse.org/), which is, have established that
cross-accessibility of message forums as mailing lists and vice versa
is the minimum bar to meet, and modern discussion management systems
reflect this.
Because of this nearly-completed unification between email lists
and web-based forums[43], I will
use the terms message forum and
mailing list more or less interchangeably.
They refer to any kind of message-based forum where posts are linked
together in threads (topics), people can subscribe, archives of past
messages can be browsed, and the forum can be interacted with via
email or via a web browser.
If a user is exposed to any channel besides a project's web
pages, it is most likely to be one of the project's message forums.
But before she experiences the forum itself, she will experience the
process of finding the right forum. Your project should
have a prominently-placed description of all the available public
forums, to give newcomers guidance in deciding which ones to browse or
post to first. A typical such description might say something like
this:

 The mailing lists are the main day-to-day communication channels for
 the Scanley community. You don't have to be subscribed to post to a
 list, but if it's your first time posting (whether you're subscribed
 or not), your message may be held in a moderation queue until a
 human moderator has a chance to confirm that the message is not spam.
 We're sorry for this delay; blame the spammers who make it necessary.

 Scanley has the following lists:

 users {_AT_} scanley.org:

 Discussion about using Scanley or programming with the Scanley
 API, suggestions of possible improvements, etc. You can browse the
 users@ archives at
 <<<link to archive>>>
 or subscribe here:
 <<<link to subscribe>>>.

 dev {_AT_} scanley.org:

 Discussion about developing Scanley. Maintainers and contributors
 are subscribed to this list. You can browse the
 dev@ archives at
 <<<link to archive>>>
 or subscribe here:
 <<<link to subscribe>>>.

 (Sometimes threads cross over between users@
 and dev@, and
 Scanley's developers will often participate in discussions on both
 lists. In general if you're unsure where a question or post
 should go, start it out on users@. If it should be a
 development discussion, someone will suggest moving it over to
 dev@.)

 announcements {_AT_} scanley.org:

 This is a low-traffic, subscribe-only list. The Scanley
 developers post announcements of new releases and occasional other
 news items of interest to the entire Scanley community here, but
 followup discussion takes place on users@ or
 dev@.
 <<<link to subscribe>>>.

 notifications {_AT_} scanley.org:

 All code commit messages, bug tracker tickets, automated
 build/integration failures, etc, are sent to this list. Most
 developers should subscribe:
 <<<link to subscribe>>>.

 There is also a non-public list you may need to send to, although
 only developers are subscribed:

 security {_AT_} scanley.org:

 Where the Scanley project receives confidential reports of
 security vulnerabilities. Of course, the report will be made
 public eventually, but only after a fix is released; see our
 security procedures page for more [...]

Choosing the Right Forum Management Software

It's worth investing some time in choosing the right mailing
list management system for your project. Modern list management tools
(some of which are listed later in the section called “Mailing List / Message Forum Software”) offer at least the following
features:
	Both email- and web-based access
	Users should be able to subscribe to the forums by email,
 and read them on the web (where they are organized into
 conversations or "threads", just as they would be in a
 mailreader).

	Moderation features
	To "moderate" is to check posts, especially first-time
 posts, to make sure they are not spam before they go out
 to the entire list. Moderation necessarily involves
 human administrators, but software can do a great deal to
 make it easier on the moderators. There is more said
 about moderation in the section called “Spam Prevention”
 later in this chapter.

	Rich administrative interface
	There are many things administrators need to do besides
 spam moderation — for example, removing
 obsolete addresses, a task that can become urgent when a
 recipient's address starts sending "I am no longer at this
 address" bounces back to the list in response to every
 list post (though some systems can even detect this and
 unsubscribe the person automatically). If your forum
 software doesn't have decent administrative capabilities,
 you will quickly realize it, and should consider switching
 to software that does.

	Header manipulation
	Some people have sophisticated filtering and replying
 rules set up in their mail readers, and rely on the forum
 adding or manipulating certain standard headers. See
 the section called “Identification and Header Management” later in this chapter
 for more on this.

	Archiving
	All posts to the managed lists are stored and made
 available on the web (see the section called “Conspicuous Use of Archives” for more on the
 importance of public archives). Usually the archiver is a
 native part of the message forum system; occasionally, it
 is a separate tool that needs to be integrated.

The point of the above list is really just to show that forum
management is a complex problem that has already been given a lot of
thought, and to some degree been solved. You don't need to become an
expert, but you will have to learn at least a little bit about
it, and you should expect list management to occupy your attention
from time to time in the course of running any free software project.
Below we'll examine a few of the most common issues.
Spam Prevention

A mailing list that takes no spam prevention measures at all
will quickly be submerged in junk emails, to the point of unusability.
Spam prevention is mandatory. It is really two distinct functions:
preventing spam posts from appearing on your mailing lists, and
preventing your mailing list from being a source of new email
addresses for spammers' harvesters.
Filtering posts

There are three basic techniques for preventing spam posts, and
most mailing list software offers all three. They are best used in
tandem:
	Only auto-allow postings from
 list subscribers.
This is effective as far as it goes, and also
 involves very little administrative overhead, since it's
 usually just a matter of changing a setting in the mailing
 list software's configuration. But note that posts which
 aren't automatically approved must not be simply
 discarded. Instead, they should go into a moderation
 queue, for two reasons. First, you want to allow
 non-subscribers to post: a person with a question or
 suggestion should not need to subscribe to a mailing list
 just to ask a question there. Second, even
 subscribers may sometimes post from an address other than
 the one by which they're subscribed. Email addresses are
 not a reliable method of identifying people, and shouldn't
 be treated as such.

	Filter posts through
 spam-detection software.
If the mailing list software makes it possible (most
 do), you can have posts filtered by spam-filtering
 software. Automatic spam-filtering is not perfect, and
 never will be, since there is a never-ending arms race
 between spammers and filter writers. However, it can
 greatly reduce the amount of spam that makes it through to the
 moderation queue. Since the longer that queue is the
 more time humans must spend examining it, any amount of
 automated filtering is beneficial.
There is not space here for detailed instructions
 on setting up spam filters. You will have to consult
 your mailing list software's documentation for that (see
 the section called “Mailing List / Message Forum Software”). List
 software often comes with some built-in spam prevention
 features, but you may want to add some third-party
 filters. I've had good experiences with SpamAssassin
 (https://spamassassin.apache.org/). That
 is not a comment on the many other open source spam
 filters out there, some of which are apparently also quite
 good; I just happen to have used SpamAssassin myself and
 been satisfied with it.

	Moderation.
For mails that aren't automatically allowed by
 virtue of being from a list subscriber, and which make it
 through the spam filtering software, if any, the last stage
 is moderation: the mail is routed
 to a special holding area, where a human examines it and
 confirms or rejects it.
Confirming a post usually takes one of two forms:
 you can accept the sender's post just this once, or you
 can tell the system to allow this and all future posts
 from the same sender. You almost always want to do the
 latter, in order to reduce the future moderation
 burden — after all, someone who has made a
 valid post to a forum is unlikely to suddenly turn into a
 spammer later.
Rejecting is done by either marking the item to be
 discarded, or by explicitly telling the system the message
 was spam so the system can improve its ability to
 recognize future spams. Sometimes
 you also have the option to automatically discard future
 mails from the same sender without them ever being held in
 the moderation queue, but there is rarely any point doing
 this, since spammers don't send from the same address
 twice anyway.
Oddly, most message-forum systems have not yet given
 the moderation queue administrative interface the
 attention it deserves, considering how common the task is,
 so moderation often still requires more clicks and UI
 gestures than it should. I hope this situation will
 improve in the future. In the meantime, perhaps knowing
 you're not alone in your frustration will temper your
 disappointment somewhat.

Use the Moderation Channel Only for Moderation

Be sure to use moderation only for
filtering out spams, and perhaps for clearly off-topic messages such
as when someone accidentally posts to the wrong mailing list.
Although the moderation system may give you a way to respond directly
to the sender, you should never use that method to answer questions
that really belong on the mailing list itself, even if you know the
answer off the top of your head. To do so would deprive the project's
community of an accurate picture of what sorts of questions people are
asking, and deprive people of a chance to answer questions themselves
and/or see answers from others. (This is really just a special case
of the advice in the section called “Avoid Private Discussions”.)
Mailing list moderation is strictly about keeping the list free of
spam and of wildly off-topic or otherwise inappropriate emails,
nothing more.

Identification and Header Management

When interacting with the forum by email, subscribers often want
to filter mails from the list into custom inboxes. Their mail reading
software can do this
automatically by examining the mail's headers.
The headers are the fields at the top of the mail that indicate the
sender, recipient, subject, date, and various other things about the
message. Certain headers are well known and are effectively
mandatory:

From: ...
To: ...
Subject: ...
Date: ...

Others are optional, though still quite standard. For example,
emails are not strictly required to have the

Reply-to: sender@email.address.here

header, but most do, because it gives recipients a foolproof way
to reach the author (it is especially useful when the author had to
send from an address other than the one to which replies should be
directed).
Some mail reading software offers an easy-to-use interface for
filing mails based on patterns in the Subject header. This leads
people to request that the mailing list add an automatic prefix to all
Subjects, so they can set their readers to look for that prefix and
automatically file the mails in the right folder. The idea is that
the original author would write:

Subject: Making the 2.5 release.

but the mail would show up on the list looking like this:

Subject: [Scanley Discuss] Making the 2.5 release.

Although most list management software offers the option to do
this, you may decide against turning the option on. The problem
it solves can often be solved in less obtrusive ways (see below), and
there is a cost to eating space in the Subject field. Experienced
mailing list users typically scan the Subjects of the day's incoming
list mail to decide what to read and/or respond to. Prepending the
list's name to the Subject can push the right side of the Subject off
the screen, rendering it invisible. This obscures information that
people depend on to decide what mails to open, thus reducing the
overall functionality of the mailing list for everyone.
Instead of munging the Subject header, people could take
advantage of the other standard headers, starting with the To header,
which should say the mailing list's address:

To: <discuss@lists.example.org>

Any mail reader that can filter on Subject should be able to filter on
To just as easily.
There are a few other optional-but-standard headers expected for
mailing lists; they are sometimes not displayed by most mailreader
software, but they are present nonetheless. Filtering on them is
even more reliable than using the "To" or "Cc" headers, and since these
headers are added to each post by the mailing list management software
itself, some users may be counting on their presence:

List-Help: <mailto:discuss-help@lists.example.org>
List-Unsubscribe: <mailto:discuss-unsubscribe@lists.example.org>
List-Post: <mailto:discuss@lists.example.org>
List-Id: <discuss.lists.example.org>
Delivered-To: mailing list discuss@lists.example.org
Mailing-List: contact discuss-help@lists.example.org; run by ezmlm

For the most part, they are self-explanatory. See http://www.nisto.com/listspec/list-manager-intro.html for more
explanation, or if you need the really detailed, formal specification,
see http://www.faqs.org/rfcs/rfc2369.html.

Having said all that, these days I find that most subscribers
just request that the Subject header include a list-identifying
prefix. That's increasingly how people are accustomed to filtering
email: Subject-based filtering is what many of the major online email
services (like Gmail) offer users by default, and those services tend
not to make it easy to see the presence of less-commonly used headers
like the ones I mentioned above — thus making it less
likely that people would even realize that they even have the option
of filtering on those other headers.
Therefore, reluctantly, I recommend using a Subject prefix (keep
it as short as you can) when that's what your community wants. But if
your project highly technical and most of its participants are
comfortable filtering on other headers, then do that and leave the
Subject line undisturbed.
Some mailing list software offers an option to append
unsubscription instructions to the bottom of every post. If that
option is available, turn it on. It causes only a couple of extra
lines per message, in a harmless location, and it can save you a lot
of time, by cutting down on the number of people who mail you — or
worse, mail the list! — asking how to unsubscribe.

The Great Reply-to Debate

Earlier, in the section called “Avoid Private Discussions”, I stressed the
importance of making sure discussions stay in public forums, and
talked about how active measures are sometimes needed to prevent
conversations from trailing off into private email threads;
furthermore, this chapter is all about setting up project
communications software to do as much of the work for people as possible.
Therefore, if the mailing list management software offers a way to
automatically cause discussions to stay on the list, you would think
turning on that feature would be the obvious choice.
Well, not quite. There is such a feature, but it has some
pretty severe disadvantages. The question of whether or not to use it
is one of the hottest debates in mailing list
management — admittedly, not a controversy that's likely to make
the evening news in your city, but it can flare up from time to time
in free software projects. Below, I will describe the feature, give
the major arguments on both sides, and make the best recommendation I
can.
The feature itself is very simple: the mailing list software
can, if you wish, automatically set the Reply-to header on every post
to redirect replies to the mailing list. That is, no matter what the
original sender puts in the Reply-to header (or even if they don't
include one at all), by the time the list subscribers see the post,
the header will contain the list address:

Reply-to: discuss@lists.example.org

On its face, this seems like a good thing. Because virtually
all mail reading software pays attention to the Reply-to header, now
when anyone responds to a post, their response will be automatically
addressed to the entire list, not just to the sender of the message
being responded to. Of course, the responder can still manually
change where the message goes, but the important thing is that
by default replies are directed to the list.
It's a perfect example of using technology to encourage
collaboration.
Unfortunately, there are some disadvantages. The first is known
as the Can't Find My Way Back Home problem:
sometimes the original sender will put their "real" email address in
the Reply-to field, because for one reason or another they send email
from a different address than where they receive it. People who
always read and send from the same location don't have this problem,
and may be surprised that it even exists. But for those who have
unusual email configurations, or who cannot control how the From
address on their mails looks (perhaps because they send from work and
do not have any influence over the IT department), using Reply-to may
be the only way they have to ensure that responses reach them. When
such a person posts to a mailing list that she's not subscribed to, her
setting of Reply-to becomes essential information. If the list
software overwrites it,[44] she may
never see the responses to her post.
The second disadvantage has to do with expectations, and in my
opinion is the most powerful argument against Reply-to munging. Most
experienced mail users are accustomed to two basic methods of
replying: reply-to-all and
reply-to-author. All modern mail reading
software has separate keys for these two actions. Users know that to
reply to everyone (that is, including the list), they should choose
reply-to-all, and to reply privately to the author, they should choose
reply-to-author. Although you want to encourage people to reply to
the list whenever possible, there are certainly circumstances where a
private reply is the responder's prerogative — for example, they
may want to say something confidential to the author of the original
message, something that would be inappropriate on the public
list.
Now consider what happens when the list has overridden the
original sender's Reply-to. The responder hits the reply-to-author
key, expecting to send a private message back to the original author.
Because that's the expected behavior, he may not bother to look
carefully at the recipient address in the new message. He composes
his private, confidential message, one which perhaps says embarrassing
things about someone on the list, and hits the send key.
Unexpectedly, a few minutes later his message appears on the
mailing list! True, in theory he should have looked
carefully at the recipient field, and should not have assumed anything
about the Reply-to header. But authors almost always set Reply-to to
their own personal address (or rather, their mail software sets it for
them), and many longtime email users have come to expect that. In
fact, when a person deliberately sets Reply-to to some other address,
such as the list, she usually makes a point of mentioning this in the
body of her message, so people won't be surprised at what happens when
they reply.
Because of the possibly severe consequences of this unexpected
behavior, my own preference is to configure list management software
to never touch the Reply-to header. This is one instance where using
technology to encourage collaboration has, it seems to me, potentially
dangerous side-effects. However, there are also some powerful
arguments on the other side of this debate. Whichever way you choose,
you will occasionally get people posting to your list asking why you
didn't choose the other way. Since this is not something you ever
want as the main topic of discussion on your list, it might be good to
have a canned response ready, of the sort that's more likely to stop
discussion than encourage it. Make sure you do
not insist that your decision, whichever it is,
is obviously the only right and sensible one (even if you think that's
the case). Instead, point out that this is a very old debate, there
are good arguments on both sides, no choice is going to satisfy
all users, and therefore you just made the best decision you
could. Politely ask that the subject not be revisited unless someone
has something genuinely new to say, then stay out of the thread and
hope it dies a natural death. (See also the section called “Avoid Holy Wars”.)
Someone may suggest a vote to choose one way or the other. You
can do that if you want, but I personally do not feel that counting
heads is a satisfactory solution in this case. The penalty for
someone who is surprised by the behavior is so huge (accidentally
sending a private mail to a public list), and the inconvenience for
everyone else is fairly slight (occasionally having to remind someone
to respond to the whole list instead of just to you), that it's not
clear that a majority should be able to put a minority at such
risk.
I have not addressed all aspects of this issue here, just the
ones that seemed most important. For a full discussion, see
these two canonical documents, which are the ones people always cite
when they're having this debate:

	Leave Reply-to alone,
 by Chip Rosenthal
https://unicom.crosenthal.com/pw/reply-to-harmful.html

	Set Reply-to to list,
 by Simon Hill
https://web.archive.org/web/20090223102606/http://www.metasystema.net/essays/reply-to.mhtml

Despite the mild preference indicated above, I do not feel there
is a "right" answer to this question,[45] and happily participate in many
lists that do set Reply-to. The most important
thing you can do is settle on one way or the other early, and try not
to get entangled in debates about it after that. When the debate
re-arises every few years, as it inevitably will, you can point people
to the archived discussion from last time.
Two Fantasies

Someday, someone will get the bright idea to implement a
reply-to-list key in a mail reader. It would
use some of the custom list headers mentioned earlier to figure out
the address of the mailing list, and then address the reply directly
to the list only, leaving off any other recipient addresses, since
most are probably subscribed to the list anyway. Eventually, other
mail readers will pick up the feature, and this whole debate will go
away.
(Actually, the Mutt (http://www.mutt.org/) mail reader does offer this feature.
Then shortly after the first edition of this book appeared, Michael
Bernstein wrote me to say: "There are other email clients that
implement a reply-to-list function besides Mutt. For example,
Evolution has this function as a keyboard shortcut, but not a button
(Ctrl+L).")
An even better solution would be for Reply-to munging to be a
per-subscriber preference in the list management software. Those who
want the list to set Reply-to munged — either on
posts they receive or posts they send — could ask for
that, and those who don't would ask for Reply-to to be left alone.
However, I don't know of any currently-maintained software that offers
this on a per-subscriber basis.

Archiving

Every discussion forum should be fully archived. It's common
for new discussions to refer to old ones, and often people doing an
Internet search will find a solution to a problem by stumbling across
a message that had been casually posted to a mailing list by some
stranger. Archives also provide history and context for new users and
developers who are becoming more involved in the project.
The technical details of setting up archiving are specific to
the software that's running the forum, and are beyond the scope of
this book. If you need to choose or configure an archiver, consider
these properties:
	Prompt updating
	People will often want to refer to an archived message
 that was posted recently. If possible, the archiver
 should archive each post instantaneously, so that by the
 time a post appears on the mailing list, it's already
 present in the archives. If that option isn't available,
 then at least try to set the archiver to update itself
 every hour or so. (By default, some archivers run their
 update processes once per night, but in practice that's
 far too much lag time for an active mailing list.)

	Referential stability
	Once a message is archived at a particular URL, it should
 remain accessible at that exact same URL forever.
 Even if the archives are
 rebuilt, restored from backup, or otherwise fixed, any
 URLs that have already been made publicly available
 should remain the same. Stable references make it
 possible for Internet search engines to index the
 archives, which is a major boon to users looking for
 answers. Stable references are also important because
 mailing list posts and threads are often linked to from
 other places, such as from the bug tracker (see
 the section called “Bug Tracker”) or
 from other project documents.
Ideally, mailing list software would include a message's
 archive URL, or at least the message-specific portion of
 the URL, in a header or footer when it distributes the message to
 recipients. That way people who have a copy of the
 message would be able to instantly know its archive location
 without having to actually visit the archives, which would
 be helpful because any operation that involves web
 browsing is automatically time-consuming. Whether any
 mailing list software actually offers this feature, I don't
 know; unfortunately, the ones I have used do not.
 However, it's something to look for (or, if you write
 mailing list software, it's a feature to consider
 implementing, please).

	Thread support
	It should be possible to go from any individual message to
 the thread (group of related
 messages) that the original message is part of. Each
 thread should have its own URL too, separate from the URLs
 of the individual messages in the thread.

	Searchability
	An archiver that doesn't support searching — on the
 bodies of messages, as well as on authors and
 subjects — is close to useless. Note that some archivers
 support searching by simply farming the work out to an
 external search engine such as Google. This is
 acceptable, but direct search support is usually more
 fine-tuned, because it allows the searcher to specify that
 the match must appear in a subject line versus the body,
 for example.

The above is just a technical checklist to help you evaluate and
set up an archiver. Getting people to
actually use the archiver to the project's
advantage is discussed in later chapters, in particular
the section called “Conspicuous Use of Archives”.

Mailing List / Message Forum Software

Here are some tools for running message forums. If the site
where you're hosting your project already has a default setup, then
you can just use that and avoid having to choose. But if you need to
install one yourself, below are some possibilities. (Of course, there
are probably other tools out there that I just didn't happen to find,
so don't take this as a complete list).
	Discourse — https://discourse.org/
Discourse was built to be the One True Discussion System for
 Web and mobile, and so far it seems to be living up to its
 promise. It is open source, supports both browser-based and
 email-based participation in discussions, and is under active
 development with commercial support available. You can
 purchase hosted discourse if you don't want to set up
 yourself.

	Sympa — https://www.sympa.org/
Sympa is developed and maintained by a consortium of French
 universities. It is designed for a given instance to handle
 both very large lists (> 1,000,000 members) and a large
 number of lists. Sympa can work with a variety of
 dependencies; for example, you can run it with sendmail,
 postfix, qmail or exim as the underlying message transfer
 agent. It has built-in Web-based archiving.

	Mailman — http://www.list.org/
For many years, Mailman was the standard for open source
 project mailing lists. It comes with a built-in archiver
 and has hooks for plugging in external archivers.
 Mailman is very reliable in terms of message delivery and
 other under-the-hood functionality, but its reputation
 suffered for a while because of various user interface issues
 in its aging 2.x code base (especially for spam moderation
 and subscription moderation), and delays in shipping its
 long-awaited 3.0 release.
However, Mailman 3.0 has now shipped, and is worth a look.
 It should solve many of the problems of Mailman 2, and may
 make Mailman a reasonable choice again. This excellent
 article by Sumana Harihareswara describes the major
 improvements: https://lwn.net/Articles/638090/.

	Google Groups — https://groups.google.com/
Listing Google Groups here was a tough call. The service is
 not itself open source, and a few of its administrative
 functions can be a bit hard to use. However, its advantages
 are substantial: your group's archives are always online and
 searchable; you don't have to worry about scalability,
 backups, or other run-time infrastructure issues; the
 moderation and spam-prevention features are pretty good (with
 the latter constantly being improved, which is important in
 the neverending spam arms race); and Google Groups are easily
 accessible via both email and web, in ways that are likely to
 be already familiar to many participants. These are strong
 advantages. If you just want to get your project started,
 and don't want to spend too much time thinking about what
 message forum software or service to use, Google Groups
 is a good default choice.

[43] Which was a long time
coming — see http://www.rants.org/2008/03/06/thread_theory/ for more. And no, I'm not
too dignified to refer to my own blog post.

[44] In theory, the list software
could add the list's address to whatever
Reply-to destination were already present, if any, instead of
overwriting. In practice, for reasons I don't know, most list
software overwrites instead of appending.

[45] Although there is,
of course, a right answer, and it is to leave the original author's
Reply-to untouched. The relevant standards document, http://www.ietf.org/rfc/rfc2822.txt, says "When
the 'Reply-To:' field is present, it indicates the mailbox(es) to
which the author of the message suggests that replies be
sent."

Version Control

A version control system (or
revision control system) is a combination of
technologies and practices for tracking and controlling changes to a
project's files, in particular to source code, documentation, and web
pages. If you have never used version control before, the first thing
you should do is go find someone who has, and get them to join your
project. These days, everyone will expect at least your project's
source code to be under version control, and probably will not take
the project seriously if it doesn't use version control with at least
minimal competence.
The reason version control is so universal is that it helps with
virtually every aspect of running a project: inter-developer
communications, release management, bug management, code stability and
experimental development efforts, and attribution and authorization of
changes by particular developers. The version control system provides
a central coordinating force across all of these areas. The core of
version control is change management:
identifying each discrete change made to the project's files,
annotating each change with metadata like the change's date and
author, and then replaying these facts to whoever asks, in whatever
way they ask. It is a communications mechanism where a change is the
basic unit of information.
This section does not discuss all aspects of using a version
control system. It's so all-encompassing that it must be addressed
topically throughout the book. Here, we will concentrate on choosing
and setting up a version control system in a way that will foster
cooperative development down the road.
Version Control Vocabulary

This book cannot teach you how to use version control if you've
never used it before, but it would be impossible to discuss the
subject without a few key terms. These terms are useful independently
of any particular version control system: they are the basic nouns and
verbs of networked collaboration, and will be used generically
throughout the rest of this book. Even if there were no version
control systems in the world, the problem of change management would
remain, and these words give us a language for talking about that
problem concisely.
If you're comfortably experienced with version control already,
you can probably skip this section. If you're not sure, then read
through this section at least once. Certain version control terms
have gradually changed in meaning since the early 2000s, and you may
occasionally find people using them in incompatible ways in the same
conversation. Being able to detect that phenomenon early in a
discussion can often be helpful.
"Version" Versus "Revision"

The word version is sometimes used as a
 synonym for "revision", but I will not use it that way in this
 book, because it is too easily confused with "version" in the sense
 of a version of a piece of software — that is, the release or
 edition number, as in "Version 1.0". However, since the phrase
 "version control" is already standard, I will continue to use it as
 a synonym for "revision control" and "change control". Sorry. One
 of open source's most endearing characteristics is that it has two
 words for everything, and one word for every two things.

	commit
	To make a change to the project. More formally: to
 store a change in the version control database in such a way that it
 can be incorporated into future releases of the project. "Commit"
 can be used as a verb or a noun. For example: "I just committed a
 fix for the server crash bug people have been reporting on Mac OS X.
 Jay, could you please review the commit and check that I'm not
 misusing the allocator there?"

	push
	To publish a commit to a publicly online repository,
 from which others can incorporate it into their copy of the
 project's code. When one says one has pushed a commit, the
 destination repository is usually implied. Usually it is the
 project's authoritative repository, the one from which public
 releases are made.
Note that in some older version control systems (e.g.,
 Subversion), commits are automatically and unavoidably pushed up to
 a predetermined central repository, while in most newer systems
 (e.g., Git, Mercurial) the developer chooses when and where to push
 commits. Because the former privileges a particular central
 repository, they are known as "centralized" version control systems,
 while the latter are known as "decentralized". In general,
 decentralized systems are the modern
 trend,[46] especially for open source projects,
 which benefit from the peer-to-peer relationship between developers'
 repositories.

	pull
	(or
 "update" or sometimes
 "fetch")
To pull others' changes (commits) into your copy of the
 project. When pulling changes from a project's mainline
 development branch (see branch),
 people often say "update" instead of "pull", for example: "Hey, I
 noticed the indexing code is always dropping the last byte. Is this
 a new bug?" "Yes, but it was fixed last week — try updating and
 it should go away."
Note that in Git, "pull" and "fetch" are somewhat different.
 To fetch means to obtain the latest changes from a
 remote repository (e.g., from the authoritative upstream repository)
 and store them at the ready in your local repository, but
 without merging them locally — in essence, it
 means "synchronize my local copy of the remote repository with the
 remote repository". To pull means to fetch and then
 automatically merge the received changes locally (setting conflict
 markers if there are conflicts). Opinions differ on whether it is
 better to fetch and then manually merge, or to just pull every time;
 it depends both on your personal development style and on how the
 project as a whole manages changes.
Despite this difference, even in Git-based projects developers
 may colloquially say "fetch" to refer to obtaining changes, without
 meaning fetch specifically as opposed to
 pull.
See also the section called “Pull Requests / Merge Requests”.

	commit message or log message
	A bit of commentary attached to each commit,
 describing the nature and purpose of the commit (both terms are used
 about equally often; I'll use them interchangeably in this book).
 Log messages are among the most important documents in any project:
 they are the bridge between the detailed, highly technical meaning
 of each individual code changes and the more user-visible world of
 bugfixes, features and project progress. Later in this section,
 we'll look at ways to distribute them to the appropriate audiences;
 also, the section called “Codifying Tradition”
 discusses ways to encourage contributors to write concise and useful
 commit messages.

	repository
	A
 database in which changes are stored and from which they are
 published. In centralized version control systems, there is a
 single, authoritative repository on a remote server; that repository
 records all changes to the project, and each developer works with a
 snapshot of the latest version on her own machine. In decentralized
 systems, each developer has her own repository, changes can be
 swapped back and forth between repositories arbitrarily, and the
 question of which repository is authoritative (that is, the one from
 which public releases are rolled) is defined purely by social
 convention, instead of by a combination of social convention and
 technical enforcement.

	clone (see also
 checkout)
	To obtain one's own development repository by making
 a copy of the project's central repository.

	checkout
	When used in discussion, "checkout" usually means
 something like "clone", except that centralized systems don't really
 clone the full repository, they just obtain a working copy or working files. When
 decentralized systems use the word "checkout", they also mean the
 process of obtaining working files from a repository, but since the
 repository is local in that case, the user experience is quite
 different because the network is not involved.
In the centralized sense, a checkout produces a directory tree
 called a "working copy" (see below), from which changes may be
 sent back to the original repository.

	working copy or working files
	A developer's private directory tree containing the
 project's source code files, and possibly its web pages or other
 documents, in a form that allows the developer to edit them. A
 working copy also contains some version control metadata saying what
 repository it comes from, what branch it represents, and a few other
 things. Typically, each developer has her own working copy, from
 which she edits, tests, commits, pulls, pushes,
 etc.
In decentralized systems, working copies and repositories are
 usually colocated anyway, so the term "working copy" is less often
 used. Developers instead tend to say "my clone" or "my copy" or
 sometimes "my fork".

	revision,
 change,
 changeset,
 or (again) commit
	A "revision" is a precisely specified incarnation of
 the project at a point in time, or of a particular file or directory
 in the project at that time. These days, most systems also use "revision",
 "change", "changeset", or "commit" to refer to a set of changes
 committed together as one conceptual unit, if multiple files were
 involved, though colloquially most people would refer to changeset
 12's effect on file F as "revision 12 of F".
These terms occasionally have distinct technical meanings in
 different version control systems, but the general idea is always
 the same: they give a way to speak precisely about exact points in
 time in the history of a file or a set of files (say, immediately
 before and after a bug is fixed). For example: "Oh yes, she fixed
 that in revision 10" or "She fixed that in commit fa458b1fac".
When one talks about a file or collection of files without
 specifying a particular revision, it is generally assumed that one
 means the most recent revision(s) available.

	diff
	A textual representation of a change. A diff shows
 which lines were changed and how, plus a few lines of surrounding
 context on either side. A developer who is already familiar with
 some code can usually read a diff against that code and understand
 what the change did, and often even spot bugs.

	tag or snapshot
	A label for a particular state of the project at a
 point in time. Tags are generally used to mark interesting
 snapshots of the project. For example, a tag is usually made for
 each public release, so that one can obtain, directly from the
 version control system, the exact set of files/revisions comprising
 that release. Tag names are often things like
 Release_2_0, Delivery_20211009,
 etc.

	branch
	A copy of the project, under version control but
 isolated so that changes made to the branch don't affect other
 branches of the project, and vice versa, except when changes are
 deliberately "merged" from one branch to another (see below).
 Branches are also known as "lines of development". Even when a
 project has no explicit branches, development is still considered to
 be happening on the "main branch", also known
 as the "main line" or
 "trunk" or sometimes
 "master".
Branches are a way to keep different lines of development
 from interfering with each other. For example, a short-term branch
 is typically used for a bugfix or a minor enhancement. Longer-term
 branches can also be used for experimental development that would be
 too destabilizing for the main line.
Conversely, a branch can also be used as a safely isolated
 place in which to stabilize a new release. During the release
 process, regular development — that is, frequent integration of
 development branches — would continue uninterrupted in the main
 branch; meanwhile, on the release branch, no changes are allowed
 except those approved by the release managers. This way, making a
 release needn't interfere with ongoing development work. See the section called “Use Branches to Avoid Bottlenecks” for a more detailed discussion of
 branching.

	merge or port
	To move a change from one branch to another. This
 includes merging from the main branch to some other branch, or vice
 versa. In fact, those are the most common kinds of merges; it is
 less common to port a change between two non-main branches. See
 the section called “Singularity of Information” for more on change porting.
"Merge" has a second, related meaning: it is what some version
 control systems do when they see that two people have changed the
 same file but in non-overlapping ways. Since the two changes do not
 interfere with each other, when one of the people updates their copy
 of the file (already containing their own uncommitted changes), the other
 person's changes will be automatically merged in. This is very
 common, especially on projects where multiple people are hacking on
 the same code. When two different changes do
 overlap, the result is a "conflict"; see below.

	conflict
	What happens when two people try to make different
 changes to the same place in the code. All version control systems
 automatically detect conflicts, and notify at least one of the
 humans involved that their changes conflict with someone else's. It
 is then up to that human to resolve the
 conflict, and to communicate that resolution to the version control
 system.

	revert or reversion
	To undo an already-committed change to the software.
 The undoing itself is a versioned event, and is usually done by
 asking the version control system to reverse the change(s) in
 questions, rather than by manually making the edits and committing
 them.

	lock
	A way to declare an exclusive intent to change a
 particular file or directory. For example, "I can't commit any
 changes to the web pages right now. It seems Alfred has them all
 locked while he fixes their background images." Not all version
 control systems even offer the ability to lock, and of those that
 do, not all require the locking feature to be used. This is because
 parallel, simultaneous development is the norm, and locking people
 out of files is (usually) contrary to this ideal.
Version control systems that require locking to make commits
 are said to use the lock-modify-unlock model.
 Those that do not are said to use the
 copy-modify-merge model. An excellent
 in-depth explanation and comparison of the two models may be found
 at https://svnbook.red-bean.com/nightly/en/svn.basic.version-control-basics.html#svn.basic.vsn-models. In
 general, the copy-modify-merge model is better for open source
 development, and all the version control systems discussed in this
 book support that model.

Choosing a Version Control System

If you don't already have an opinion about which version control
system your project should use, then choose Git (https://git-scm.com/), and host your
project's repositories at GitHub (https://github.com/), which offers unlimited free hosting for open
source projects.
Git is by now the de facto
standard in the open source world, as is hosting one's repositories at
GitHub. Because so many developers are already comfortable with that
combination, choosing it sends the signal that your project is ready
for participants. But Git-at-GitHub is not the only viable
combination. Many projects host their authoritative Git repository
somewhere else, either at another public hosting site (see the section called “Canned Hosting”) or on their own server (perhaps using one
of the open source forge systems listed in the section called “Hosting on Fully Open Source Infrastructure”). Some projects use a different
version control system entirely, such as Mercurial (https://www.mercurial-scm.org/).
There isn't space here for an in-depth exploration of why you
might choose something other than Git. If you have a reason to do so,
then you already know what that reason is. If you don't, then just
use Git (on either GitHub or GitLab). If you find yourself using
something other than Git or Mercurial, ask yourself
why — because whatever that other version control
system is, most other developers won't be familiar with it, and it
likely has a smaller community of support around it than those two
do.

Using the Version Control System

The recommendations in this section are not targeted toward a
particular version control system, and should be implementable in any
of them. Consult your specific system's documentation for
details.
Version Everything

Keep not only your project's source code under version control,
but also its web pages, documentation, FAQ, design notes, and anything
else that people might want to edit. Keep them right with the
source code, in the same repository tree. Any piece of information
worth writing down is worth versioning — that is, any piece of
information that could change. Things that don't change should be
archived, not versioned. For example, an email, once posted, does not
change; therefore, versioning it wouldn't make sense (unless it becomes
part of some larger, evolving document).
The reason to version everything together in one place is so
that people only have to learn one mechanism for submitting changes.
Often a contributor will start out making edits to the web pages or
documentation, and move to small code contributions later, for
example. When the project uses the same system for all kinds of
submissions, people only have to learn the ropes once. Versioning
everything together also means that new features can be committed
together with their documentation updates, that branching the code
will branch the documentation too, etc.
Don't keep generated files under version
control. They are not truly editable data, since they are produced
programmatically from other files. For example, some build systems
create a file named configure based on a template
in configure.in. To make a change to the
configure, one would edit
configure.in and then regenerate; thus, only the
template configure.in is an "editable file."
Just version the templates — if you version the generated files as
well, people will inevitably forget to regenerate them when they commit a
change to a template, and the resulting inconsistencies will cause
endless confusion.
There are technical exceptions to the rule that all editable
data should be kept in the same version control system as the code.
For example, a project's bug tracker and its wiki hold plenty of
editable data, but usually do not store that data in the main version
control system.[47] However, they should still have
versioning systems of their own, e.g., the comment history in a bug
ticket, and the ability to browse past revisions and view differences
between them in a wiki.

Browsability

The project's repository should be browsable on the Web. This
means not only the ability to see the latest revisions of the
project's files, but to go back in time and look at earlier revisions,
view the differences between revisions, read log messages for selected
changes, etc.
Browsability is important because it is a lightweight portal to
project data. If the repository cannot be viewed through a web
browser, then someone wanting to inspect a particular file (say, to
see if a certain bugfix had made it into the code) would first have to
install version control client software locally, which could turn
their simple query from a two-minute task into a half-hour or longer
task.
Browsability also implies canonical URLs for viewing a
particular change (i.e., a commit), and for viewing the latest
revision at any given time without specifying its commit identifier.
This can be very useful in technical discussions or when pointing
people to documentation or examples. If you tell someone a URL that
always points to the latest revision of the a file, or to a particular
known revision, the communication is completely unambiguous, and
avoids the issue of whether the recipient has an up-to-date working
copy of the code themselves.
Some version control systems come with built-in
repository-browsing mechanisms, and in any case all hosting sites
offer it via their web interfaces. But if you need to install a
third-party tool to get repository browsing, do so; it's worth
it.

Use Branches to Avoid Bottlenecks

Non-expert version control users are sometimes a bit afraid of
branching and merging. If you are among those people, resolve right
now to conquer any fears you may have and take the time to learn how
to do branching and merging. They are not difficult operations, once
you get used to them, and they become increasingly important as a
project acquires more developers.
Branches are valuable because they turn a scarce
resource — working room in the project's code — into an
abundant one. Normally, all developers work together in the same
sandbox, constructing the same castle. When someone wants to add a
new drawbridge, but can't convince everyone else that it would be an
improvement, branching makes it possible for her to copy the
castle, take it off to an isolated corner, and try out the new
drawbridge design. If the effort succeeds, she can invite the
other developers to examine the result (in GitHub-speak, this
invitation is known as a "pull request" — see the section called “Pull Requests / Merge Requests”). If everyone agrees that the
result is good, she or someone else can tell the version control
system to move ("merge") the drawbridge from the branch version of the
castle over to the main version, usually called the
main branch.
It's easy to see how this ability helps collaborative
development. People need the freedom to try new things without
feeling like they're interfering with others' work. Equally
importantly, there are times when code needs to be isolated from the
usual development churn, in order to get a bug fixed or a release
stabilized (see the section called “Stabilizing a Release” and
the section called “Maintaining Multiple Release Lines”) without worrying
about tracking a moving target. At the same time, people need to be
able to review and comment on experimental work, whether it's
happening in the main branch or somewhere else. Treating branches
as first-class, publishable objects makes all this possible.
Use branches liberally, and encourage others to use them. But
also make sure that a given branch is only active for as long as
needed. Every active branch is a slight drain on the community's
attention. Even those who are not working in a branch still stumble
across it occasionally; it enters their peripheral awareness from time
to time and draws some attention. Sometimes such awareness is
desirable, of course, and commit notices should be sent out for branch
commits just as for any other commit. But branches should not become
a mechanism for dividing the development community's efforts. With
rare exceptions, the eventual goal of most branches should be to merge
their changes back into the main line and disappear, as soon as
possible.

Singularity of Information

Merging has an important corollary: never commit the same change
twice. That is, a given change should enter the version control
system exactly once. The revision (or set of revisions) in which the
change entered is its unique identifier from then on. If it needs to
be applied to branches other than the one on which it entered, then it
should be merged from its original entry point to those other
destinations — as opposed to committing a textually identical
change, which would have the same effect in the code, but would make
accurate bookkeeping and release management much harder.
The practical effects of this advice differ from one version
control system to another. In some systems, merges are special
events, fundamentally distinct from commits, and carry their own
metadata with them. In others, the results of merges are committed
the same way other changes are committed, so the primary means of
distinguishing a "merge commit" from a "new change commit" is in the
log message. In a merge's log message, don't repeat the log message
of the original change. Instead, just indicate that this is a merge,
and give the identifying revision of the original change, with at most
a one-sentence summary of its effect. If someone wants to see the
full log message, she should consult the original revision.
Non-duplication makes it easier to be sure when one has tracked down
the original source of a change: when you're looking at a complete log
message that doesn't refer to a some other merge source, you can know
that it must be the original change, and treat it accordingly.
The same principle applies to reverting a change. If a change
is withdrawn from the code, then the log message for the reversion
should merely state that some specific revision(s) is being reverted,
and explain why. It should not describe the semantic code change that
results from the reversion, since that can be derived by consulting
the original log message and diff. (And if you're using a system in
which editing or annotating past log messages is possible, go back and
fix the original change's log message to mention the future
reversion.)
All of the above implies that you should use a consistent syntax
for referring to changes. This is helpful not only in log messages,
but in emails, the bug tracker, and elsewhere. In Git and Mercurial,
the syntax is usually "commit c39fcac089" (where the commit hash code
on the right is long enough to be unique in the relevant context). In
Subversion, revision numbers are linearly incremented integers and the
standard syntax for, say, revision 1729 is "r1729" (a syntax you'll
see in some examples in this book). Other systems have their own
standard syntaxes for expressing the changeset name. Whatever the
appropriate syntax is for your system, encourage people to use it consistently when
referring to changes. Consistent expression of change names makes
project bookkeeping much easier (as we will see in Chapter 6, Communications and in Chapter 7, Packaging, Releasing, and Daily Development).
Since a lot of this bookkeeping may be done by developers who must
also use some different bookkeeping method for internal projects at
their company, it needs to be as easy as possible.
See also
the section called “Releases and Daily Development”.

Authorization

Even if your project's version control system or hosting site
allows technical enforcement of developer's activity
areas — e.g., permitting them to push commits in some
places but not others — it's usually better to not to
use it. Automated enforcement is rarely necessary, and may even be
harmful.
Instead, most projects use an honor system: when a person is
granted commit access, even for a sub-area of the project, what they
actually receive is the physical ability to commit anywhere in the
authoritative repository. They're just asked to keep their commits in their
area. (See the section called “Committers” for how projects
decide who can put changes where.)
Remember that there is little real risk here: the repository
provides an audit trail, and in an active project, all commits are
reviewed anyway. If someone commits where they're not supposed to,
others will notice it and say something. If a change needs to be
undone, that's simple enough — everything's under version control
anyway, so just revert.
There are several advantages to this more relaxed approach.
First, as developers expand into other areas (which they usually will
if they stay with the project), there is no administrative overhead to
granting them wider privileges. Once the decision is made, the person
can just start committing in the new area right away.
Second, it allows such expansion to be done in a fine-grained manner.
Generally, a committer in area X who wants to expand to area Y will
start posting patches against Y and asking for review. If someone who
already has commit access to area Y sees such a patch and approves of
it, she can just tell the submitter to commit the change directly
(mentioning the approver's name in the log message, of
course). That way, the commit will come from the person who actually
wrote the change, which is preferable from both an information
management standpoint and from a crediting standpoint.
Last, and perhaps most important, using the honor system
encourages an atmosphere of trust and mutual respect. Giving someone
commit access to a subdomain is a statement about their technical
preparedness — it says: "We see you have expertise to make commits
in a certain domain, so go for it." But imposing strict authorization
controls says: "Not only are we asserting a limit on your expertise,
we're also a bit suspicious about
your intentions." That's not the sort of
statement you want to make if you can avoid it. Bringing someone into
the project as a committer is an opportunity to initiate them into a
circle of mutual trust. A good way to do that is to give them more
power than they're supposed to use, then inform them that it's up to
them to stay within agreed-on limits.
The Subversion project has operated on this honor system way for
over two decades, with more than 50 full committers and over 100
partial committers as of this writing. (Not all of them are active at
any given time, but that just reinforces the point I'm making here.)
The only distinction the system enforces by technical means is the
global distinction between committers and everyone else. All further
subdivisions are maintained solely by human discretion. Yet the
project never had a serious problem with someone deliberately
committing outside their domain. Once or twice there's been an
innocent misunderstanding about the extent of someone's commit
privileges, but it's always been resolved quickly and amiably.
Obviously, in situations where self-policing is impractical, you
must rely on hard authorization controls. But such situations are
rare. Even when there are millions of lines of code and hundreds or
thousands of developers, a commit to any given code module should
still be reviewed by those who work on that module,[48] and
they can recognize if someone committed there who wasn't supposed to.
If regular commit review isn't happening, then
the project has bigger problems to deal with than the authorization
system anyway.
In summary, don't spend too much time fiddling with
technically-enforced authorization controls unless you have a specific
reason to. It usually won't bring much tangible benefit, and there
are advantages to relying on human controls instead.
None of this should be taken to mean that the socially-enforced
restrictions themselves are unimportant, of course. It would be bad
for a project to encourage people to commit in areas where they're not
qualified. Furthermore, in many projects, full (project-wide) commit
permission has a special corollary status: it implies voting rights on
project-wide questions. This political aspect of commit areas is
discussed more in the section called “Who Votes?”.

Receiving and Reviewing Contributions

These days the primary means by which
changes — code contributions, documentation
contributions, etc — reach a project is via "pull
requests" (described in more detail below), though some older projects
still prefer to receive a patch posted to a mailing list or attached
in a bug tracker. Once a contribution arrives, it typically goes
through a review-and-revise process, involving communication between
the contributor and various members of the project. At some point
during the process, if all goes well, the contribution is eventually
deemed ready for incorporation into the main codebase and is merged
in. This does not mean that discussion and work on the contribution
cease at that point. The contribution may well continue to be
improved, it's just that that improvement now takes place within the
project rather than off to one side. The moment when a code change is
merged to the project's main branch is when it becomes officially
part of the project. It is no longer the sole responsibility of
whoever submitted it; it is the collective responsibility of the
project as a whole.
Pull Requests / Merge Requests

A pull request (also called a
merge request) is a request
from a contributor to the
project for a certain change to be "pulled" (i.e., merged) into the
project — usually into the project's main branch, though sometimes
pull requests are targeted at some other branch.
The change is offered in the form of the difference between the
contributor's copy (or "clone") of the project and the project's own
copy. The two copies share most of their change history, of course,
but at a certain point the contributor's diverges — it
contains the change the contributor has implemented and that the
project does not have yet. The project may also have moved on since
the clone was made and contain new changes that the contributor does
not have, but these can be ignored for the purposes of discussion
here. A pull request is directional: it is for sending changes the
contributor has that the receiver does not, and is not about changes
flowing in the reverse direction.
In practice, the two copies are usually stored on the same
hosting site, and the contributor can initiate the pull request by
simply clicking a button. Creating a pull request automatically
creates a tracking ticket that everyone can see, so that a pending
pull request can use the same workflow as any other issue. Some
projects also have contributions enter through a collaborative code
review tool, such as https://en.wikipedia.org/wiki/Gerrit_%28software%29 or https://www.reviewboard.org/, and these days project hosting
sites include code-review features directly in their pull request
management interface anyway.
Pull requests are so frequent a topic of discussion that you
will often see people abbreviate them as "PR", as in "Yeah, your
proposed fix sounds good. Would you post a PR and assign it to me for
review please?" For newcomers, however, the term "pull request" is
sometimes confusing, however, because it sounds like it is a request by
the contributor to pull a change from someone else, when actually it
is a request the contributor makes to the project to pull the
change from the contributor. Some systems (e.g., GitLab) use the term
"merge request" to mean the same thing. I actually find that term
much more natural, but alas, "pull request", as popularized by GitHub,
appears to have won, and we all need to just get used to it. I'm not
bitter.

Commit Notifications / Commit Emails

Every commit to the repository — or every push
containing a group of commits — should generate a
notification that goes out to a subscribable forum, such as an email
sent to a mailing list. The notification should show who made the
change, when they made it, what files and directories changed, and the
actual content of the change.
The most common form of commit notifications is to just
subscribe to the repository itself, since the hosting platform will
send out notifications — usually by email, sometimes
also by other means — for interesting activity. Each
developer gets to customize what counts as interesting for them.
Alternatively, some projects have a mailing list dedicated to commit
notifications. Each commit (or push, or merge to the main branch)
sends an automatic email to that list. Note that this is a special
mailing list devoted to commit emails, separate from mailing lists to
which humans post. Whatever forms of commit notification your project
arranges, each notification should make it easy for developers to
proceed from there to reviewing that commit or changeset (see the section called “Practice Conspicuous Code Review”).
Whether your project should use an email
list — either in addition to or instead of or some
other kind of subscribable notifications — depends
on the demographics of your
developers, but when in doubt, email is usually a good default choice.
The specifics of setting up notifications vary depending on the
version control system, but usually there's a script or other packaged
facility for doing it. If you're having trouble finding it, try
looking for documentation on hooks (or
sometimes triggers), specifically a
post-merge hook or post-commit
hook. These hooks are a general means of launching
automated tasks in response to receiving changes. The hook is fed all
the information about the merge, and is then free to use that
information to do anything — for example, to send out an
email.
With pre-packaged commit email systems, you may want to
modify some of the default behaviors:
	Some commit mailers don't include the actual diffs in the
 email, but instead provide a URL to view the change on the web using
 the repository browsing system. While it's good to provide the URL,
 so the change can be referred to later, it is also important that
 commit emails include
 the diffs themselves. Reading email is already part of people's
 routine, so if the content of the change is visible right there in
 the commit email, developers will review the commit on the spot,
 without leaving their mail reader. If they have to click on a URL to
 review the change, most won't do it, because that requires a new
 action instead of a continuation of what they were already doing.
 Furthermore, if the reviewer wants to ask something about the
 change, it's vastly easier to hit reply-with-text and simply
 annotate the quoted diff than it is to visit a web page and
 laboriously cut-and-paste parts of the diff from web browser to
 email client.
Of course, if the diff is huge, such as when a large body of
 new code has been added to the repository, then it makes sense to
 omit the diff and offer only the URL. Most commit mailers can do
 this kind of size-limiting automatically. If yours can't, then it's
 still better to include diffs, and live with the occasional huge
 email, than to leave the diffs off entirely. Convenient reviewing
 and commenting is a cornerstone of cooperative development, and much
 too important to do without.

	The commit emails should set their Reply-to header
 to the regular development list, not the commit email list. That
 is, when someone reviews a commit and writes a response, their
 response should be automatically directed toward the human
 development list, where technical issues are normally discussed.
There are a few reasons for this. First, you want to keep all
 technical discussion on one list, because that's where people expect
 it to happen, and because that way there's only one archive to
 search. Second, there might be interested parties not subscribed to
 the commit email list. Third, the commit email list advertises
 itself as a service for watching commits, not for watching commits
 and having occasional technical discussions.
 Those who subscribed to the commit email list did not sign up for
 anything but commit emails; sending them other material via that
 list would violate an implicit contract.
Note that this advice to set Reply-to does not contradict the
 recommendations in
 the section called “The Great Reply-to Debate”. It's
 always okay for the sender of a message to set
 Reply-to. In this case, the sender is the version control system
 itself, and it sets Reply-to in order to indicate that the
 appropriate place for replies is the development mailing list, not
 the commit list.

[46] Decentralized version control has actually
 been around for a long time, but only relatively recently did it
 become the most popular form of version control. It is now the
 assumed default, especially for open source — in both senses: that
 is, the version control systems are themselves open source, and are
 intended to be suitable for managing open source software
 projects.

[47] Some development environments have tried
to integrate everything into one unified, version-controlled world, e.g.,
https://fossil-scm.org/ and
http://veracity-scm.com/,
but so far none of them have gained widespread adoption in the open
source world.

[48] See
the section called “Practice Conspicuous Code Review”.

Bug Tracker

Bug tracking is a broad topic, and various aspects of it are
discussed throughout this book. Here I'll concentrate mainly on the
features your project should look for in a bug tracker, and how to use
them. But to get to those, we have to start with a policy question:
exactly what kind of information should be kept in a bug
tracker anyway?
The term bug tracker is misleading. Bug
tracking systems are used to track not only bug reports, but new
feature requests, one-time tasks, unsolicited patches — really
anything that has distinct beginning and end states, with optional
transition states in between, and that accrues information over its
lifetime. For this reason, bug trackers are also called
issue trackers, ticket
trackers, defect trackers,
artifact trackers, request
trackers, etc.
In this book, I'll generally use the word
ticket to refer the items in the tracker's
database, because that distinguishes between the behavior that the
user encountered or proposed — that is, the bug or
feature itself — and the tracker's ongoing
record of that discovery, diagnosis, discussion,
and eventual resolution. But note that many projects use the word
bug or issue to refer to
both the ticket itself and to the underlying behavior or goal that the
ticket is tracking. (Those usages are in fact more common than
"ticket"; it's just that in this book we need to be able to make this
distinction explicitly in a way that projects themselves usually
don't.)
The classic ticket life cycle looks like this:

	Someone files the ticket. They provide a summary, an
 initial description (including a reproduction recipe, if
 applicable; see
 the section called “Treat Every User as a Potential Participant” for
 how to encourage good bug reports), and whatever other
 information the tracker asks for. The person who files
 the ticket may be totally unknown to the project — bug
 reports and feature requests are as likely to come from
 the user community as from the developers.
Once filed, the ticket is in what's called an
 open state. Because no action has
 been taken yet, some trackers also label it as
 unverified and/or
 unstarted. It is not assigned to
 anyone; or, in some systems, it is assigned to a fake
 user to represent the lack of real assignation. At this
 point, it is in a holding area: the ticket has been
 recorded, but not yet integrated into the project's
 consciousness.

	Others read the ticket, add comments to it, and
 perhaps ask the original filer for clarification on some
 points.

	The bug gets reproduced.
 This may be the most important moment in its
 life cycle. Although the bug is not actually fixed yet,
 the fact that someone besides the original filer was able
 to make it happen proves that it is genuine, and, no less
 importantly, confirms to the original filer that they've
 contributed to the project by reporting a real bug.
 (This step and some of the others don't apply to
 feature proposals, task tickets, etc, of course. But most
 filings are for genuine bugs, so we'll focus on that
 here.)

	The bug gets diagnosed: its
 cause is identified, and if possible, the effort required
 to fix it is estimated. Make sure these things get
 recorded in the ticket; if the person who diagnosed the
 bug suddenly has to step away from it for a
 while, someone else should be able to pick up where she
 left off.
In this stage, or sometimes in the previous one,
 a developer may "take ownership" of the ticket and
 assign it to herself (the section called “Distinguish Clearly Between Inquiry and Assignment”
 examines the assignment process in more detail). The ticket's
 priority may also be set at this
 stage. For example, if it is so important that it should
 delay the next release, that fact needs to be identified
 early, and the tracker should have some way of noting
 it.

	The ticket gets scheduled for resolution.
 Scheduling doesn't necessarily mean naming a date by which
 it will be fixed. Sometimes it just means deciding which
 future release (not necessarily the next one) the bug
 should be fixed by, or deciding that it need not block any
 particular release. Scheduling may also be dispensed
 with if the bug is quick to fix.

	The bug gets fixed (or the task completed, or
 the patch applied, or whatever). The change or set of
 changes that fixed it should be discoverable from
 the ticket. After this, the ticket is
 closed and/or marked as
 resolved.

There are some common variations on this life cycle. Often
a ticket is closed very soon after being filed, because it turns out
not to be a bug at all, but rather a misunderstanding on the part of
the user. As a project acquires more users, more and more such
invalid tickets will come in, and developers will close them with
increasingly short-tempered responses. Try to guard against the
latter tendency. It does no one any good, as the individual user in
each case is not responsible for all the previous invalid tickets; the
statistical trend is visible only from the developers' point of view,
not from the user's. (In
the section called “Pre-Filtering the Bug Tracker” we'll look at
techniques for reducing the number of invalid tickets.) Also, if
different users are experiencing the same misunderstanding over and
over, it might mean that some aspect of the software needs to be
redesigned. This sort of pattern is easiest to notice when there is
a dedicated issue manager monitoring the bug database; see
the section called “Issue Manager”.
Another common life event for the ticket to be closed
as a duplicate soon after Step 1. A duplicate
is when someone reports something that's already known to the project.
Duplicates are not confined to open tickets: it's possible for a bug to
come back after having been fixed (this is known as a
regression), in which case a reasonable course
is to reopen the original ticket and close any new reports as
duplicates of the original one. The bug tracking software keeps
track of this relationship bidirectionally, so that reproduction
information in the duplicates is available to the original ticket, and
vice versa.
A third variation is for the developers to close the ticket,
thinking they have fixed it, only to have the original reporter reject
the fix and reopen it. This is usually because the developers simply
don't have access to the environment necessary to reproduce the bug,
or because they didn't test the fix using the exact same reproduction
recipe as the reporter.
Aside from these variations, there may be other small details of
the life cycle that vary depending on the tracking software. But the
basic shape is the same, and while the life cycle itself is not
specific to open source software, it has implications for how open
source projects use their bug trackers.
The tracker is as much a public face of the project as the repository,
mailing lists or web pages.[49] Anyone may file a ticket, anyone may look
at a ticket, and anyone may browse the list of currently open tickets.
It follows that you never know how many people are waiting to see
progress on a given ticket. While the size and skill of the
development community constrains the rate at which tickets can be
resolved, the project should at least try to acknowledge each ticket
the moment it appears. Even if the ticket lingers for a while, a
response encourages the reporter to stay involved, because she feels
that a human has registered what she has done (remember that filing a
ticket usually involves more effort than, say, posting an email).
Furthermore, once a ticket is seen by a developer, it enters the
project's consciousness, in the sense that the developer can be on the
lookout for other instances of the ticket, can talk about it with
other developers, etc.
This centrality to the life of the project implies a few things
about trackers' technical features:

	The tracker should be connected to email, such that
 every change to a ticket, including its initial filing, causes a
 notification mail to go out to some set of appropriate
 recipients. See the section called “Interaction with Email”
 later in this chapter for more on this.

	The form for filing tickets should have a place to record
 the reporter's email address or other contact information, so she
 can be contacted for more details.[50]
 But if possible, it should not
 require the reporter's email address or real
 identity, as some people prefer to report anonymously. See the section called “Anonymity and Involvement” for more on the importance of anonymity.

	The tracker should have APIs. I cannot stress the
 importance of this enough. If there is no way to interact with
 the tracker programmatically, then in the long run there is no way
 to interact with it scalably. APIs provide a route to customizing
 the behavior of the tracker by, in effect, expanding it to include
 third-party software. Instead of being just the specific ticket
 tracking software running on a server somewhere, it's that
 software plus whatever custom behaviors your
 project implements elsewhere and plugs in to the tracker via the
 APIs.
Also, if your project uses a proprietary ticket tracker,
 as is becoming more common now that so many projects host their
 code on proprietary canned hosting sites and thus use that
 site's built-in tracker, APIs provide a way to avoid being
 locked in to that hosting platform. You can, in theory, take the
 ticket history with you if you choose to go somewhere else (you
 may never exercise this option, but think of it as
 insurance — and some projects have actually done
 it).
Fortunately, the ticket trackers of most major hosting
 sites have APIs.

Interaction with Email

Most trackers now have at least decent email integration
features: at a minimum, the ability to create new tickets by email,
the ability to "subscribe" to a ticket to receive
emails about activity on that ticket, and the ability to add new
comments to a ticket by email. Some trackers even allow one to
manipulate ticket state (e.g., change the status field, the assignee,
etc) by email, and for people who use the tracker a
lot — such as an issue manager (see the section called “Issue Manager”) — that can make a
huge difference in their ability to stay on top of tracker activity
and keep things organized.
The tracker email feature that is likely to be used by everyone,
though, is simply the ability to read a ticket's activity by email and
respond by email. This is a valuable time-saver for many people in
the project, since it makes it easy to integrate bug traffic into
one's daily email flow. But don't let this integration give
anyone the illusion that the total collection of bug tickets and their
email traffic is the equivalent of the development mailing list. It's
not, and the section called “Choose the Right Forum” discusses why this is
important and how to manage the difference.

Pre-Filtering the Bug Tracker

Most ticket databases eventually suffer from the same problem: a
crushing load of duplicate or invalid tickets filed by well-meaning but
inexperienced or ill-informed users. The first step in combating
this trend is usually to put a prominent notice on the front page of
the bug tracker, explaining how to tell if a bug is really a bug, how
to search to see if it's already been reported, and finally, how to
effectively report it if one still thinks it's a new bug.
This will reduce the noise level for a while, but as the number
of users increases, the problem will eventually come back. No
individual user can be blamed for it. Each one is just trying to
contribute to the project's well-being, and even if their first bug
report isn't helpful, you still want to encourage them to stay
involved and file better tickets in the future. In the meantime,
though, the project needs to keep the ticket database as free of junk
as possible.
The two things that will do the most to prevent this problem
are: making sure there are people watching the bug tracker who have
enough knowledge to close tickets as invalid or duplicates the moment
they come in, and requiring (or strongly encouraging) users to confirm
their bugs with other people before filing them
in the tracker.
The first technique seems to be used universally. Even projects
with huge ticket databases (say, the Debian bug tracker at
https://bugs.debian.org/, which
contained 996,003 tickets as of this writing) still arrange things so that
someone sees each ticket that comes in. It may be
a different person depending on the category of the ticket. For
example, the Debian project is a collection of software packages, so
Debian automatically routes each ticket to the appropriate package
maintainers. Of course, users can sometimes misidentify a ticket's
category, with the result that the ticket is sent to the wrong person
initially, who may then have to reroute it. However, the important
thing is that the burden is still shared — whether the user
guesses right or wrong when filing, ticket watching is still
distributed more or less evenly among the developers, so each ticket is
able to receive a timely response.
The second technique is less widespread, probably because it's
harder to automate. The essential idea is that every new ticket gets
"buddied" into the database. When a user thinks he's found a problem,
he is asked to describe it on one of the mailing lists, or in a chat
room, and get confirmation from someone that it is indeed a bug.
Bringing in that second pair of eyes early can prevent a lot of
spurious reports. Sometimes the second party is able to identify that
the behavior is not a bug, or is fixed in recent releases. Or she may
be familiar with the symptoms from a previous ticket, and can prevent a
duplicate filing by pointing the user to the older ticket. Often it's
enough just to ask the user "Did you search the bug tracker to see if
it's already been reported?" Many people simply don't think of that,
yet are happy to do the search once they know someone's
expecting them to.
The buddy system can really keep the ticket database clean, but
it has some disadvantages too. Many people will file solo anyway,
either through not seeing or through disregarding the instructions
to find a buddy for new tickets. Thus it is still necessary for
some experienced participants to watch the ticket database.
Furthermore, because most new
reporters don't understand how difficult the task of maintaining the
ticket database is, it's not fair to chide them too harshly for
ignoring the guidelines. The watchers must be vigilant,
yet exercise restraint in how they bounce unbuddied tickets back to
their reporters. The goal is to train each reporter to use the
buddying system in the future, so that there is an ever-growing pool
of people who understand the ticket-filtering system. On seeing an
unbuddied ticket, the ideal steps are:
	Immediately respond to the ticket, politely thanking the user
 for filing, but pointing them to the buddying guidelines
 (which should, of course, be prominently posted on the web
 site).

	If the ticket is clearly valid and not a duplicate, approve it
 anyway, and start it down the normal life cycle. After all,
 the reporter's now been informed about buddying, so there's
 no point closing a valid ticket and wasting the work done so
 far.

	Otherwise, if the ticket is not clearly valid, close it, but
 ask the reporter to reopen it if they get confirmation from
 a buddy. When they do, they should put a reference to the
 confirmation thread (e.g., a URL into the mailing list
 archives).

Remember that although this system will improve the signal/noise
ratio in the ticket database over time, it will never completely stop
the misfilings. The only way to prevent misfilings entirely is to
close off the bug tracker to everyone but
developers — a cure that is almost always worse than
the disease. It's better to accept that cleaning out invalid tickets
will always be part of the project's routine maintenance, and to try
to get as many people as possible to help.
See also
the section called “Issue Manager”.

[49] Indeed, as the section called “Evaluating Open Source Projects” discusses, the bug tracker is actually the
first place to look, even before the repository, when you're trying to
evaluate a project's overall health.

[50] For logged-in
 users whom the system already knows, these details are
 automatically filled in, of course.

Real-Time Chat Systems

Many projects offer real-time chat rooms in which developers can
have fast-turnaround conversations with each other and with users.
Such conversations often precede a bug report or some other kind of
more formal, tracked contribution.
For decades, the standard real-time chat system for open source
projects was Internet Relay Chat
(IRC), which predates the World Wide Web and
uses a text-based interface and command language. Starting around
2014-2015, a number of open source projects began trying out newer,
web-browser-friendly chat systems, in particular the open source
platforms https://zulip.org/,
https://mattermost.org/,
https://rocket.chat/, and
the Matrix[51]
protocol. (A few projects also experimented with the proprietary
online chat service Slack when it was new, but Slack hasn't been
widely adopted by open source projects and I wouldn't recommend it for
them. In a post written when that early experimentation was still
under way, Drew DeVault lists some of the reasons why Slack isn't
suitable: https://drewdevault.com/2015/11/01/Please-stop-using-slack.html.
I don't know whether any of these new systems will emerge as the
long-term default choice for open source projects. Try looking at the
open source chat systems used by similar projects and use that as
guidance in choosing yours. Matrix compatibility (sometimes referred
to as Matrix "bridging" or having a "Matrix bridge") is a good
property to keep in mind, and if possible IRC bridging too, since some
developers still like to use their IRC clients with non-IRC server
applications.
Chat Rooms and Growth

A chat server is usually divided into virtual chat
rooms. The chat application may call these "channels", or
"streams", or something else, but the concept is generally the same: a
chat room is a shared space in which everyone who is in that room can
see every message posted to the room. Every project maintains a
certain set of advertised, topic-specific public rooms; these are the
entry points into chat for new participants.[52] Some projects maintain a "welcome" or
"general" room specifically for newcomers to start out in, with
current project members watching that room in order to greet new
arrivals, but it's also fine to just have new people come directly
into the regular rooms to ask their questions too.
Exactly how many rooms to have, and for what topics, will depend
on your project, but it's best to start out with a small number of
rooms — even just one — and only add
more when it becomes clearly necessary. Much of the value of
real-time chat comes from people being together in the same rooms and
serendipitously seeing conversations between others. the section called “Handling Growth” discusses when and how to divide into more
rooms.

Nick-Flagging and Notifications

Users who are new to such chat systems usually need some time to
learn the conventions of real-time written communications. While each
project has its own local customs, there is at least one convention
that seems to be common in almost all projects:
nick-flagging for notification.
A user's nick is their nickname, their
handle in the chat system. It might or might not be some form of
their real name, but in any case it is how they are identified in
chat. When you want to speak to that person, you prefix your message
with her handle (perhaps followed by a separator character such as a
colon). Her chat client, upon seeing her handle used in a message,
notifies her by whatever means she has
configured — perhaps by flashing a notification popup
on her screen (even when she does not have the chat window in front of
her right then), or perhaps via an audible signal.
This notification only happens for messages that contain her
handle, not for other messages. She may still see those other
messages go by if she happens to be in that chat room right
then — developers often "lurk" in a chat room just to
see what's going on — but thanks to nick-flagging she
can easily tell the difference between messages addressed to her and
other messages. A message can contain multiple nicks, of course, in
which case each of the corresponding people would be notified.
The ability for users to separate the conversations they are
involved in from other conversations is key to successful use of
real-time chat in open source projects. It is how a large number of
developers can be in a "room" and all talk "together" without getting
their different streams of conversation entangled. Each developer can
tell which messages are specifically requesting her attention and
which ones are not. It is analogous to an observation Deaf people
sometimes make about the advantage of communicating with sign language
instead of spoken language in a crowded room: as long as you have a
clear line of sight to your interlocutor, the "noisiness" of the room
(whether with signed or spoken language) does not interfere much with
your ability to maintain the conversation. Similarly, a chat room can
be very busy, but as long as everyone follows the convention of
nick-flagging, people can simultaneously participate in their own
chats and keep an eye on whatever else they're interested in, at least
to the limit of their attentional capacity.[53]
Paste Rooms and Paste Sites

Normally, the fact that a chat room is a shared space is a good
thing, as it allows people to jump into a conversation when they think
they have something to contribute, and allows spectators to learn by
watching. But it becomes problematic when someone has to provide a
large quantity of information at once, such as a large error message
or a transcript from a debugging session, because pasting too many
lines of output into the room may disrupt other conversations.
One solution is to have a dedicate chat room just for pastes.
The user posts their transcript there, then grabs the URL to that
specific message[54] and posts the
URL in the original chat room, nick-flagging whoever should see
it.
Another solution is to set up a separate
pastebin site, which is separate from the chat
service operates essentially as described above: the user posts their
transcript to the paste site to create a new paste,
which in turn has its own unique URL, which the user then presents
back in the chat room. Historically there have also been many public
pastebin sites, so you might not need to set up a dedicated one for
your project, but note that public pastebin sites tend to be
short-lived (my guess is that they get spammed a lot and end up being
expensive to maintain). As of this writing in early 2022, https://hastebin.com/ is up and
running. If you do need to set up your own, there are many open
source codebases available (including the code that backs hastebin:
see https://hastebin.com/about.md.

Chat Bots

Chat rooms can have non-human members too, so-called
bots, that provide automated services such as
answering frequently-asked questions. Typically, a bot is addressed
just like any other member of the channel, that is, commands are
delivered by "speaking to" the bot. No special server privileges are
required to run a bot. A bot is just like any other user joining a
channel.
People who spend enough time in chat learn how to manipulate
these bots and use them to help others. For example, when one user
comes into a room and asks a common question, another more experienced
user may issue a terse command to the local bot telling it to provide
that user with a specific detailed answer that the bot has been
previously told to remember.
If your chat rooms tend to get the same questions over and over,
I highly recommend setting up a bot. Only a small percentage of
channel users will acquire the expertise needed to manipulate the bot,
but those users will answer a disproportionately high percentage of
questions, because the bot enables them to respond so much more
efficiently. The exact command set and behaviors will differ among
bot implementations; unfortunately, the diversity of bot command
languages seems to be rivaled only by the diversity of wiki
syntaxes.
Commit Notifications in Chat

One particular kind of bot (also known as an "integration")
watches the project's version control repository and broadcasts commit
activity to the relevant chat rooms as it happens. While this offers
less technical utility than subscription-based commit notifications
(see the section called “Commit Notifications / Commit Emails”), since interested
observers might or might not be around when a particular commit pops
up in the room, it is of immense social utility.
It gives people the sense of being part of something alive and
active — they see progress happening right before
their eyes. Because the notifications appear in a shared space,
people in the chat room will often react in real time, congratulating
the committer, or asking a question related to the commit, or even
reviewing the commit and commenting on it on the spot.
The technical details up of setting this up are beyond the scope
of this book, but I recommend learning how to enable it in your
project's chat platform. It's worth the effort. Most of the major
hosting sites make this integration fairly easy to set up. In
addition to "integration", some key words to try in a search are
"hook", "trigger", and "extension".

[51] Matrix is actually a protocol and an open
source reference implementation. The protocol is supported by an
increasing number of chat applications, including IRC as well as more
modern systems. In the words of Julian Foad in https://issues.apache.org/jira/browse/SVN-525#comment-17286477,
"Matrix is a 'spiritual successor' to IRC, and truly Open, federated,
and standardized. ... In my opinion Matrix is very much the Right Way
forward for all sorts of reasons." For more information, see https://matrix.org/ and https://en.wikipedia.org/wiki/Matrix_(protocol).

[52] When two
or a few users wish to chat privately, it is sometimes said that they
create a "private room". Such rooms are usually
temporary.

[53] See http://www.rants.org/2013/01/09/the-irc-curmudgeon/ for a
more detailed examination of nick-flagging and some
examples.

[54] Every message posted in an online chat
has its own unique URL permalink, just as every comment in, say, a bug
ticket does. See the section called “Treat All Resources Like Archives” for more about
this principle and its implications.

Wikis

A well-run wiki can be a wonderful thing for users and
developers. Wikis offer the lowest possible barrier-to-entry for
those seeking to contribute to the project. You just click and
edit — the wiki software will keep track of the
change, make sure you get credited, notify anyone who needs to be
notified, and immediately publish the new content to the world.
However, wikis also require some centralized effort to maintain.
When open source software project wikis go bad, they usually go bad
for the same reasons: lack of consistent organization and editing
(leading to a mess of outdated and redundant pages) and lack of clarity
on who the target audience is for a given page or section.
From the outset, try to have a clear page organization strategy
and even a pleasing visual layout, so that visitors (i.e., potential
editors) will instinctively know how to fit their contributions in.
Make sure the intended audience is clear at all times to all editors.
Most importantly, document these standards in the wiki itself and
point people to them, so editors have somewhere to go for guidance.
Too often, wiki administrators fall victim to the fantasy that because
hordes of visitors are individually adding high quality content to the
site, the sum of all these contributions must therefore also be of
high quality. That's not how collaborative editing works. Each
individual page or paragraph may be good when considered by itself,
but it will not be good if embedded in a disorganized or confusing
whole.
In general, wikis will amplify any failings that are present
from early on, since contributors tend to imitate whatever patterns
they see in front of them. So don't just set up the wiki and hope
everything falls into place. Prime it with well-written content, so
people have a template to follow.
The shining example of a well-run wiki is Wikipedia, of course,
but in many ways it's also a poor example because it gets so much more
editorial attention than any other wiki in the world. Still, if you
examine Wikipedia closely, you'll see that its administrators laid a
very thorough foundation for cooperation. There
is extensive documentation on how to write new entries, how to
maintain an appropriate point of view, what sorts of edits to make,
what edits to avoid, a dispute resolution process for contested edits
(involving several stages, including eventual arbitration), and so
forth. It also has authorization controls, so that if a page is
the target of repeated inappropriate edits, senior editors can lock it down
until the problem is resolved. In other words, they didn't just throw
some templates onto a web site and hope for the best. Wikipedia works
because its editors give careful thought to getting thousands of
strangers to tailor their writing to a common vision. While you may
not need the same level of preparedness to run a wiki for a free
software project, the spirit is worth emulating.
Wikis and Spam

Never allow open, anonymous editing on your wiki. The days when
that was possible are long gone now; today, any
open wiki other than Wikipedia will be covered completely with spam in
approximately 3 milliseconds. (Wikipedia is an exception only because it
has an unusually large number of editors willing to clean up spam
quickly, and because it has a well-funded organization behind it
devoted to fighting spam using various large-scale monitoring
techniques not practically available to smaller projects.)
All edits in your project's wiki should come from registered
users; if your wiki software doesn't already enforce this by default,
then configure it to enforce that. Even then you may need to keep
watch for spam edits from users who registered under false pretenses
for the purpose of spamming.[55]

Choosing a Wiki

If your project is on GitHub or some other free hosting site,
it's usually best to use the built-in wiki feature that most such
sites offer. That way your wiki will be automatically integrated with
your repository or other project permissions, and you can rely on the
site's user account system instead of having a separate registration
system for the wiki.
If you are setting up your own wiki, then you're free to choose
which one, and fortunately there are plenty of good free software wiki
implementations available. I've had good experience with DokuWiki
(https://www.dokuwiki.org/dokuwiki), but there are many others. There is
a wonderful tool called the Wiki Choice Wizard at http://www.wikimatrix.org/ that allows
you to specify the features you care about (an open source license can
be one of them) and then view a chart comparing all the wiki software
that meets those criteria. Another good resource is Wikipedia's own
page comparing different wikis: https://en.wikipedia.org/wiki/Comparison_of_wiki_software.
I do not recommend using MediaWiki (https://www.mediawiki.org) as the wiki
software for most projects. MediaWiki is the software on which
Wikipedia itself runs, and while it is very good at that, its
administrative facilities are tuned to the needs of a site unlike any
other wiki on the Net — and actually not so well-tuned
to the needs of smaller editing communities. Many projects are
tempted to choose MediaWiki because they think it will be easier for
users who already know its editing syntax from having edited at
Wikipedia, but this turns out to be an almost non-existent advantage
for several reasons. First, wikis in general, including Wikipedia,
are tending toward rich-text in-browser editing anyway, so that no one
really needs to learn the underlying wiki syntax unless they aim to be
a power user. Second, many other wikis offer a MediaWiki-syntax
plugin, so you can have that syntax anyway if you really want it.
Third, for those who will use a plaintext syntax instead of rich-text
editing, it's better to use a standardized generic markup format like
Markdown (https://daringfireball.net/projects/markdown/), which is available in
many wikis either natively or via a plugin, than to use any flavor of
wiki syntax. If you support Markdown, then people can edit in your
wiki using the same markup syntax they already know from GitHub and
other popular tools.

[55] You may be able to allow
editing by non-registered users if you put some spam countermeasures
in place. For example, the Emacs Wiki (https://www.emacswiki.org/)
allows editing by anyone, but to submit your edit you must answer a
question that a bot is unlikely to be able to answer
accurately.

Translation Infrastructure

Various online platforms now exist to help automate the
organization and integration of human-language translation work in
open source projects. "Translation work" here means not just the
process of translating the software's documentation, but also its
run-time user interface, error messages, etc into different languages,
so that each user can interact with the software in their preferred
language. (See the section called “Translation Manager” for more about
this process.)
It is not strictly necessary to use a separate translation
platform at all. Your translators could work directly in the
project's repository, like any other developer. But because
translation is a specialized skill, and translators' methods are
basically the same from project to project, the process is quite
amenable to being made more efficient through the use of dedicated
tools. Web-based translation platforms make it easier for translators
to get involved by removing the requirement that a translator (who may
have linguistic expertise but not development expertise) be
comfortable with the project's development tools, and by providing a
working environment that is specially optimized for translation rather
than for general code development.
Until 2013, the obvious recommendation for a platform would have
been https://transifex.com/, which was both the premier software
translation site and was open source software itself. However, its
main corporate sponsors switched to a closed, proprietary version in
March 2013,[56] and development of the open source
version stopped then. Transifex still offers zero-cost service for
open source projects, as does a competing proprietary platform called
Lokalise. But your translators may prefer to invest their time in
learning a fully open source platform, and there are several to choose
from: https://weblate.org/,
http://zanata.org/, https://translatewiki.net/,
and https://translations.launchpad.net/ (and there are probably
others I don't know about, so look around and ask in other translation
communities).
Internationalization (i18n) and Localization (l10n)

The process of adapting software user interfaces for different
groups of humans involves two terms that are easily confused:
"internationalization" and "localization".
Internationalization refers to the
process of putting software source code into a form that allows the
program to be translated (or "localized" — see below).
It includes, among other things, marking all user-visible strings
(interface texts, error messages, etc) so that they can be
automatically replaced by translated versions when the software is
deployed in a "locale". The translations are supplied by humans, but
internationalization is what allows those translations to be
automatically integrated into the software.
Thus, internationalization does not involve performing any
actual translation. Rather, it's about putting the program into a
form that allows translators, or "localizers", to get to work.
i18n is a common abbreviation for
"internationalization", since the word is so long to type. The "18"
refers to the number of letters between the initial "i" and then final
"n".
Localization, meanwhile, refers to
supplying an actual translation into a specific language, as well as
to other changes needed for that audience (for example, conversion of
measurement units, monetary units, etc). Because it may involve more
than just language change, the term is "localization" rather than
"translation", and the destination — the intended
audience — is called a locale.
A locale does not always correspond to geographic area or a political
grouping. Localizing a program for Yiddish, for example, doesn't say
anything about where it will be run nor by whom, other than that they
know Yiddish.
l10n is likewise a common abbreviation
for "localization", using the same scheme as "i18n".
See https://en.wikipedia.org/wiki/Internationalization_and_localization
for more information about i18n and l10n.

[56] See https://github.com/transifex/transifex-old-core/issues/206#issuecomment-15243207
for more.

Social Networking Services

Perhaps surprisingly for such social endeavors, open source
projects typically make only limited use of what most people think of
as "social networking" services. But this seeming omission is really
a matter of definition: most of the infrastructure that open source
projects have been using for decades, since long before "social
networking" became a recognized term, is actually
social networking software even if it isn't called that. The reason
open source projects tend not to have much presence as
projects on, say, Facebook is just that the services Facebook
offers are not well-tuned to what open source projects need. On the
other hand, as you might expect, the infrastructure these projects
have been using and improving for many years is
quite well-tuned to their needs.
Most projects do use Twitter and similar microblog services,
because sending out short quips and announcements that can be easily
forwarded and replied to is a good way for a project to have
conversations with its community; see LibreOffice's "@AskLibreOffice"
tweet stream at https://twitter.com/AskLibreOffice for an example of this. Projects
also sometimes use services such as https://www.eventbrite.com/ and https://www.Meetup.com/ to arrange in-person
meetings of users and developers.
But beyond lightweight services such as those, most free
software projects do not maintain a large presence on mainstream
social media platforms (though individual developers sometimes do, of
course, and often discuss the project there). The reward the
project gets in exchange for that investment of time and attention
appears not to be high enough to be worth the effort.

Chapter 4. Social and Political Infrastructure

The first questions people usually ask about free software are
"How does it work? What keeps a project running? Who makes the
decisions?" I'm always dissatisfied with bland responses about
meritocracy, the spirit of cooperation, running code speaking for itself, etc.
The fact is, the question is not easy to answer. Meritocracy,
cooperation, and running code are all part of it, but they do little
to explain how projects actually make decisions on a day-to-day basis, and say
nothing about how conflicts are resolved.
This chapter tries to show the structural properties
successful projects have in common. I mean "successful" not just in
terms of technical quality, but in terms of operational health and
survivability. Operational health is the project's ongoing ability to
incorporate new code contributions and new developers, and to be
responsive to incoming bug reports. Survivability is the project's
ability to continue independently of any individual participant or
sponsor — think of it as the likelihood that the project would
continue even if all of its founding members were to move on to other
things.[57]
There are various ways to achieve this kind of success. Some
involve a formal governance structure, by which debates are resolved,
new developers are invited in (and sometimes out), new features
planned, and so on. Others use a less formal structure, but more
personal self-restraint on the part of leaders, to produce an atmosphere of fairness that
people can rely on as a de facto form
of governance. Both ways lead to the same result: a sense of
institutional permanence, supported by habits and procedures that are
well understood by everyone who participates.

Forkability

The indispensable ingredient that binds developers together on a
free software project, and makes them willing to compromise when
necessary, is the code's forkability: the
ability of anyone to take a copy of the source code and use it to
start a competing project, known as a
fork.[58]
The paradoxical thing is that the possibility of
forks is usually a much greater force in free software projects than
actual forks are. Actual forks are very rare. Because a fork is usually bad for
everyone (for reasons examined in detail in
the section called “Forks”), the more serious
the threat of a fork becomes, the more willing people are to
compromise to avoid it.
The potential for forks is the reason there
are no true dictators in free software projects. This may seem like a
surprising claim, considering how common it is to hear someone called
the "dictator" (sometimes softened to "benevolent dictator") in a
given open source project. But this kind of dictatorship is special,
quite different from our conventional understanding of the word.
Imagine a ruler whose subjects could copy her entire territory at any
time and move to the copy to rule as they see fit. Would not such a
ruler govern very differently from one whose subjects were bound to
stay under her rule no matter what she did?
This is why even projects that are not formally organized as
democracies are, in practice, democracies when it comes to important
decisions.[59]
Replicability implies forkability, and forkability implies
consensus. It may well be that everyone is willing to defer to one
leader,[60] but this is
because they choose to do so, in a situation
where they really do have freedom of choice.
The nominal "dictator"
has no magical hold over the project. A key property of all open
source licenses is that they do not give one party more power than any
other in deciding how the code can be changed or used. If the dictator
were to suddenly start making bad decisions, there would be
restlessness, followed eventually by revolt and a fork. Except, of
course, that things rarely get that far, because the dictator compromises
first.
But just because forkability puts an upper limit on how much
power anyone can exert in a project doesn't mean there aren't
important differences in how projects are governed. You don't want
every decision to come down to the last-resort question of who might
consider a fork. That would get tiresome very quickly, and sap
energy away from real work. The next two sections examine different
ways to organize projects such that most decisions go smoothly. These
two examples are somewhat idealized extremes; many projects fall
somewhere along a continuum between them.

[57] This is also known as the "Bus
Factor", that is, how many participants would have to get hit by a bus
(figuratively speaking) for the project to be unable to continue. See
https://en.wikipedia.org/wiki/Bus_factor.

[58] Meaning a "hard fork",
not the unrelated "development fork" that is often a normal part of the
development cycle. See the section called “"Development Forks" versus "Hard Forks"” for more on this crucial
distinction.

[59] Though note that this still leaves a lot of
room for variety, and the goals of a project's main sponsors usually
have a significant effect on the project's structure and operating
processes. As mentioned earlier in Chapter 1, Introduction,
the report Open Source Archetypes: A Framework For
Purposeful Open Source (https://opentechstrategies.com/archetypes), is worth consulting if
you want to understand more about this.

[60] The most famous example is probably Linus
Torvalds in Linux kernel development.

Benevolent Dictators

The benevolent dictator model is exactly
what it sounds like: final decision-making authority rests with one
person, who, by virtue of personality and experience, is expected
to use it wisely.
Although "benevolent dictator" (or BD) is
the standard term for this role, it would be better to think of it as
"community-approved arbitrator" or "judge". Generally, benevolent
dictators do not actually make all the decisions, or even most of the
decisions. It's unlikely that one person could have enough expertise
to make consistently good decisions across all areas of the project,
and anyway, quality developers won't stay around unless they have some
influence in the project. Therefore, benevolent dictators
commonly do not dictate much. Instead, they let things work
themselves out through discussion and experimentation whenever
possible. They participate in those discussions themselves, but as
regular developers, often deferring to an area maintainer who has more
expertise in the question at hand. Only when it is clear that no consensus can be reached,
and that most of the group wants someone to make
a decision so that development can move on, does she put her foot
down and say "This is the way it's going to be." Reluctance to make
decisions by fiat is a trait shared by almost all successful
benevolent dictators; it is one of the reasons they manage to keep the
role.
Who Can Be a Good Benevolent Dictator?

Being a BD requires a combination of traits. It needs, first of
all, a well-honed sensitivity to one's own influence in the project,
which in turn brings self-restraint. In the early stages of a
discussion, one should not express opinions and conclusions with so
much certainty that others feel like it's pointless to dissent.
People must be free to air ideas, even stupid ideas. It is inevitable
that the BD will post a stupid idea from time to time too, of course,
and therefore the role also requires an ability to recognize and
acknowledge when one has made a bad decision — though this is
really a trait that any good developer should
have. The
difference is that the BD can afford to slip from time to time without
worrying about long-term damage to her credibility. Developers with
less seniority may not feel so secure, so the BD should phrase
critiques or contrary decisions with some sensitivity for how much
weight her words carry, both technically and psychologically.
The BD does not need to have the sharpest
technical skills of anyone in the project. She must be skilled enough
to work on the code herself, and to understand and comment on any
change under consideration, but that's all. The BD position is
neither acquired nor held by virtue of intimidating coding skills.
What is important is experience and overall
design sense — not necessarily the ability to produce good
design on demand, but the ability to recognize and endorse good
design when encountered.
It is common for the benevolent dictator to be a founder of the
project, but this is more a correlation than a cause. The sorts of
qualities that make one able to successfully start a
project — technical competence, ability to persuade other people
to join, and so on — are also the qualities a BD would need. And
of course, founders start out with a sort of automatic seniority,
which can often be enough to make benevolent dictatorship by the
founder be the path of least resistance for all concerned.
Remember that the potential to fork goes both ways. A BD can
fork a project just as easily as anyone else, and some have
occasionally done so, when they felt that the direction they wanted to
take the project was different from where the majority of other
developers wanted to go. Because of forkability, it does not matter
whether the benevolent dictator has control over the currently
accepted authoritative project repository. People sometimes talk of repository
control as though it were the ultimate source of power in a project,
but in fact it is irrelevant. The ability to add or remove people's
commit privileges for one project on a particular hosting site affects
only that copy of the project on that site. Prolonged abuse of that
power, whether by the BD or someone else, would simply lead to
developers moving over to a different copy of the project.

Whether your project should have a benevolent dictator, or would
run better with some less centralized form of governance, largely
depends on who is available to fill the role. As a general rule, if
it's simply obvious to everyone who should be the BD, then that's the
way to go. But if no candidate for BD is immediately obvious, then
the project should probably use a decentralized decision-making
process, as described in the next section.

Consensus-based Democracy

As projects get older, they tend to move away from the
benevolent dictatorship model and toward more openly democratic
systems. This is not necessarily out of dissatisfaction with a
particular BD. It's simply that group-based governance is more
"evolutionarily stable", to borrow a biological metaphor. Whenever a
benevolent dictator steps down, or attempts to spread decision-making
responsibility more evenly, it is an opportunity for the group to
settle on a new, non-dictatorial system — to establish a
constitution, as it were. The group may not take this opportunity the
first time, or the second, but eventually they will; once they do,
the decision is unlikely ever to be reversed. It is easy to see
why: if a group of N people were to vest one of their number with special
power, it would mean that N - 1 people were choosing to
decrease their individual influence. People usually don't want to do
that. Even if they did, the resulting dictatorship would still be
conditional: the group anointed the BD, so clearly the group could depose
the BD. Therefore, once a project has moved from leadership by a
charismatic individual to a more formal, group-based system, it rarely
moves back.
The details of how these systems work vary widely, but there are
two common elements: one, the group works by consensus most of the
time; two, there is a formal voting mechanism to fall back on when
consensus cannot be reached.
Consensus simply means an agreement that
everyone is willing to live with. It is not an ambiguous state: a
group has reached consensus on a given question when someone proposes
that consensus has been reached and no one contradicts the assertion.
The person proposing consensus should, of course, state specifically
what the consensus is and what actions would be taken in consequence
of it (if they are not obvious).
Most conversation in a project is on technical topics, such as
the right way to fix a certain bug, whether or not to add a feature,
how strictly to document interfaces, etc. Consensus-based governance
works well because it blends seamlessly with the technical discussion
itself. By the end of a discussion, there is often general agreement
on what course to take. Someone will usually make a concluding post,
which is simultaneously a summary of what has been decided and an
implicit proposal of consensus. This provides a last chance for
someone else to say "Wait, I didn't agree to that. We need to hash
this out some more."
For small, uncontroversial decisions, the proposal of consensus
is implicit. For example, when a developer spontaneously commits a
bugfix, the commit itself is a proposal of consensus: I assume we all
agree that this bug needs to be fixed, and that this is the way to fix
it. Of course, the developer does not actually say that; she just
commits the fix, and the others in the project do not bother to state
their agreement, because silence is consent. If someone commits a
change that turns out not to have consensus, the
result will simply be that the project discusses the change as though it
had not already been committed. The reason this works is the topic of
the next section.
Version Control Means You Can Relax

The fact that the project's source code is kept under version
control means that most decisions can be easily unmade. The most
common way this happens is that someone commits a change mistakenly
thinking everyone will be happy with it, only to be met with
objections after the fact. It is typical for such objections to start
out with an obligatory apology for having missed out on prior
discussion, though this may be omitted if the objector finds no record
of such a discussion in the mailing list archives. Either way, there
is no reason for the tone of the discussion to be different after the
change has been committed than before. Any change can be
reverted,[61] at least until dependent changes are
introduced (i.e., new code that would break if the original change
were suddenly removed). Version control gives the project
a way to undo the effects of bad or hasty judgement. This, in turn,
frees people to trust their instincts about how much feedback is
necessary before doing something.
This also means that the process of establishing consensus need
not be very formal. Most projects handle it by feel. Minor changes
can go in with no discussion, or with minimal discussion followed by a
few nods of agreement. For more significant changes, especially ones
with the potential to destabilize a lot of code, people should wait a
day or two before assuming there is consensus, the rationale being
that no one should be marginalized in an important conversation simply
because he didn't check email frequently enough.
Thus, when someone is confident she knows what needs to be done,
she should just go ahead and do it. This applies not only to software
fixes, but to web site updates, documentation changes, and anything
else unlikely to be controversial. Usually there will be only a few
instances where an action draws disapproval, and these can be handled on
a case-by-case basis. Of course, one shouldn't encourage people to be
headstrong. There is still a psychological difference between a
decision under discussion and one that has already taken effect but is
technically reversible. People always feel that momentum is
allied to action, and will be slightly more reluctant to revert a
change than to prevent it in the first place. If a developer abuses
this fact by committing potentially controversial changes too quickly,
however, people can and should complain, and hold that developer to a
stricter standard until things improve.

When Consensus Cannot Be Reached, Vote

Inevitably, some debates just won't consense. When all other
means of breaking a deadlock fail, the solution is to vote. But
before a vote can be taken, there must be a clear set of choices on
the ballot. Here, again, the normal process of technical discussion
blends serendipitously with the project's decision-making procedures.
The kinds of questions that come to a vote often involve complex,
multifaceted issues. In any such complex discussion, there are
usually one or two people playing the role of honest
broker: posting periodic summaries of the various
arguments and keeping track of where the core points of disagreement
(and agreement) lie. These summaries help everyone measure how much
progress has been made toward resolving the issues, and remind
everyone of what questions remain to
be addressed. Those same summaries can serve as prototypes for a
ballot sheet, should a vote become necessary. If the honest brokers
have been doing their job well, they will be able to credibly call for
a vote when the time comes, and the group will be willing to use a
ballot sheet based on their summary of the issues. The brokers
themselves may be participants in the debate; it is not necessary for
them to remain above the fray, as long as they can understand and
fairly represent others' views, and not let their partisan sentiments
prevent them from summarizing the state of the debate accurately.
The actual content of the ballot is usually not controversial.
By the time matters reach a vote, the disagreement has usually boiled
down to a few key issues, with recognizable labels and brief
descriptions. Occasionally a developer will object to the form of the
ballot itself. Sometimes his concern is legitimate, for example
that an important choice was left off or not described accurately.
But other times a developer may be merely trying to stave off the
inevitable, perhaps knowing that the vote probably won't go his way.
See the section called “Difficult People” for how to deal with
this sort of obstructionism.
Remember to specify the voting method, as there are many
different kinds, and people might make wrong assumptions about which
procedure is being used. A good choice in most cases is
approval voting,[62] whereby each voter can vote
for as many of the choices on the ballot as she likes. Approval
voting is simple to explain and to count, and comprehensibility is an
important factor when choosing a voting method.
Voting Systems

See https://en.wikipedia.org/wiki/Voting_system for more details
about approval voting and other voting systems, but beware the
temptation to geek out on voting systems. I did, in the course of
researching this sidebar, and I've never been the same since. You can
try all sorts of fancy voting methods, for example ones that involve
scoring or preferential ranking of choices — such as
score voting, Borda, Condorcet, instant runoff, and single
transferable vote — but a famous result known as
"Arrow's Impossibility Theorem" (https://en.wikipedia.org/wiki/Arrow%27s_impossibility_theorem)
has already demonstrated that no voting system is perfect (at least
among a certain broad class of voting systems). Try to avoid getting
into a long debate about which system to use, because, of course, you
will then find yourself in a debate about which voting system to use
to choose the voting system!
Approval Voting, or maybe some form of Ranked Choice / IRV, is
usually fine for the kinds of ballots an open source project is likely
to use to resolve technical or procedural questions.

Conduct votes in public as much as possible.[63] There is no need for
secrecy or anonymity in a vote about matters that have been debated
publicly anyway. Have each participant post her votes to the project
mailing list, so that any observer can tally and check the results for
herself, and so that everything is recorded in the archives. If you
would like to use specialized software to conduct votes, various open
source applications are available. As of this writing in 2022, Helios
(https://vote.heliosvoting.org/) is one that I know supports
approval voting, and a quick search will turn up plenty of
others.

When To Vote

The hardest thing about voting is determining when to do it. In
general, taking a vote should be very rare — a last resort for
when all other options have failed. Don't think of voting as a great
way to resolve debates. It isn't. It ends discussion, and thereby
ends creative thinking about the problem. As long as discussion
continues, there is the possibility that someone will come up with a
new solution everyone likes. This happens surprisingly often: a
lively debate can produce a new way of looking at the problem, and
lead to a proposal that eventually satisfies everyone. Even when no
new proposal arises, it's still usually better to broker a compromise
than to hold a vote. After a compromise, everyone is a little bit
unhappy, whereas after a vote, some people are unhappy while others
are happy. From a political standpoint, the former situation is
preferable: at least each person can feel she extracted a price for her
unhappiness. She may be dissatisfied, but so is everyone else.
Voting's only function is that it finally settles a question so
everyone can move on. But it settles by a head count, instead of
by rational dialogue leading everyone to the same conclusion. The
more experienced people are with open source projects, the less eager
I find them to be to resolve questions by voting. Instead they will try
to explore previously unconsidered solutions, or compromise more
severely than they'd originally planned. Various techniques are
available to prevent a premature vote. The most obvious is simply to
say "I don't think we're ready for a vote yet," and explain why not.
Another is to ask for an informal (non-binding) show of hands. If the
response clearly tends toward one side or another, this will make some
people suddenly more willing to compromise, obviating the need for a
formal vote. But the most effective way is simply to offer a new
solution, or a new viewpoint on an old suggestion, so that people
re-engage with the issues instead of merely repeating the same
arguments.
In certain rare cases, everyone may agree that all the
compromise solutions are worse than any of the non-compromise ones.
When that happens, voting is less objectionable, both because it is
more likely to lead to a superior solution and because people will not
be overly unhappy no matter how it turns out. Even then, the vote
should not be rushed. The discussion leading up to a vote is what
educates the electorate, so stopping that discussion early can lower
the quality of the result.
Note that this advice to be reluctant to call votes does not
apply to routine or process-mandated votes. For example, in the section called “Stabilizing a Release”, voting is more of a communications
mechanism, a means of registering one's involvement in the change
review process so that everyone can tell how much review a given
change has received. Another example would be procedural elections,
for example choosing the board of directors for a project organized as
a non-profit legal entity.

Who Votes?

Having a voting system raises the question of electorate: who
gets to vote? This has the potential to be a sensitive issue, because
it forces the project to officially recognize some people as being
more involved, or as having better judgement, than others.
One solution is to simply take an existing distinction, commit
access (see the section called “Committers”), and attach
voting privileges to it. In projects that offer both full and partial
commit access, the question of whether partial committers can vote
largely depends on the process by which partial commit access is
granted. If the project hands it out liberally, for example as a way
of maintaining many third-party contributed tools in the repository,
then it should be made clear that partial commit access is just
about committing, not voting. The reverse implication naturally holds
as well: since full committers will have voting
privileges, they must be chosen not only as programmers, but as
members of the electorate. If someone shows disruptive or
obstructionist tendencies on the mailing list, the group should be
very cautious about making him a committer, even if the person is
technically skilled.
Not All Maintainers Are Coders

For many projects, it works out fine to have the set of
committers and the set of voters be exactly the same. But this isn't
appropriate for every project. There may be people who are very
invested, and who contribute a lot, through means other than
coding. People may provide legal help, or organize events, or
manage the bug tracker, or write documentation, or do any number of
other things that are highly valued in the project. They often may
have a level of influence in the community (and familiarity with the
community's dynamics) that exceeds that of many committers.
If valuable members of your community are being left out of
important decisions just because those people happen not to be coders,
consider expanding the notion of committer to
something more like
maintainer (see also Defining "Committer" and "Commit Access").[64] For the rest of
this section, I'll use that term. In projects where commit access and
maintainership are synonymous, then it just means the same thing as
"committer", but in other projects it might mean more than that. The
procedures for adding new maintainers should be the same either way;
it doesn't matter if they write code or not — what
matters is their good judgement and the trust of their peers in the
project.

Adding New Maintainers

The voting system itself should be used to choose new
voters, both full and partial. But here is one of the rare
instances where secrecy is appropriate. You can't have votes about
potential new maintainers posted to a public mailing list, because the
candidates' feelings and reputations are on the line. Instead, the
usual way is that an existing maintainer posts to a private mailing
list consisting only of the other maintainers, proposing that the candidate
be invited to join. The other maintainers speak their minds
freely, knowing the discussion is private. Often there will be no
disagreement, and therefore no formal vote is needed. After waiting a few
days to make sure every maintainer has had a chance to respond, the
proposer mails the candidate and makes the offer. If there
is disagreement, discussion ensues as for any other question, possibly
resulting in a vote.
For this process to be open and frank, the mere fact that the
discussion is taking place at all should be secret. If the person
under consideration knew it was going on, and then were never offered
maintainership, he could conclude that he had lost the vote, and would
likely feel hurt. Of course, if someone explicitly asks to be
considered, then there is no choice but to take up the proposal and
explicitly accept or reject him. If the latter, then it should be
done as politely as possible, with a clear explanation: "We liked your
patches, but haven't seen enough of them yet," or "We appreciate all
the work you did for the conference, but you haven't been very active
in the project since then, so we don't feel comfortable making you a
maintainer just yet. We hope that this will change over time,
though." Remember, what you're saying could come as a blow, depending
on the person's temperament or confidence level. Try to see it from
their point of view as you write the message.
Because adding a new maintainer is more consequential than most
other one-time decisions, some projects have special requirements for
the vote. For example, they may require that the proposal receive at
least n positive votes and no negative votes, or
that a supermajority vote in favor. The exact parameters are not
important; the main idea is to get the group to be careful about
adding new maintainers. Similar, or even stricter, special
requirements can apply to votes to remove a
maintainer (see the section called “Revoking Commit Access”), though hopefully that will never be necessary.

Polls Versus Votes

For certain kinds of votes, it may be useful to expand the
electorate. For example, if the developers simply can't figure out
whether a given interface choice matches the way people actually use
the software, one solution is to ask to all the subscribers of the
project's mailing lists to vote. These are really
polls rather than votes, but the developers may
choose to treat the result as binding. As with any poll, be sure to
make it clear to the participants that there's a write-in option: if
someone thinks of a better option that was not offered in the poll questions,
her response may turn out to be the most important result of the
poll.

Vetoes

Some projects allow a special kind of vote known as a
veto. A veto is a way for a developer to put a
halt to a hasty or ill-considered change, at least long enough for
everyone to discuss it more. Think of a veto as somewhere between a
very strong objection and a filibuster. Its exact meaning varies from
one project to another. Some projects make it very difficult to
override a veto; others allow them to be overridden by regular
majority vote, but after an enforced delay for more discussion.
Any veto should be accompanied by a thorough explanation; a veto
without such an explanation should be considered invalid on
arrival.
With vetoes comes the problem of veto abuse. Sometimes
developers are too eager to raise the stakes of disagreement by
casting a veto, when
really all that was called for was more discussion. You can prevent
veto abuse by being very reluctant to use vetoes yourself, and by
gently calling it out when someone else uses her veto too often. If
necessary, you can also remind the group that vetoes are binding for
only as long as the group agrees they are — after all, if a
clear majority of developers wants X, then X is going to happen one
way or another. Either the vetoing developer will back down, or the
group will decide to weaken the meaning of a veto.
You may see people write "-1" to express a veto. This usage
originally comes from the Apache Software Foundation (which has a
highly structured voting and veto process, described at https://www.apache.org/foundation/voting.html), but has since spread to
many other projects, albeit not always with exactly
the same formal meaning it has at the ASF. Technically, "-1" does not
always indicate a formal veto even according to the Apache standards,
but informally it is usually taken to mean a veto, or at least a very
strong objection.
Like votes, vetoes can apply retroactively. It's not okay to
object to a veto on the grounds that the change in question has
already been committed, or the action taken (unless it's something
irrevocable, like putting out a press release). On the other hand, a
veto that arrives weeks or months late isn't likely to be taken very
seriously, nor should it be.

[61] Of course, it's good manners and good sense to
discuss before reverting. Reverting a change is not usually the way to start
a conversation about whether it should be reverted. There are
sometimes situation where it may be appropriate to perform the reversion
before the conversation about it has definitively concluded, but even
then it's still important to have started the conversation
first.

[62] Also called
multiple approval, multiple
preference or multiple preference
approval.

[63] An
exception is described in the section called “Adding New Maintainers”.

[64] Some projects call
this "member", which is also fine. There isn't a set term for it. I
prefer "maintainer" because it implies responsibility to the project,
rather than belonging to a club.

Writing It All Down

At some point, the number of conventions and agreements floating
around in your project may become so great that you need to record it
somewhere. In order to give such a document legitimacy, make it clear
that it is based on mailing list discussions and on agreements already
in effect. As you compose it, link to the relevant threads in the
mailing list archives, and whenever there's a point you're not sure
about, ask again. The document should not contain any surprises:
remember, it
is not the source of the agreements, it is merely a description of
them. Of course, if it is successful, people will start citing it as
a source of authority in itself, but that just means it reflects the
overall will of the group accurately.
Typically, this document lives at the top level of the
repository tree, is written in a simple markup language such as
Markdown, and has a name like CONTRIBUTING.md or
DEVELOPMENT.md.
Linking To Emails

When you link to an email thread in the archives, it's a good
practice to give not only the thread's URL, but the subject, sender
name, and date of the first message in the thread (or at least of some
message in the thread). The reason is that if the archive
moves — this can happen from time to time, for example
because of a change in hosting provider — the URL
alone will usually not contain enough information to find the message
or thread in its new location.
The same advice could apply to bug tickets too, but in practice
bug trackers move less often than mail archives do, and when a bug
tracker moves the project usually manages to either preserve the
ticket numbers or make a mapping between old and new ticket numbers,
so that old references can be resolved with a little extra effort.
For various technical reasons, this is harder to do with emails and
especially with threads, so the better solution is just for references
to include enough information to do a search in the new archive if
necessary. See also the section called “Conspicuous Use of Archives”.

This is the document alluded to in the section called “Developer Guidelines”. Naturally, when the
project is very young, you will have to lay down guidelines without
the benefit of a long project history to draw on. But as the
development community matures, you can adjust the language to reflect
the way things actually turn out.
Don't try to be comprehensive. No document can capture
everything people need to know about participating in a project. Many
of the conventions a project evolves may remain forever unspoken, never
mentioned explicitly yet adhered to by all. Other things are simply
too obvious to be mentioned, and would only distract from important
but non-obvious material. For example, there's no point writing
guidelines like "Be polite and respectful to others on the mailing
lists, and don't start flame wars," or "Write clean, readable bug-free
code." Of course these things are desirable, but since there's no
conceivable universe in which they are not
desirable, they are not worth mentioning. If people are being rude on
the mailing list, or writing buggy code, they're not going to stop
just because the project guidelines said to. Such situations need to
be dealt with as they arise, not by blanket admonitions to be good.
On the other hand, if the project has specific guidelines about
how to write good code, such as rules about
documenting every API in a certain format, then those guidelines
should be written down as thoroughly as possible.
A good way to determine what to include is to base the document
on the questions that newcomers ask most often, and on the complaints
experienced developers make most often. This doesn't necessarily mean
it should turn into a FAQ sheet — it probably needs a more
coherent narrative structure than FAQs can offer. But it should
follow the same reality-based principle of addressing the issues that
actually arise, rather than those you anticipate might arise.
If the project is a benevolent dictatorship, or has officers
endowed with special powers (president, chair, whatever), then the
document is also a good opportunity to codify succession procedures.
Sometimes this can be as simple as naming specific people as
replacements in case the BD suddenly leaves the project for any
reason. Generally, if there is a BD, only the BD can get away with
naming a successor. If there are elected officers, then the
nomination and election procedure that was used to choose them in the
first place should be described in the document. If there was no
procedure originally, then get consensus on a procedure on the mailing
lists before writing it down in an official place. People can
sometimes be touchy about hierarchical structures, so the subject
needs to be approached with sensitivity.
Perhaps the most important thing is to make it clear that the
rules can be reconsidered. If the conventions described in the
document start to hamper the project, remind everyone that it is
supposed to be a living reflection of the group's intentions, not a
source of frustration and blockage. If someone makes a habit of
inappropriately asking for rules to be reconsidered every time the
rules get in her way, you don't always need to debate it with
her — sometimes silence is the best tactic. If other people
agree with the complaints, they'll chime in, and it will be obvious
that something needs to change. If no one else agrees, then the
person won't get much response, and the rules will stay as they
are.
Three good examples of project guidelines are the LibreOffice
Development guide at https://wiki.documentfoundation.org/Development, the Subversion
Community Guide, at https://subversion.apache.org/docs/community-guide/, and the
Apache Software Foundation governance documents, at https://www.apache.org/foundation/how-it-works.html and https://www.apache.org/foundation/voting.html. The ASF is
really a collection of software projects, legally organized as a
nonprofit corporation, so its documents tend to describe governance
procedures more than development conventions. They're still worth
reading, though, because they represent the accumulated experience of
a lot of open source projects.

Joining or Creating a Non-Profit Organization

Successful open source projects sometimes get to a point where they
feel the need for some sort of formal existence as a legal
entity — to be able to accept donations (see
Chapter 5, Organizations and Money: Businesses, Non-Profits, and Governments for discussion of how to handle incoming
funding), to purchase and maintain infrastructure for the project's
benefit, to organize conferences and developer meetups, to enforce
trademarks, etc.
There may be a few exceptional circumstances where forming a
new organization from scratch would be the right solution, but for
most projects it is much better to join an existing organization.
There are umbrella organizations whose purpose is to provide a legal
home for open source projects. Working with multiple projects gives
these organizations economies of scale and broad
experience — any of them would almost certainly do a
better job of providing services to your project than your project
could manage if it started its own organization.
Here are some well-known and reputable umbrella organizations:
	Software Freedom Conservancy — https://sfconservancy.org/[65]
	Apache Software Foundation — https://apache.org/
	Eclipse Foundation — https://eclipse.org/
	Software in the Public Interest — http://spi-inc.org/
	Linux Foundation — http://collabprojects.linuxfoundation.org/

These are all based in the United States, but there are similar
umbrella organizations outside the U.S. — I just
didn't know them well enough to make recommendations. If you're a
U.S. reader, remember that the distinctions the U.S. tax code makes
between different types of non-profit corporations, such as 501(c)(3)
tax-exempt organizations vs 501(c)(6) trade associations, may not be
meaningful to people outside the U.S., and that the
tax benefits available to donors under 501(c)(3) won't apply to
non-U.S. donors anyway.
If your project joins or creates a non-profit organization, make
clear the separation between the legal infrastructure and the
day-to-day running of the project. The organization is there to
handle things the developers don't want to handle, not to interfere
with the things the developers do want to handle
and are already competent to handle. Even if the non-profit becomes
the official owner of the project's copyrights, trademarks, and other
assets, that shouldn't change the way decisions are made about
technical questions, project direction, etc. A good reason to
join one of the existing organizations is that they already have
experience with this distinction, and know how to fairly read the collective will
of the project even when there is controversy or strong disagreement.
They also serve as a neutral place for resolving disagreements about
how to allocate the project's money or other resources. More than one
of the organizations listed above has had to play "project psychotherapist"
on occasion, and their ability to do so should be considered an
advantage even by a healthy and smoothly functioning project.

[65] I think the Software
 Freedom Conservancy is a good choice for most projects,
 which is why I listed it first. But I should add the disclosure
 that I served on their Evaluation Committee, a volunteer committee that
 evaluates projects applying to become members of the Conservancy, for
 some time while revising this book for its 2nd edition. The recommendation of
 the Conservancy was already in the in-progress text before I joined
 the committee.

Chapter 5. Organizations and Money: Businesses, Non-Profits, and Governments

This chapter examines how to use money and organizational
capacity constructively in a free software environment. It also
discusses some of the adjustments an organization may need to
make as it gets involved in free software projects.
When an
organization makes an investment in open source, people at all levels
have to understand not just how best to structure that investment, but
the effects that long-term open source engagement will have on the
organization itself. Open source can be
transformative — at least when done right. Thus,
while the material here should be useful for developers who are paid
to work on open source projects, it's really meant for managers
and for executives making strategic decisions.
This chapter is not primarily about how to
find funding sources for your open source project, though I hope it
will usefully inform that topic. There are many different ways open
source projects are funded[66], just as there are many ways
all human endeavors are funded. While open source is incompatible
with one particular business
model — monopoly-controlled royalty streams based on
per-copy sales — it is compatible with all the others,
and indeed is better suited to some of them than proprietary software
is.

The Economics of Open Source

People are still sometimes surprised to learn that most free
software is written by paid developers, not by volunteers. But the
economics that drive open source are actually quite straightforward: a
company needs a particular piece of software to be maintained
and developed, and does not need monopoly control of that software.
Indeed, it would often be disadvantageous to have a monopoly, because
then the entire burden of maintenance would fall on that one company,
instead of being shared with others who have the same needs. For
example, most companies have web sites and therefore need a web
server, but almost no companies need exclusive control over the
development of their web server, or intend to sell copies of it on a
proprietary basis. The same is true of office software suites,
operating system kernels, network connectivity tools, educational
programs, etc — just as historically it has also been true
of electric grids, roads, sewer systems, and other goods that everyone
needs but no one needs to own. Just as we expect road workers to be
paid, we should expect software developers to be paid as well.
Even in the early days of free software, when the proportion of
truly unpaid volunteers was probably higher[67] than it is now, there were
already developers who were paid for their work. There was also a lot
of informal subsidy, as there continues to be today. When a system
administrator writes a network analysis tool to help her do her job,
then posts it online and gets bug fixes and feature contributions from
other system administrators, what's happened is that an unofficial
consortium has been formed. The consortium's funding comes from the
sysadmins' salaries; its office space and network bandwidth are
donated, albeit unknowingly, by the organizations those people work
for. Those organizations also benefit from the investment, of course,
though they may or may not be institutionally aware of it.
Today such efforts are often more
formalized. Corporations have become conscious of the benefits of
open source software, and now involve themselves intentionally in its
development. Developers too have come to expect that really important
projects will attract funding in one way or another. The key question
is how the hierarchical command structures of corporations and the
polyarchical, non-coercive communities of free software projects
can work productively with each other — and how they can
agree on what "productively" means.
Financial backing is generally welcomed by open source
development communities. Having paid developers means that bug reports
are more likely to be listened to, that needed work is more likely to
get done, and that the project will be less vulnerable to the Forces
of Chaos (e.g., a key developer suddenly losing interest) that lurk
at the edges of every collaborative endeavor. One important dynamic
is that credibility is contagious, to a point. When a large company
visibly backs an open source project, people assume the project will
receive adequate support in its early stages and have the chance to
succeed or fail on its long-term merits; other participants' resultant
willingness to invest in the project can then make this a
self-fulfilling prophecy.
However, money can also bring a perception of control. If not
handled carefully, this can divide a project into in-group and
out-group developers. If developers who aren't officially paid to
work on the project get the impression that design decisions or feature
additions are simply available to the highest bidder, they'll leave for
a project that seems more like a meritocracy and less like unpaid
labor for someone else's benefit. They may never complain overtly on
the mailing lists. Instead, there will simply be less and less noise
from sources outside the main funded group, as the "out" developers gradually stop trying
to be taken seriously. The buzz of small-scale contribution may
continue, in the form of bug reports and occasional small fixes. But
there will be fewer and fewer large code contributions from unexpected
sources, fewer unexpected opinions offered in design discussions,
fewer bug reports that reveal unexpected new uses of the software, and
so on. People sense what's expected of them, and live up (or down) to
those expectations.
So money needs to be used carefully, and without communicating
an intent to control. But it can still buy influence. The trick is that it
doesn't buy influence directly. Instead, it buys
development credibility, which is convertible to influence through the
project's decision-making processes.[68]
In a straightforward commercial transaction, you trade money for
what you want, because your counterparty has enough control to
guarantee the delivery of the goods. If you need a feature added, you
sign a contract, pay for it, and (if all goes well) the work gets done
and the feature eventually lands in the product.
In an open source project, the process is more complex. You may
sign a contract with some developers, but they'd be fooling
themselves — and you — if they
guaranteed that the work you paid for would be accepted by the
development community simply because you paid for it. The work can
only be accepted based on its own merits and on how it fits into the
community's vision for the software (see the section called “Contracting”
and the section called “Hiring Open Source Developers”). You may have some say in that vision,
but you won't be the only voice.
But although money can't purchase influence directly in an open
source project, it can purchase things
that lead to influence. The most obvious example
is programmers. If you hire good programmers, and they stick around
long enough to get experience with the software and credibility in the
community, then they can influence the project by the same means as
any other member. They will have a vote, or if there are many of
them, they will have a voting block.[69] If they are respected in the
project, they will have influence beyond just their votes. There is
no need for paid developers to disguise their motives, either. After
all, everyone who wants a change made to the software wants it for a
reason. Your company's reasons are no less legitimate than anyone
else's. It's just that the weight given to your company's goals will
be determined by its representatives' status in the project, rather than by
your company's size, budget, or business plan.[70]

[66] See https://en.wikipedia.org/wiki/Business_models_for_open-source_software
for an incomplete list.

[67] This is an
educated guess — I'm not aware of any rigorous
research into the question. I do know from personal experience
and anecdotal evidence that at least some paid open source work was
happening early on.

[68] The report
Open Source Archetypes: A Framework For Purposeful Open
Source (https://opentechstrategies.com/archetypes), as mentioned earlier in
Chapter 1, Introduction, may be worth a look if you're trying to
understand the ways in which a project should be subject to
influence and by whom.

[69] Even though actual
votes may be rare, as noted in the section called “Consensus-based Democracy”,
the possibility of a vote has great implicit
power, so membership in the electorate is still important even if no
vote is ever held.

[70] When
companies need to guarantee that certain features and bug fixes land
in a specified amount of time, they accomplish this by keeping their
own copy of the project (ideally also public and under open source
license), and merging it from time to time with the separate upstream
project that has its own independent governance. Google's Android
operating system is a classic example: Google maintains its own copy
(or copies) of Android, which it governs as it pleases, and from time
to time merges changes to or from the main Android Open Source Project
(https://en.wikipedia.org/wiki/Android_%28operating_system%29#Open-source_community).
Essentially, Google is on a very long copy-modify-merge loop with
respect to main the open source project, and vice versa. It is in
neither side's interests to permanently diverge from the
other.

Goals of Corporate Involvement

There are many different reasons open source projects get
corporate support. The list below is just a high-level survey, and
the items in it aren't mutually exclusive — often a
project's financial backing will result from several, or even all, of
these motivations:
	Share the burden
	Separate organizations with related needs often
 find themselves duplicating effort, either by redundantly writing
 similar code in-house or by purchasing similar products from
 proprietary vendors. As the inefficiency becomes apparent to the
 different parties, they may pool their
 resources — often gradually, without at first
 realizing the overall trajectory of the
 process — and create or join an open source
 project tailored to their needs. The advantages of doing so are obvious: the
 costs of development are divided, but the benefits accrue to all.
 Although this scenario might seem most intuitive for nonprofits,
 in practice it happens often among for-profit competitors
 too.

	Ensure maintenance of product infrastructure
	When a company sells services which depend on, or are made
 more attractive by, particular open source programs, it is
 naturally in that company's interests to ensure those programs
 are actively maintained.

	Establish a standard
	Often a corporation has strategic reasons to establish a
 technical standard. Releasing an open source
 implementation of that standard, and shepherding the software
 into widespread use, is usually the most effective way to get
 buy-in from others for the standard.

	Create an ecosystem
	For investors who like to think big, the right open source
 effort can create a new ecosystem — one in which
 those investors are more likely to flourish.

	Support hardware sales
	The value of computers and computer components is directly
 related to the amount of software available for them. Hardware
 vendors — not just whole-machine vendors, but also makers
 of peripheral devices and microchips — have found that
 having high-quality free software to run on their hardware is
 important to customers.

	Undermine a competitor
	Sometimes companies support a particular open source
 project as a means of undermining a competitor's product, which
 may or may not be open source itself. Eating away at a
 competitor's market share is usually not the sole reason for
 getting involved with an open source project, but it can be a
 factor.

	Marketing
	Having your company associated with a popular open source
 application can be good brand management, not just in the eyes of
 customers but in the eyes of potential employees.

	Proprietary relicensing
	Proprietary relicensing is the practice of
 offering software under a proprietary license for
 customers who want to resell it as part of a proprietary
 application of their own, and simultaneously under a free license
 for those willing to use it under open source terms. If the open source developer
 community is active, the software gets the benefits of wide-area
 debugging and development, yet the company still gets a royalty
 stream to support some full-time programmers.
Proprietary relicensing is controversial because it is not a
 open source" model, but rather yokes
 funding for open source development to a monopoly-based revenue
 stream. Whether this is a problem for you depends on where you
 fall on the "open source is just a way of software development"
 to "open source is a way of life" spectrum. The presence of
 revenue from a proprietary version does not necessarily
 mean that the free software version is worse off, and some very well-known
 and widely-used free software has had corresponding proprietary
 versions (MySQL[71]
 is probably the most famous example). However,
 some developers dislike the thought that their contributions may
 end up in the proprietary version. Also, the mere presence of
 the proprietary version suggests the possibility that some of the
 best salaried developers' attention is going to the proprietary
 code, not the open source code. This tends to undermine other
 developers' faith in the open source project, which in turn makes
 it difficult to develop a truly flourishing ecosystem around the
 open source version.
None of is meant to persuade you not to do proprietary relicensing.
 You should just be aware that this strategy is unlike the other
 business approaches I've listed here, that it requires more care
 and sophistication to manage successfully, and that it is usually
 incompatible with the presence of a committed and involved
 ecosystem of developers from outside your organization,
 particularly developers who might have their own commercial
 motivations.

A funder's business model is not the only factor in how that
funder relates to an open source community. The historical relationship
between the two also matters: did the company start the project, or did
it join an existing development effort? In both cases, the funder
will have to earn credibility, but, not surprisingly, there's a bit
more earning to be done in the latter case. The organization needs to
have clear goals with respect to the project. Is it trying
to keep a position of leadership, or simply trying to be one voice in
the community, to guide but not necessarily govern the project's
direction? Or maybe it just wants to have a couple of committers
around, able to fix customers' bugs and get the changes into the
public distribution without any fuss?
Keep the question of goals in mind as you read the guidelines that
follow. They are meant to apply to any sort of organizational
involvement in a free software project, but every project is a human
environment, and therefore no two are exactly alike. To some degree,
you will always have to play by ear, but following the principles in
this chapter will increase the likelihood of things turning out the
way you want.

[71] https://en.wikipedia.org/wiki/MySQL

Governments and Open Source

Since the first edition of this book came out in 2005, I've worked with
various U.S. government agencies (federal, state, and municipal)
to help them develop and participate in open source software. I've also been
lucky enough to observe, and in a few cases work with, some government
agencies outside the U.S. These experiences have convinced me of one
thing: government is different. If you work at a government agency
and the material in this book so far has made you shake your head and
think "Sure, but it'll never work here", you have my sympathy
 — I know what you mean. Governments differ
from individuals and from private-sector organizations in some
fundamental ways:

	Governments often aren't trying to retain technical
 expertise in-house. That's what contractors are for, after all.

	Governments have labyrinthine and in certain ways
 inflexible procurement and employment policies. These policies can
 make it difficult for a government agency to be nimbly responsive in
 an open source development community.

	Government agencies tend to be unusually risk-averse.
 Somewhere at the top there's an elected official who, reasonably,
 sees an open source project as just another exposed surface for
 opponents to attack. After all, when development happens in public,
 the inevitable false starts and wrong turns are also public; if
 development were internal, no one else would know about it when
 those things happen.

	Government officials hunger for well-timed and
 well-controlled publicity events, and this need can sometimes be in
 tension with overall project health. The need for good publicity
 is, in a way, the complement of being risk-averse. Elected
 officials and those who work for them understand that most people
 aren't paying much attention most of the time. Therefore,
 government workers want to make sure that in the few moments when
 people are paying attention they see something
 good. This is understandable, but it can cause certain actions to
 be delayed — or, in some cases, done too
 soon — based on external publicity implications
 rather than on what's best for the project technically and
 socially.

There are good reasons for all of these things; they've been
true for decades or even centuries, and they're not going to change.
So if you're a government agency and you want to start a successful
open source project, certain adjustments will be necessary to
compensate for the structural idiosyncrasies mentioned above. Much of
that advice is also applicable to non-governmental organizations, and
is already present elsewhere in this chapter, so below I'll
simply list the sections that I think are most
important for a government agency:
	Update Your RFI, RFP and Contract Language
	Open Source Quality Assurance (OSQA)
	Don't Surprise Your Lawyers
	Open Source and Freedom from Vendor Lock-In
	Dispel Myths Within Your Organization
	Don't Let Publicity Events Drive Project Schedule
	The Key Role of Middle Management

In addition to the above sections in this book, there are many
excellent online resources about open source in government. I
won't even try to include a complete list, as there is too much and it
changes too quickly. Here are a few sites that are likely to remain
good starting points for some time to come, especially for government
agencies in the United States and in countries with procurement and
civil service systems similar to those of the U.S.
	https://18f.gsa.gov/ is a digital services agency within the United
 States federal government, created in 2014 to bring modern software
 development practices to government work. 18F serves as a
 technology consultancy to other agencies, and builds its
 deliverables out in the open as open source software. Along the
 way, 18F has generated useful guidelines and observations that anyone
 trying to run an open source software project within government can
 benefit from.

	http://www.dwheeler.com/, the home site of Dr. David A. Wheeler, is a
 fantastic trove that includes, among many other open-source-related
 things, tons of information about how to use U.S. government
 procurement regulations to support open source development.

	http://ben.balter.com/2015/11/23/why-open-source/ is a terrific
 post to mine for arguments, if you are advocating for open source
 development within a government agency. Many of Ben Balter's other
 writings are worth looking at too.

Finally, there is one issue in particular that I have
encountered over and over again in government-initiated open source
projects. It is so common, and so potentially damaging to a project,
that I have given it its own subsection below.
Being Open Source From Day One is Especially Important for
Government Projects

In the section called “Be Open From Day One”, I
explained why it's best for an open source project to be run in the
open from the very beginning. That advice, particularly the section called “Waiting Just Creates an Exposure Event”, is especially applicable to
government code.
Government projects have greater potential to be harmed by a
needless exposure event than private-sector projects have. Elected
officials and those who work for them are understandably sensitive to
negative public comments. Thus even for the most conscientious team,
a worrying cloud of uncertainty will hover over everything by the time
they're ready to open up hitherto closed code. How can they ever know
they've got it all cleaned up? One can never be
totally sure some hawk-eyed hacker out there won't spot something
embarrassing after the publication. This worry is an
energy drain: it causes the team to spend time chasing down ghosts, and at
the same time can cause them to unconsciously avoid steps that might
risk revealing real problems.
This concern doesn't only apply to government software, of
course. But in the private sector, businesses sometimes have
competitive reasons to stay behind the curtain until their first
release, even if they intend for the project to be open source in the
long run. Government projects should not have that motivation for
starting out closed, at least in theory, and they have even more to
lose.

Hire for the Long Term

If you're managing programmers on an open source project, keep
them there long enough that they acquire both technical and political
expertise — a couple of years, at a minimum. Of course, no
project, whether open or closed-source, benefits from swapping
programmers in and out too often. The need for a newcomer to learn
the ropes each time would be a deterrent in any environment. But the
penalty is even stronger in open source projects: outgoing
developers take with them not only their knowledge of the code, but
also their status in the community and the human relationships they
have made there.
The credibility a developer has accumulated cannot be
transferred. To pick the most obvious example, an incoming developer
can't inherit commit access from an outgoing one (see
the section called “Money Can't Buy You Love” later in this chapter), so if the
new developer doesn't already have commit access, he will have to
submit patches until he does. But commit access is only the most
easily quantifiable manifestation of lost influence. A long-time developer
also knows all the old arguments that have been hashed and rehashed on
the discussion lists. A new developer, having no memory of those
conversations, may try to raise the topics again, leading to a loss of
credibility for your organization; the others might wonder "Can't
they remember anything?" A new developer will also have no political
feel for the project's personalities, and will not be able to
influence development directions as quickly or as smoothly as one
who's been around a long time.
Train newcomers through a program of supervised engagement. The
new developer should be in direct contact with the public development
community from the very first day, starting off with bug fixes and
cleanup tasks, so he can learn the codebase and acquire a reputation
in the community, yet not spark any long and involved design
discussions. All the while, one or more experienced developers should
be available for questioning, and should be reading every post the
newcomer makes to the project forums, even if the posts are in threads
that the experienced developers normally wouldn't pay attention to.
This will help the group spot potential rocks before the newcomer runs
aground. Private, behind-the-scenes encouragement and pointers can
also help a lot, especially if the newcomer is not accustomed to
intense peer review of his code.
Case study

At CollabNet, when we hired a new developer to work on
Subversion, we would sit down together and pick some open bugs for the
new person to cut his teeth on. We'd discuss the technical outlines
of the solutions, and then assign at least one experienced developer
to (publicly) review the patches that the new developer would (also
publicly) post. We typically didn't even look at the patch before the
main development list saw it, although we could if there were some
reason to. The important thing is that the new developer goes through
the process of public review, learning the codebase while
simultaneously becoming accustomed to receiving critiques from
complete strangers. But we also tried to coordinate the timing so
that our own review came immediately after the posting of the patch.
That way the first review the list sees is ours, which can help set
the tone for the others' reviews. It also contributes to the idea
that this new person is to be taken seriously: if others see that
we're putting in the time to give detailed reviews, with thorough
explanations and references into the archives where appropriate,
they'll appreciate that a form of training is going on, and that it
probably signifies a long-term investment. This can make them more
positively disposed toward the new developer, to the degree of spending a
little extra time answering questions and reviewing patches
themselves.

Appear as Many, Not as One

Your developers should strive to appear in the project's public
forums as individual participants, rather than as a monolithic
corporate presence. This is not because there is some negative
connotation inherent in monolithic corporate presences (well, perhaps
there is, but that's not what this book is about). Rather, it's
because individuals are the only sort of entity that open source projects
are structurally equipped to deal with. An individual contributor can
have discussions, submit patches, acquire credibility, vote, and so
forth. A company cannot.
Furthermore, by behaving in a decentralized manner, you avoid
stimulating centralization of opposition. Let your developers
disagree with each other on the mailing lists. Encourage them to
review each other's code as often, and as publicly, as they would
anyone else's. Discourage them from always voting as a bloc, because
if they do, others may start to feel that, just on general principles,
there should be an organized effort to keep them in check.
There's a difference between actually being decentralized and
simply striving to appear that way. Under certain circumstances,
having your developers behave in concert can be quite useful, and they
should be prepared to coordinate behind the scenes when necessary.
For example, when making a proposal, having several people chime in
with agreement early on can help it along, by giving the impression of
a growing consensus. Others will feel that the proposal has momentum,
and that if they were to object, they'd be stopping that momentum.
Thus, people will object only if they have a good reason to do so.
There's nothing wrong with orchestrating agreement like this, as long
as objections are still taken seriously. The public manifestations of
a private agreement are no less sincere for having been coordinated
beforehand, and are not harmful as long as they are not used to
prejudicially snuff out opposing arguments. Their purpose is merely
to inhibit the sort of people who like to object just to stay in
shape; see the section called “The Smaller the Topic, the Longer the Debate” for more about
them.

Be Open About Your Motivations

Be as open about your organization's goals as you can without
compromising business secrets. If you want the project to acquire a
certain feature because, say, your customers have been clamoring for
it, just say so outright on the mailing lists. If the customers wish
to remain anonymous, as is sometimes the case, then at least ask them
if they can be used as unnamed examples. The more the public
development community knows about why you want
what you want, the more comfortable they'll be with whatever you're
proposing.
This runs counter to the instinct — so easy to acquire, so
hard to shake off — that knowledge is power, and that the more
others know about your goals, the more control they have over you.
But that instinct would be wrong here. By publicly advocating the
feature (or bugfix, or whatever it is), you have
already laid your cards on the table. The only
question now is whether you will succeed in guiding the community to
share your goal. If you merely state that you want it, but can't
provide concrete examples of why, your argument is weak, and people
will start to suspect a hidden agenda. But if you give just a few
real-world scenarios showing why the proposed feature is useful,
that can have a dramatic effect on the debate.
To see why this is so, consider the alternative. Too
frequently, debates about new features or new directions are long and
tiresome. The arguments people advance often reduce to "I personally
want X," or the ever-popular "In my years of experience as a software
designer, X is extremely important to users" or "...is a useless frill
that will please no one." The absence of real-world usage
data neither shortens nor tempers such debates, but instead allows
them to drift farther and farther from any mooring in actual user
experience. Without some countervailing force, the end result is
likely to be determined by whoever was the most articulate, or
the most persistent, or the most senior.
As an organization with plentiful customer data available, you
have the opportunity to provide just such a countervailing force. You
can be a conduit for information that might otherwise have no means of
reaching the development community. The fact that the information
supports your desires is nothing to be embarrassed about. Most
developers don't individually have very broad experience with how the
software they write is used. Each developer uses the software in
her own idiosyncratic way; as far as other usage patterns go, she's
relying on intuition and guesswork, and deep down, she knows
this. By providing credible data about a significant number of users,
you are automatically improving the quality of debate in the public
development community. As long as you present it right they will welcome it
enthusiastically, and it will propel things in the direction you want
to go.
The key, of course, is presenting it right. It will never do to
insist that simply because you deal with a large number of users, and
because they need (or think they need) a given feature, therefore
your solution ought to be implemented. Instead, you should focus your
initial posts on the problem, rather than on one particular solution.
Describe in great detail the experiences your customers are
encountering, offer as much analysis as you have available, and as
many reasonable solutions as you can think of. When people start
speculating about the effectiveness of various solutions, you can
continue to draw on your data to support or refute what they say. You
may have one particular solution in mind all along, but don't single
it out for special consideration at first. This is not deception, it
is simply standard "honest broker" behavior. After all, your true
goal is to solve the problem; a solution is merely a means to that
end. If the solution you prefer really is superior, other developers
will recognize that on their own eventually — and then they will
get behind it of their own free will, which is much better than you
browbeating them into implementing it. There is also the possibility
that they will think of a better solution.
This is not to say that you can't ever come out in favor of a
specific solution. But you must have the patience to see the analysis
you've already done internally repeated on the public development
lists. Don't post saying "Yes, we've been over all that here, but it
doesn't work for reasons A, B, and C. When you get right down to it,
the only way to solve this is Q." The problem is not so much that it
sounds arrogant as that it gives the impression that you have
already devoted some unknown (but, people will
presume, large) amount of analytical resources to the problem, behind
closed doors. It makes it seem as though efforts have been going on,
and perhaps decisions made, that the public is not privy to — and
that is a recipe for resentment.
Naturally, you know how much effort you've
devoted to the problem internally, and that knowledge is, in a way, a
disadvantage. It puts your developers in a slightly different mental
space than everyone else on the mailing lists, reducing their ability
to see things from the point of view of those who haven't yet thought
about the problem as much. The earlier you can get everyone else
thinking about things in the same terms as you do, the smaller this
distancing effect will be. This logic applies not only to particular
technical discussions, but to the broader mandate of making your goals
as clear as you can. The unknown is always more destabilizing than
the known. If people understand why you want what you want, they'll
feel comfortable talking to you even when they disagree. If they
can't figure out what makes you tick, they'll assume the worst, at
least some of the time.
You won't be able to publicize everything, of course, and people
won't expect you to. All organizations have secrets; perhaps
for-profits have more of them, but nonprofits have them too. If you
must advocate a certain course, but can't reveal everything about why,
then simply offer the best arguments you can under that handicap, and
accept the fact that you may not have as much influence as you want in
the discussion. This is one of the compromises you make in order to
have a development community not on your payroll.

Money Can't Buy You Love

If you're a paid developer on a project, then set guidelines
early on about what the money can and cannot buy. This does not mean
you need to post twice a day to the mailing lists reiterating your
noble and incorruptible nature. It merely means that you should be on
the lookout for opportunities to defuse the tensions that
could be created by money. You don't need to
start out assuming that the tensions are there; you do need to
demonstrate an awareness that they have the potential to arise.
A perfect example of this came up early in the Subversion project.
Subversion was started in 2000 by CollabNet (http://www.collab.net/), which was the
project's primary funder and paid the salaries of
several developers (disclosure: including myself). Soon after the
project began, we hired another developer, Mike Pilato, to join the
effort. By then, coding had already started. Although Subversion was
still very much in its early stages, it already had a development
community with a set of basic ground rules.
Mike's arrival raised an interesting question. Subversion
already had a policy about how a new developer gets commit access.
First, she submits some patches to the development mailing list. After
enough patches have gone by for the other committers to see that the
new contributor knows what she's doing, someone proposes that she just
commit directly (that proposal is private, as described in the section called “Committers”). Assuming the
committers agree, one of them mails the new developer and offers her
direct commit access to the project's repository.
CollabNet had hired Mike specifically to work on Subversion.
Among those who already knew him, there was no doubt about his coding
skills or his readiness to work on the project. Furthermore, the
non-CollabNet developers had a very good relationship with the CollabNet
employees, and most likely would not have objected if we'd just given
Mike commit access the day he was hired. But we knew we'd be setting
a precedent. If we granted Mike commit access by fiat, we'd be saying
that CollabNet had the right to ignore project guidelines, simply
because it was the primary funder. While the damage from this would
not necessarily be immediately apparent, it would gradually result in
the non-salaried developers feeling disenfranchised. Other people
have to earn their commit access — CollabNet just buys
it.
So Mike agreed to start out his employment at CollabNet like any
other new developer, without commit access. He sent patches to
the public mailing list, where they could be, and were, reviewed by
everyone. We also said on the list that we were doing things this way
deliberately, so there could be no missing the point. After a couple
of weeks of solid activity by Mike, someone (I can't remember if it
was a CollabNet developer or not) proposed him for commit access, and
he was accepted, as we knew he would be.
That kind of consistency gets you a credibility that money could
never buy. And credibility is a valuable currency to have in
technical discussions: it's immunization against having one's motives
questioned. In the heat of argument, people will sometimes look
for non-technical ways to win the battle. The project's primary
funder, because of its deep involvement and obvious concern over the
directions the project takes, presents a wider target than most. By
being scrupulous to observe all project guidelines right from the
start, the funder makes itself the same size as everyone
else.[72]
The need for the funders to play by the same rules as everyone
else means that the Benevolent Dictatorship governance model (see
the section called “Benevolent Dictators”) is slightly
harder to pull
off in the presence of funding, particularly if the benevolent dictator works for
the primary funder. Since a dictatorship has few rules, it is hard
for the funder to prove that it's abiding by community standards, even
when it is. It's certainly not impossible; it just requires a project
leader who is able to see things from the point of view of the outside
developers as well as that of the funder, and act accordingly. Even
then, it's probably a good idea to have a proposal for non-dictatorial
governance sitting in your back pocket, ready to be brought out if
there start to be indications of widespread dissatisfaction in the
community.

[72] See also Danese Cooper's blog post, preserved in
the Internet Archive's Wayback Machine at https://web.archive.org/web/20050227033105/http://blogs.sun.com/roller/page/DaneseCooper/20040916,
for a similar story about commit access. Cooper was then Sun
Microsystem's "Open Source Diva" — I believe that was
her official title — and in the blog entry, she
describes how the Tomcat development community got Sun to hold its own
developers to the same commit-access standards as the non-Sun
developers.

Contracting

Contracted work needs to be handled carefully in free software
projects. Ideally, if you hire a contractor you want her work to be
accepted by the community and folded into the public distribution. In
theory, it wouldn't matter who the contractor is, as long as her work
is good and meets the project's guidelines. Theory and practice can
sometimes match, too: a complete stranger who shows up with a good
patch will generally be able to get it into the
software. The trouble is, it's very hard to produce an acceptable
patch for a non-trivial enhancement or new feature as a
complete stranger. One must first discuss the changes with the rest
of the project, and even for those who are very familiar with the
project the duration of that discussion cannot be precisely
predicted — for those new to the project, the margin
of error will only be higher. If the contractor is paid by the hour,
you may end up paying more than you expected; if she is paid a flat
sum, she may end up doing more work than she can afford.
There are various ways to cope with this. You can try to make an
educated guess about the length of the discussion process, based on
whatever past experience you have with that community, add in some
padding for error, and base the contract on that. It also helps to
divide the problem into as many small, independent chunks as possible,
to increase the predictability of each chunk.
Another standard technique is to contract for delivery of a
patch that meets the formal upstream guidelines and for a tightly
budgeted "best effort" at getting the patch integrated into the
upstream project treat. The contract itself can never
require that the patch be accepted by the
upstream project, because that would involve selling something that's
not for sale. (What if the rest of the project unexpectedly decides
not to support the feature?) However, the contract can require a
bona fide effort to get the change
accepted by the community, and that it be committed to the repository
if the community agrees with it. For example, if the project has
written standards (e.g., about coding conventions, documentation,
writing regression tests, submitting patches, etc), the contract can
reference those standards and specify that the contracted work must
meet them. In practice, this usually works out the way everyone
hopes.
Hiring From Within the Community

One tactic for successful contracting is to hire one of the
project's developers — preferably a committer — as the
contractor. This may seem like a form of purchasing influence, and,
well, it is. But it's not as corrupt as it might seem. A developer's
influence in the project is due mainly to the quality of her code and
to her interactions with other developers. The fact that she has a
contract to get certain things done doesn't raise her status in any
way, and doesn't lower it either, though it may make people scrutinize
her more carefully. Most developers would not risk their long-term
position in the project by backing an inappropriate or widely disliked
new feature. In fact, part of what you get, or should get, when you
hire such a contractor is advice about what sorts of changes are
likely to be accepted by the community. You also get a slight shift
in the project's priorities. Because prioritization is just a matter
of who has time to work on what, when you pay for someone's time, you
cause their work to move up in the priority queue a bit. This is a
well-understood fact of life among experienced open source developers,
and at least some of them will devote attention to the contractor's
work simply because it looks like it's going to get
done, so they want to help it get done right. Perhaps they
won't write any of the code, but they'll still discuss the design and
review the code, both of which can be very useful. For all these
reasons, the contractor is best drawn from the ranks of those already
involved with the project.
(See also the section called “Hiring Open Source Developers” for the related topic of
hiring open source developers as employees.)

Hiring From Outside The Community

If you have a long-term goal of increasing the project's
stability and longevity, then the opposite tactic from that described
above may be called for: you might want to deliberately hire a person
or firm who is new to the project. While it may take them some time
to find their way in the code and in the development community, once
the contract is done they will now be invested in the project and may
continue to participate, and even to develop new business based on the
project. the section called “Foster Pools of Expertise in Multiple Places” discusses this
strategy in more depth.

Contracting and Transparency

Both techniques described above raise a couple of questions:
Should contracts ever be secret? And when they're not secret, should
you worry about creating tensions in the community by the fact that
you've contracted with some developers and not others?
In general, it's best to be open about contracts when you can.
Otherwise, the contractor's behavior may seem strange to others in the
community — perhaps she's suddenly giving inexplicably high
priority to features she's never shown interest in the past. When
people ask her why she wants them now, how can she answer convincingly
if she can't talk about the fact that she's been contracted to write
them?
At the same time, neither you nor the contractor should act as
though others should treat your arrangement as a big deal. Sometimes
I've seen contractors waltz onto a development list with the attitude
that their posts should be taken more seriously simply because they're
being paid. That kind of attitude signals to the rest of the project
that the contractor regards the fact of the contract — as opposed
to the code resulting from the contract — to
be the important thing. But from the other developers' point of view,
only the code matters. At all times, the focus of attention should be
kept on technical issues, not on the details of who is paying whom.
For example, one of the developers in the Subversion community handles
contracting in a particularly graceful way. While discussing his code
changes in chat, he'll mention as an aside (often in a private remark,
or privmsg, to one of the other committers)
that he's being paid for his work on this particular bug or feature.
But he also consistently gives the impression that he'd want to be
working on that change anyway, and that he's happy the money is making
it possible for him to do that. He may or may not reveal his
customer's identity, but in any case he doesn't dwell on the contract.
His remarks about it are just an ornament to an otherwise technical
discussion about how to get something done.
That example shows another reason why it's good to be open about
contracts. There may be multiple organizations sponsoring contracts
on a given open source project, and if each knows what the others are
trying to do, they may be able to pool their resources. In the above
case, the project's largest funder (CollabNet) was not involved with
these piecework contracts, but knowing that someone else was
sponsoring certain bug fixes allowed CollabNet to redirect its
resources to other bugs, resulting in greater efficiency for the
project as a whole.
Will other developers resent that some are paid for working on
the project? In general, no, particularly when those who are paid are
established, well-respected members of the community anyway. No one
expects contract work to be distributed equally among all the
committers. People understand the importance of long-term
relationships: the uncertainties involved in contracting are such that
once you find someone you can work reliably with, you would be
reluctant to switch to a different person just for the sake of
evenhandedness. Think of it this way: the first time you hire, there
will be no complaints, because clearly you had to pick
someone — it's not your fault you can't hire
everyone. Later, when you hire the same person a second time, that's
just common sense: you already know her, the last time was
successful, so why take unnecessary risks? Thus, it's perfectly
natural to have a few go-to people in the community, instead of
spreading the work around evenly.

Review and Acceptance of Changes

The project's community will always be important to the
long-term success of contract work. Their involvement in the design
and review process for sizeable changes cannot be an afterthought; It
must be considered part of the work, and fully embraced by the
contractor. Don't think of community scrutiny as an obstacle to be
overcome — think of it as a free design board and QA department.
It is a benefit to be aggressively pursued, rather than an obstacle to be
overcome.
Case Study: the CVS Password-Authentication Protocol

In 1995, I was one half of a partnership that provided support
and enhancements for CVS (the Concurrent Versions System; see http://nongnu.org/cvs). My partner Jim
Blandy and I were, informally, the maintainers of CVS by that point. But
we'd never thought carefully about how we ought to relate to the
existing mostly part-time and volunteer CVS development community. We
just assumed that they'd send in patches, and we'd apply them, and
that was pretty much how it worked.
Back then, networked CVS could be done only over a remote login
program (in those days rsh rather than ssh).
Using the same account for
CVS access as for system (shell) access was an obvious security risk, and many
organizations were put off by it. A major investment bank hired us to
add a new authentication mechanism, so they could safely use networked
CVS with their remote offices.
Jim and I took the contract and sat down to design the new
authentication system. What we came up with was pretty simple (the
United States had export controls on cryptographic code at the time,
so the customer understood that we couldn't implement strong
authentication), but as we were not experienced in designing such
protocols, we still made a few gaffes that would have been obvious to
an expert. These mistakes would easily have been caught had we taken
the time to write up a proposal and run it by the other developers for
review. But we never did so, because it didn't occur to us to think
of the development list as a resource to be used to improve our
contracted work. We knew that people
were probably going to accept whatever we committed, and — because
we didn't know what we didn't know — we didn't bother to do the
work in a visible way, e.g., posting patches frequently, making small,
easily digestible commits to a special branch, etc. The resulting
authentication protocol was not very good, and of course, once it
became established, it was difficult to improve, because of
compatibility concerns.
The root of the problem was not lack of experience; we could
easily have learned what we needed to know. The problem was our
attitude toward the rest of the development community. We regarded
acceptance of the changes as a hurdle to get over, rather than as a
process by which the quality of the changes could be improved. Since
we were confident that what we did would be accepted (as it
was), we made little effort to get others involved.

Obviously, when you're choosing a contractor, you want someone
with the right technical skills and experience for the job. But it's
also important to choose someone with a track record of constructive
interaction with the other developers in the community. That way
you're getting more than just a single person; you're getting an agent
who will be able to draw on a network of expertise to make sure the
work is done in a robust and maintainable way.

Update Your RFI, RFP and Contract Language

If you're hiring outside contractors to create software for you,
the language you put in your Requests For Information (RFIs), Requests
For Proposals (RFPs), and contracts becomes crucially
important.
There is one key thing you must understand at the outset: the
decision makers at most large-scale software development vendors don't really want their
work to be open source. (The programming staff may feel differently,
of course, but the path to the executive suite is usually smoother
for those with an instinct for monopoly.) Instead, the vendors would
prefer that a customer hire them to produce bespoke software
that, under the hood, shares many components with the
other bespoke software they're producing for
other customers.[73] That way the vendor can sell mostly the
same product at full price many times. This is especially
true of vendors to government agencies, because the needs of
government agencies are so similar, and because jurisdictional
boundaries create an artificial multiplicity of customers who all have
pretty much the same needs. Only minor customizations may be needed
for each instance, but the different customers will pay full price
each time.
As a customer, then, your starting point for a successful
large-scale open source project is to set clear, explicit requirements
about open source development from the beginning. From the RFI or RFP
stage, all the way through the contract and into delivery and
maintenance, you must require behaviors and deliverables that will
result in a truly open source product — meaning, among
other things, a product that has the potential to be supported and
customized by vendors other than the one who originally developed it.
The most important of those requirements are:
	Design and development must be done in the open from the
 very start of the project (see the section called “Be Open From Day One”

	The code shall be explicitly licensed for open source distribution,
 from the start of development through delivery and
 deployment.

	If the same vendor is both writing the software and
 deploying the production instances, require that deployed
 code must match the open source code. Don't let
 proprietary tweaks — and thus vendor
 lock-in — slip in via the back door
 through deployment customizations.

	The product should have no dependencies on proprietary
 software modules; written permission from you must be
 obtained before any such dependencies are
 introduced.

	Documentation must be sufficient to allow third parties to
 understand, configure, and deploy the software. (Some
 customers even test this by hiring an independent third
 party to perform a deployment and submit any needed
 improvements to the installation
 documentation — via the open source
 project's usual contribution channels, of course.)
 documentation must be in formats typically used by open
 source projects, e.g., plaintext, Markdown, Asciidoc, DocBook,
 etc.[74]

	The vendor's engagement with third parties who become
 involved in the project should be anticipated and budgeted
 for. If it is a successful open source project, there
 will eventually be community management overhead, so
 plan for it: e.g., specify that the vendor must
 establish a participation workflow, review and prioritize
 contributions, etc.

	Set clear expectations about the extent to which the
 vendor will participate in publicity about the
 project, both among technical developer communities and
 among potential users.

	You, the customer, should be the copyright owner of the
 code written by the vendor.

	For any patents controlled by the vendor and affecting the
 project, there must be an unambiguous, non-restrictive
 patent grant not just to you but to everyone who receives
 the code under its open source license.

	If the vendor has little or no experience running or
 at least participating open source projects, bring in a
 separate Open Source Quality Assurance (OSQA) vendor to
 provide assistance and oversight (see the section called “Open Source Quality Assurance (OSQA)”).

Although this is not a complete list — every
project is different — it should give you some idea of
how to set expectations with your partners. The ability to recognize
whether these expectations are being met, in spirit not just in
letter, is also important of course, and is the subject of the next
section.

Open Source Quality Assurance (OSQA)

When a vendor whose normal mode is proprietary development is
hired to do open source, the result is usually a product that is not
truly open source and that no third party can actually
deploy.[75] This section is about how to avoid
that problem. While in some instances the vendor — or
at least factions within the vendor — may be actively
resistant to open source, more often the problem is that they simply
don't know what they don't know. The fastest solution is to
bring in that knowledge from the outside: have a separate contract
with a different company, one entirely independent of the primary
vendor, to play the role of third-party open source
participant.
There is a long tradition of such outside review in technical
contracting, where it's known as IV&V, for
"Independent Verification and
Validation".[76] It ensures that the deliverables meet the
necessary standards by having an independent party verify this. The
independent reviewer reports to the customer, not to the primary
development contractor.
My colleague James Vasile came up with the name Open
Source Quality Assurance (OSQA)
for the corresponding role in open source software development
efforts. I like that name much better than "Open Source IV&V"
because it emphasizes the interactive and collaborative nature of the
independent vendor's role. In an open source project, the
deliverables include not just the code, but the development process
itself and the resultant potential for third-party participation.
Assistance from a separate OSQA vendor can make the difference between
a project that is open source in name only and a project that is truly
open source, in the sense that it is possible for parties other than
its original developers to deploy, maintain, and improve it.
During development, an OSQA reviewer participates the
way any third party would, posting in the project's public discussion
forums, using the installation documentation to try to get the
software up and running, reporting bugs via the public tracker,
submitting pull requests, and so on. As the project reaches the alpha
or beta stage, the reviewer confirms that the software can be deployed
as documented, without reliance on proprietary dependencies or
vendor-specific environmental conditions; that necessary
per-deployment configurations can be made; that sample data can be
loaded; that there exist documented paths by which third parties can
participate in the project; and so on — in other
words, that all the expectations one would have of an open source
project are truly met.
But the reviewer's job is not just to review. The reviewer is
there to help the primary vendor meet these
expectations throughout development, and to report back to the
customer as to whether the vendor is doing so. In far too many cases,
I have seen a nominally open source project be contracted for and
developed, only for the customer to discover at the
end — too late to do anything about
it — that no party besides than the original
vendor can actually deploy, maintain, or extend the software, because
the vendor never came close to meeting normal open source standards.
Had parallel, independent review been built into the process from the
start, the problems would have been detected early and the
unsatisfactory outcome prevented. (Relatedly, see the section called “Be Open From Day One”.)
Note that the primary vendor may often be quite unconscious that
anything is wrong. In their mind, they developed and delivered
software the way they usually do, so what's the problem? The fact
that no one other than them can deploy or modify the end result
doesn't register as a failure, because in all their other projects
third-party deployability was not a goal in the first place. The fact that the
contract requires it is meaningless unless the customer has some way
to test and enforce that requirement. Since most customers do not
have the in-house technical capability to do so, the open source
clauses in the contract are effectively void unless there is some kind
of external review process.
Independent review is not merely a sort of open source
insurance, however, although it would be worthwhile even if it were only that.
It is also an investment in the success of future partnerships with
the primary vendor. The vendor becomes more inherently capable of
performing quality open source work in the future, because the
OSQA process provides a practical education in open source
development. Thus, done right, third-party review results in both a
healthier open source project and a healthier long-term relationship
with the primary vendor.
It also helps foster concentrations of expertise outside that
primary contractor right from the start, as discussed in the section called “Foster Pools of Expertise in Multiple Places”. Ideally, at the end of
development for a new open source product, you should have at least
two independent commercial entities able to deploy and support the
software: the primary development vendor and the OSQA vendor. That's
already twice as much supplier diversity as most projects have coming
out of the gate, and it's much easier to add a third vendor than a
second.
The key to successful OSQA is that the reviewer is
responsible to the customer, not to the primary
development vendor. That part is crucial: even if the two vendors are
contracting through the same prime vehicle, or one is a subcontractor
to the other, it must be clear in the contracts that the reviewer
reports directly to the client, interacting with the primary
development vendor only to perform the OSQA function.
The cost of OSQA review is much smaller than the cost of
the main contract — generally, expect on the order of
5% to 10% — and the benefit is large: the difference
between an end product that is not usably open source and one that is
truly open source, able to be deployed and supported by anyone.
The "New Developer" Test

One of the most useful forms of OSQA is what I call the
 new developer test: have a competent developer
 who is entirely unfamiliar with the project approach it through its
 front door, by trying to get an instance up and running, and perhaps
 even contributing a minor bugfix or documentation patch.
The key is that the new developer doesn't get any special
 access. At the beginning of the process, she is simply told the
 project's home page, and perhaps pointed to a suitable bug report if
 one is available. Her mission is to become a participant in the
 project by following the project's own documented
 procedures for doing so. If the deployment instructions
 are insufficient, she files a ticket in the issue tracker and tries
 to get a constructive response — there are no
 behind-the-scenes telephone calls or special requests made by those
 who hired her for this role, because those would reduce the value of
 the exercise.
The output of a successful New Developer Test consists of two
 things. One: a flurry of forum posts, new tickets, and
 documentation patches that show the project the difference between
 where they thought they were in terms of welcoming new participants
 and where they actually are. Two: a heightened appreciation on the
 part of the project's developers of the effort required to make open
 source software that is truly approachable by strangers, and of what
 it will take to maintain that approachability over the lifetime of
 the project.

Don't Surprise Your Lawyers

Corporate lawyers (and to a lesser degree lawyers in the
non-profit world and in government) sometimes have an uneasy
relationship with free software. They have often spent their careers
diligently seeking to maximize the control and exclusivity their
clients have over everything the clients
produce — including software. A good lawyer will
understand why their client is choosing to deliberately give up that
control for some larger purpose, when it is explained, but even then
may still be unfamiliar with the factors that go into choosing an open
source license for the project, the interaction of the license with
trademarks and patents, the legal technicalities of how to accept
contributed code such that it can be redistributed, etc. (See Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks and Patents for a deeper discussion of legal issues.)
The ideal course is to make sure your lawyers first understand
why you are running an open source project, and
give them a chance to familiarize themselves with open source in
general, before you bring the particulars of the project to them. If
the lawyers are good, they will know when they should seek help from
outside advisors and will not hesitate to do so. By the time the
project is under way, the lawyers should have enough familiarity with
open source legal issues to make basic decisions with confidence, and
to know when and where they need help.
Do not assume that open source is part of a standard legal
education. It is not, at least as of this writing in 2022. If you
wait until development is already under way and code is starting to be
published before consulting your legal team, they may be forced to
scramble and make under-researched decisions hastily. This will not
be good for either the project or the organization, in the long
run.

[73] By the way, those common components
are quite often open source libraries themselves. These days, it's
typical for a proprietary software product to contain a lot of open
source code, with a layer of proprietary custom code wrapped around
the outside.

[74] Microsoft Word format is almost never
 seen in open source projects, among other reasons because
 it is not amenable to auditable spot-changes by
 contributors. You will need to make sure your vendor
 knows this, or else you are likely to end up with a lot of
 .docx files in the repository.

[75] While some selection bias no doubt informs my
experience — after all, the consultant tends to get
brought in when things are going wrong, not when they're going
right — my assertion that proprietary vendors don't
get open source right if left to their own habits is based not just on
my own experiences but also on talking to many other people, who
report the same finding with remarkable
consistency.

[76] For a more general discussion of
IV&V, see https://en.wikipedia.org/wiki/Verification_and_validation and https://en.wikipedia.org/wiki/Software_verification_and_validation.
Note that neither of those discusses open source specifically,
however.

Funding Non-Programming Activities

Programming is only part of the work that goes on in an open
source project. From the point of view of the project's participants,
it's the most visible and glamorous part. This unfortunately means
that other activities, such as documentation, formal testing, etc, can
sometimes be neglected, at least compared to the amount of attention
they often receive in proprietary software. Organizations are
sometimes in the best position to make up this gap, by devoting
some of their own staff time to open source projects.
The key to doing this successfully is to translate between the
company's internal processes and those of the public development
community. Such translation is not effortless: often the two are not
a close match, and the differences can only be bridged via human
intervention. For example, the company may use a different bug
tracker than the public project. Even if they use the same tracking
software, the data stored in it will be very different, because the
bug-tracking needs of a company are very different from those of a
free software community. A piece of information that starts in one
tracker may need to be reflected in the other, with confidential
portions removed or, in the other direction, added.
The sections that follow are about how to build and maintain
such bridges. The end result should be that the open source project
runs more smoothly, the community recognizes the company's investment
of resources, and yet does not feel that the company is
inappropriately steering things toward its own goals.
Technical Quality Assurance (i.e., Professional Testing)

In proprietary software development, it is normal to have teams
of people dedicated solely to quality assurance: bug hunting,
performance and scalability testing, interface and documentation
checking, etc. As a rule, these activities are not pursued as
vigorously by the development community on a free software project.
This is partly because it's hard to get highly-motivated labor for
unglamorous work like testing (committers have their names inscribed
for all time in the history of the project, but there are fewer
mechanisms for remembering the tester who found the bug a committer
fixed), partly because developers tend to assume that having a large user
community gives the project good testing coverage, and, in the case of
performance and scalability testing, partly because not all developers
have access to the requisite hardware resources anyway.
The assumption that having many users is equivalent to having
many testers is not entirely baseless. Certainly there's little point
assigning testers for basic functionality in common environments: bugs
there will quickly be found by users in the natural course of things.
But because users are just trying to get work done, they do not
consciously set out to explore uncharted edge cases in the program's
functionality, and are likely to leave certain classes of bugs
unfound. Furthermore, when they discover a bug with an easy
workaround, they often silently implement the workaround without
bothering to report the bug. Most insidiously, the usage patterns of
your customers (the people who drive your
interest in the software) may differ in statistically significant ways
from the usage patterns of the Average User In The Street.
A professional testing team can uncover these sorts of bugs, and
can do so as easily with free software as with proprietary software.
The challenge is to convey the testing team's results back to the
public in a useful form. In-house testing departments usually have
their own way of reporting test results to their own developers,
involving company-specific
jargon, or specialized knowledge about particular customers and their
data sets. Such reports would be inappropriate for the public bug
tracker, both because of their form and because of confidentiality
concerns. Even if your company's internal bug tracking software
were the same as that used by the public project, management might
need to make company-specific comments and metadata changes to the
tickets (for example, to raise a ticket's internal priority, or to
schedule its resolution for a particular customer). Usually such
notes are confidential — sometimes they're not even shown to the
customer. And even when they're not confidential, they're not very
helpful to the public project.
Yet the core bug report itself is important
to the public. In fact, a bug report from your testing department is
in some ways more valuable than one received from users at large,
since the testing department probes for things that other users won't.
Given that you're unlikely to get that particular bug report from any
other source, you definitely want to preserve it and make it
available to the public project.
To do this, either the QA department can file tickets directly in
the public ticket tracker, if they're comfortable with that, or an
intermediary (usually one of the developers) can "translate" the
testing department's internal reports into new tickets in the public
tracker. Translation simply means describing the bug in a way that
makes no reference to customer-specific information (the reproduction
recipe may use customer data, assuming the customer approves it, of
course).
It is definitely preferable to have the QA department filing
tickets in the public tracker directly. That gives the public a more
direct appreciation of your company's involvement with the project:
useful bug reports add to your organization's credibility just as any
technical contribution would. It also gives developers a direct line
of communication to the testing team. For example, if the internal QA
team is monitoring the public ticket tracker, a developer can commit a
fix for a scalability bug (which the developer may not have the
resources to test herself), and then add a note to the ticket asking
the QA team to see if the fix had the desired effect.
Either way, once a public ticket exists, the original internal
ticket should simply reference the public ticket for technical content.
Management and paid developers may continue to annotate the internal
ticket with company-specific comments as necessary, but use the public
ticket for information that should be available to everyone.
You should go into this process expecting extra overhead.
Maintaining two tickets for one bug is, naturally, more work than
maintaining one ticket. The benefit is that many more coders will see
the report and be able to contribute to a solution.

Legal Advice and Protection

Corporations, for-profit or nonprofit, are almost the only
entities that ever pay attention to complex legal issues in free
software. Individual developers know basic differences between
various open source licenses, but they generally do not have the time
or resources to competently handle legal issues themselves. If your
company has a legal department, it can help a project by assisting
with trademark issues, copyright license ownership and compatibility
questions, defense against patent trolls, etc. If the project decides
to organize formally, or to join an existing umbrella organization (as
described in the section called “Joining or Creating a Non-Profit Organization”), your legal
department can help with issues of corporate law, asset transfer,
reviewing agreements, and other due diligence matters.
Some more concrete ideas of what sorts of legal help might be
useful are discussed in Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks and Patents. The main thing is to
make sure that communications between the legal department and the
development community, if they happen at all, happen with a mutual
appreciation of the very different universes the parties are coming
from. On occasion, these two groups talk past each other, each side
assuming domain-specific knowledge that the other does not have. A
good strategy is to have a liaison (usually a developer, or else a
lawyer with technical expertise) stand in the middle and translate for
as long as needed.

Documentation and Usability

Documentation and usability are both famous weak spots in open
source projects, although I think, at least in the case of
documentation, that the difference between free and proprietary
software is frequently exaggerated. Nevertheless, it is empirically
true that much open source software lacks first-class documentation
and usability research.
If your organization wants to help fill these gaps for a
project, probably the best thing it can do is hire people who
are not regular developers on the project, but
who will be able to interact productively with the developers.
Not hiring regular developers is good for two reasons: one, that way
you don't take development time away from the project; two, those
closest to the software are usually the wrong people to write
documentation or investigate usability anyway, because they have
trouble seeing the software from an outsider's point of view.
However, it will still be necessary for whoever works on these
problems to communicate with the developers. Find people who are
technical enough to talk to the coding team, but not so expert in the
software that they can't empathize with regular users anymore.
A medium-level user is probably the right person to write good
documentation. In fact, after the first edition of this book was
published, I received the following email from an open source
developer named Dirk Reiners:
One comment on Money::Documentation and Usability: when we had some
money to spend and decided that a beginner's tutorial was the most
critical piece that we needed we hired a medium-level user to write it.
He had gone through the induction to the system recently enough to
remember the problems, but he had gotten past them so he knew how to
describe them. That allowed him to write something that needed only
minor fixes by the core developers for the things that he hadn't gotten
right, but still covering the 'obvious' stuff devs would have missed.

Funding User Experience (UX) Work

The field of user experience (UX) design
has lately (starting somewhere between 2010 and 2020) begun to acquire a new
seriousness of purpose and consistency of professional standards.
Naturally, one thing many companies think of when they want to help
improve an open source project is to fund UX work, since that's just
the sort of thing that projects often overlook or, in some cases,
don't even know they need.
As with many other types of engagement, do not assume that a UX
expert can be parachuted into the project. User experience design is
not a checkbox. It is an attitude taken by a team throughout
development, and one of the primary qualifications to look for in UX
contractors is their ability to gain long-term credibility with the
developers, and to help developers pay attention to user experience
goals. For example, in addition to their innate domain knowledge, UX
designers often know how to set up and incorporate feedback from user
trials — but those trials will only be effective if
the results are presented to the development team in a way that makes
it easy for the developers to take the results seriously. This can
only happen through a sustained, two-way interaction, in which UX
experts are subscribed to the appropriate project forums and take the
attitude that they are a kind of specialized developer on the project,
rather than an outside expert providing advice. Use UX experts who
have worked with open source projects before, if possible.

Providing Build Farms and Development Servers

Many projects have infrastructure needs beyond just hosting of
code, bug tracker, etc. For example, projects often use
continuous integration (CI) testing,
a.k.a. build farms, to automatically ensure
that the changes developers are committing integrate cleanly into
the main branch and pass all automated tests. See
the section called “Automated testing” for more about this
practice.
Depending on the size and complexity of the codebase, the
number of developers checking in changes, and other factors, running a
responsive build farm can cost more money than any individual
developer has at their disposal. A good way to help, and gain some
goodwill in the process, is to donate the server space and bandwidth
and the technical expertise to set up the
continuous integration and automated testing. If you don't have the
technical expertise available on staff, you could hire someone from
the project to do it, or at the very least give some of the project's
developers administrative access to the CI servers so they can set
things up themselves.

Running Security Audits

If your company has a good internal security department, or can
afford to hire specialists, providing in-depth security review on an
open source project's code base can do the project a tremendous amount
of good. Any feedback from a security audit should be provided back
to the project using the precautions described in the section called “Receive the Report”. However, it is fine to be public
about the fact that you are conducting the audit; there your
organization should get credit for a substantial contribution like
that.

Sponsoring Conferences, Hackathons, and other Developer Meetings

A very effective use of funds is to sponsor in-person contact
between developers who might not otherwise meet. The usefulness of
in-person meetings — e.g., conferences, hackathons,
smaller informal meetups, etc — is mainly discussed in
the section called “Meeting In Person: Conferences, Hackfests, Code-a-Thons, Code Sprints, Retreats”. Here I will simply mention
that encouraging such encounters is a very good use of money in an
open source project. From a corporate sponsorship point of view,
nothing creates good will like a plane ticket and a hotel room. From
a personnel management point of view, it is healthy for your own
developers to have in-person contact with their peers in the open
source projects they work on, and when those peers work at at other
companies, project-centric meetups are the perfect neutral ground for
such meetings.
Sending your developers to conferences is also a good way to
signal commitment to a project. When others meet your developers at a
conference the first time, it is a signal that your company has a real
investment in the project. But when your developers show up again at
the same conference the next year, still working on the same project,
that's a very powerful signal that your organizational commitment to
the project is long-term and strategic. This gives your developers an
advantage in influencing the direction of the project, because they
are seen as people who will be around for the long term, and it of
course gives your company a recruiting advantage when you are looking
for new developers to work on the same project.
Even when you don't have people traveling to a meetup, you can
still sponsor some of the meetup's expenses. Everyone remembers
fondly the company that sponsors the pizza, or lunch, or drinks or
dinner for one night of the meetup.

Marketing

Although most open source developers would probably hate to
admit it, marketing works. Good marketing can
create buzz around an open source product, even to the point where
hardheaded coders find themselves having vaguely positive thoughts
about the software for reasons they can't quite put their finger on.
It is not my purpose here to dissect the arms-race dynamics of
marketing in general. Any corporation involved in free software will
eventually find itself considering how to market themselves, the
software, or their relationship to the software.
Much of the advice in this section is simply about how to avoid
common pitfalls in marketing open source products (see also the section called “Publicity” and the section called “Don't Bash Competing Open Source Products”),
although we will start by examining a major marketing advantage that
open source products enjoy over proprietary products, and that open
source businesses should promote as often as possible: the lack of
vendor lock-in.
Open Source and Freedom from Vendor Lock-In

Vendor lock-in is what happens when a
vendor sells a service or product to a customer, perhaps at a cheap
up-front price, but the customer has to make certain further
investments in order to use the
product — e.g., infrastructure changes, workflow and
other process changes, data reformatting, retraining, etc. The cost
to the customer of switching away from that vendor's product is now
the degree to which the vendor has the customer locked in. Note that
these switching costs are different from
sunk costs. There may also be sunk costs
involved, but that is independent of the switching costs, and it is
the latter that are the real issue here. Even if the customer is
eventually unhappy with the vendor, by that point the total cost of
moving to someone else may be quite high, and that cost is separate
from whatever licensing or service fees the vendor charges.
The great commercial strength of open source is that product and
vendor are not the same. In open source, you can switch to another
vendor, or to a combination of vendors, or even a combination of
vendor and in-house support, all while continuing to use the same
product in more or less the same way.
So if you sell open source, make sure your potential customers
are clear on this point, and give them as many concrete examples as
you can. It may, in some circumstances, even be useful to point out
the existence of some of your competitors, because their presence
paradoxically reassures the customer that choosing you is a safe
decision — if things don't work out, there are other
options. If you just make sure things work out, then the customer
will never need to seek out those other options.
Proprietary vendors often compete against open source by talking
about the "total cost of ownership", that is,
they sell against open source's up-front cost of
zero — no per-copy royalties, no per-seat license
fees — by pointing out, reasonably enough, that
although there may be no licensing fees, in practice software
integration involves organizational and technical costs that can be
quite significant. This is quite true, as far as it goes, but that
argument works the other way too: to the extent that there
are such costs — and there really
are — the danger to the customer of vendor lock-in is
directly proportional to them. Another way of saying it is that the
costs of proprietary software tend to outstrip the costs of open
source over a long enough period of time. One pays a premium for
decreasingly competitive vendor selection, both in money and in loss
of flexibility and options.
To draw a contrast with "total cost of ownership", I would love
to see open source sales representatives talk more
about the "cost of total ownership", that is, how
much does it cost a company to be totally owned by its software
vendors? With open source, customers are not
owned — they are the owners, to exactly the degree
that they want to be, and they can outsource as much of that
responsibility to outside vendors as they want. Their relationships
with those vendors are thus more likely to be based on mutual
satisfaction and mutual benefit, not on an asymmetrical pseudo-monopoly that
gives existing vendors undue inertia in customers' procurement
decisions.

Remember That You Are Being Watched

For the sake of keeping the developer community on
your side, it is very important not to say
anything that isn't demonstrably true. Audit all claims carefully
before making them, and give the public the means to check your claims
on their own. Independent fact checking is a major part of open
source, and it applies to more than just the code.
Naturally no one would advise companies to make unverifiable
claims anyway. But with open source activities, there is an unusually
high quantity of people with the expertise to verify
claims — people who are also likely to have high-bandwidth
Internet access and the right social contacts to publicize their
findings in a damaging way, should they choose to. When Global
Megacorp Industries pollutes a stream, that's verifiable, but
only by trained scientists, who can then be refuted by Global
Megacorp's scientists, leaving the public scratching their heads and
wondering what to think. On the other hand, your behavior in the open
source world is not only visible and recorded, it is also easy for
many people to check it independently, come to their own conclusions,
and spread those conclusions by word of mouth. These communications
networks are already in place: they are the essence of how open source
operates, and they can be used to transmit any sort of information.
Refutation is difficult when what people are saying is true.
For example, it's okay to refer to your organization as having
"founded project X" if you really did. But don't refer to yourself as
the "makers of X" if most of the code was written by outsiders.
Conversely, don't claim to have a deeply involved, broad-based developer
community if anyone can look at your repository and see that there are
few or no code changes coming from outside your organization.
Case Study: You Can't Fake It, So Don't Try

Years ago I saw an announcement by a very well-known computer
company, stating that they were releasing an important software
package under an open source license. When the initial announcement
came out, I took a look at their now-public version control repository
and saw that it contained only three revisions. In other words, they
had done an initial import of the source code, but hardly anything had
happened since then. That in itself was not worrying — they'd
just made the announcement, after all. There was no reason to expect
a lot of development activity right away.
Some time later, they made another announcement. Here is what
it said, with the name and release number replaced by pseudonyms:
We are pleased to announce that following
 rigorous testing by the Singer Community, Singer 5 for Linux
 and Windows are now ready for production use.

Curious to know what the community had uncovered in "rigorous
testing," I went back to the repository to look at its recent change
history. The project was still on revision 3. Apparently, they
hadn't found a single bug worth fixing before the
release! Thinking that the results of the community testing must have
been recorded elsewhere, I next examined the bug tracker. There were
exactly six open tickets, four of which had been open for several months
already.
This beggars belief, of course. When testers pound on a large
and complex piece of software for any length of time, they will find
bugs. Even if the fixes for those bugs don't make it into the
upcoming release, one would still expect some version control activity
as a result of the testing process, or at least some new tickets. Yet
to all appearances, nothing had happened between the announcement of
the open source license and the first open source release.
The point is not that the company was lying about the "rigorous
testing" by the community (though I suspect they were). The point is
that they were oblivious to how much it looked like
they were lying. Since neither the version control repository nor the
ticket tracker gave any indication that the alleged rigorous testing
had occurred, the company should either not have made the claim in the
first place, or should have provided a clear link to some tangible
result of that testing ("We found 278 bugs; click here for details").
The latter would have allowed anyone to get a handle on the level of
community activity very quickly. As it was, it only took me a few
minutes to determine that whatever this community testing was, it had
not left traces in any of the usual places. That's not a lot of
effort, and I'm sure I'm not the only one who took the trouble. (It's
now been over a decade since that announcement; I can confirm that the
software project did not flourish.)
Transparency and verifiability are also an important part of
accurate crediting, of course. See
the section called “Credit” for more on this.

Don't Bash Competing Vendors' Efforts

Another situation companies find themselves in, when selling
services based on open source software, is that they have competitors
in the marketplace who may be selling services based on the
same software.
If you're going to sell your company's services, you inevitably
will need to compare your company against others selling the same or
similar things. This is expected, and in many ways healthy. However,
be careful to avoid straying into public criticism of the other
development teams or of their development priorities.
Your own developers have to work directly with those
competitors' developers in the open source project. They often have
friendly relations, show up at the same conferences, etc. Even if
that's not the case today, it may be tomorrow (as discussed in the section called “Don't Bash Competing Open Source Products”). Furthermore, you may find
yourself hiring developers from your competitors;
if you burn up available goodwill in advance, you may not get the best
candidates.
Without mentioning names, in part because the situation
eventually got better and I don't want to rekindle the flames now, I
will say that I saw exactly this happen between two companies (one of
whom was my employer at the time) who were competing to sell services
based on the same open source software. The ill will stirred up among
the project's developers by the marketing statements of one company
(not my employer) had real consequences, and that company lost out on
retaining the services of some excellent developers because it failed
to think about the fact that their marketing in the commercial realm
was also visible and had effects in the development community.

"Commercial" vs "Proprietary"

One common pattern among companies involved in open source
software is to market a fully open source version of their product
alongside, and in direct comparison to, an enhanced proprietary
version. Since the open source version is free software, anyone
could in theory add those enhancements themself,
or collaborate with others to do so, but in practice, the effort
required to do that (and to maintain a divergent fork of the
project) is, for each collaborator, much greater than the cost of just
paying for the proprietary version, so it rarely happens.
This sales model is often referred to as "open core", that is, a
core set of functionality that is available as open source software,
with a more featureful application wrapped around it as proprietary
software. This model usually depends on the open source core having a
non-copyleft license, of course, and is discussed in more detail in
the section called “Proprietary Relicensing”.
Open core is somewhat controversial among open source
developers, but it has been successful strictly from a business point
of view: companies that do it make money in the way that they expect
to make money. However, there is bit of marketing slippage that many
of these companies fall into, and I would like to point it out here in
order to convince you not to be part of the problem.
If you sell a free software version and an enhanced proprietary
version of your product, please use the words "open source" and
"proprietary" to refer to them, respectively. Do
not call the open source version the "Community
Edition" and the proprietary version the "Commercial Edition" (or
"Enterprise Edition").
Aside from the fact that everyone knows there is very little
"community" around these so-called "Community Editions", there is a
deeper problem here. Calling the proprietary version the "Commercial
Edition" implies that open source software is not commercial, while
calling it the "Enterprise Edition" implies that open source software
is not suitable for enterprise-level use. The former is untrue
because open source software is commercial by definition: the license
guarantees the freedom to use the software for any commercial purpose.
(Open source is anti-monopoly, of course, but
that doesn't affect its commerciality.) The latter is also generally
untrue: open source software is widely used at enterprise
scale, with and without third-party support, and chances are an
enterprise could use your open source edition too.
This kind of misleading marketing particularly hurts efforts
by open source companies to get their software accepted by governments
and by other buyers who have sophisticated procurement requirements.
These procurement regulations often include stipulations that
purchased software must be "commercial", "commercial off-the-shelf",
or "commercially available" — definitions that all
open source software meets — so portraying open
source as non-commercial gives purchasing officers a misimpression.
When those decision-makers think of open source as inherently
non-commercial, that hurts open source software as a whole.

Open Source and the Organization

Through the consulting work I've done in the years since the
first edition of this book was published, it's become clear to me that
there are special concerns that apply to organizations launching or
participating in open source projects. Organizations contain formal
management structures and informal social structures: both are
affected by engagement with open source projects, and both may
need adjustment to better support open source activity by the
individuals within the organization. In particular, government
agencies have special pitfalls to watch out for when working with open
source projects.
This section therefore examines organizational issues generally,
and some issues specific to government agencies, and offers
advice about how to make organizational engagement with open source
more likely to succeed. Many of these recommendations will be brief
and somewhat generalized, not because there isn't more depth to go
into, but because the specifics can vary so much from organization to
organization that exploring all the possibilities here would require
too much space. Please treat these bits of advice as starting points,
not as complete recipes in themselves.
Dispel Myths Within Your Organization

In organizations that have been producing or using proprietary
software for a long time, certain myths about open source software
sometimes circulate. One traditional source of such myths is, of
course, sales representatives from vendors of proprietary systems.
But one can't attribute it all to them. It's just as often the case
that someone had some bad experiences in an open source project, or
used open source in the past without ensuring proper support channels,
and since that was their first experience in an unfamiliar territory,
the entire territory is now tainted.
Below are some of the myths I've encountered most frequently.
First, the negative myths:
	If it's open, that means anyone can
 change our code.
	Believe it or not, you need to be prepared to respond to
 this. Sometimes people — particularly senior
 decision-makers who have limited technical
 experience — don't understand the difference
 between an upstream codebase allowing anyone to copy the code and
 modify the resultant copies, and someone modifying the
 particular instance that you deploy. The
 former is just the definition of open
 source, of course. The latter would be a security vulnerability,
 if it happened, but it has nothing to do with the license on the
 code. I mention this myth merely to prepare you for encountering
 it, because otherwise you might not expect that anyone could hold
 this particular misunderstanding. Trust me, they
 can, and you need to be ready to answer
 it.

	Open source software is insecure,
 because anyone can see the code / change the code.
	These are so easy to answer that I won't give a detailed
 refutation here; again, I merely note it so you can be prepared
 for it. If you find yourself having to explain why open source
 software is at least as secure as any other kind of software, if
 not more secure, you may wish to use the excellent resources
 provided by Dr. David A. Wheeler at http://www.dwheeler.com/#oss.

	Open source comes with no
 support.
	There are plenty of companies that sell support for open
 source software, and they're not hard to find. There are also
 wonderfully helpful unofficial support communities on the
 Internet for different open source packages, of course, but often
 what organizations are looking for is vendor that offers
 a guaranteed response time. Such offerings
 are available, it's just that the source from which you
 procure the software may be unrelated to the source from which
 you procure the support. One way to respond to this myth is
 to ask specifically what packages support is desired for, and
 then show some sources of support available for
 them.

	If we open source this project, we'll
 have to spend a lot of time interacting with outside
 developers.
	You open source your code, not your time and attention.
 You are never under any obligation to respond at all to outside
 parties, let alone engage substantively with them. You should
 only do so when engaging will benefit
 you — which it often will;
 after all, one of the key strengths of open source is that it
 enlarges the collective brain of your development team in direct
 proportion to how much they interact with other developers who
 become interested in the code. But that engagement is always
 under your control and at your discretion. If you don't want
 your team's attention going to bug reports or development
 questions from outside your organization, that's fine. Just be up front about
 that in project announcements and in the documentation, so that
 others can take that into account before they put a lot of energy
 into trying to communicate with your developers, and so they can
 decide whether forking to create a more open community would make
 sense for them (indeed, sometimes it might even be to your
 advantage for them to do that).

	If we open source this project, then
 we'll have to release all our other stuff as open source
 too.
	This myth usually results from a misunderstanding of
 copyleft licenses and the GNU General Public License (GPL) in
 particular. I won't go into detail here; see Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks and Patents for a discussion of what the GPL actually
 stipulates. After reading that chapter, especially
 the section called “The Copyright Holder Is Special, Even In Copyleft Licenses”, you will be able
 to explain why this belief is incorrect.

Next, the positive myths:
	Open source is cheaper.
	Licensing costs are often not the largest cost with
 proprietary software; they are often outweighed by training costs,
 installation and configuration costs, and other factors that make
 up the "total cost of ownership". But all of those other costs
 are, on average, the same for open source software. Don't make
 the mistake of pitching your organization on open source software
 on the grounds that it is cheaper. At least in terms of the most
 easily quantified costs, it is not. It is often cheaper in the
 long run, because it frees your organization from proprietary
 vendor lock-in (see the section called “Open Source and Freedom from Vendor Lock-In”),
 reduces training costs for new employees (because
 they arrive already familiar with the software), gives you
 greater ability to customize software to your
 needs — which is a strategic advantage, not just
 a cost advantage — and so on. But
 these are long-term benefits, and they may not show up directly
 on a balance sheet unless you take steps to make your accounting
 reveal them. In the short term, open source generally isn't
 cheaper than proprietary software, and shouldn't be pitched that
 way.

	Developers will devote attention to
 this code just because we released it.
	People with little experience in open source sometimes
 assume that the mere act of releasing code to the public will
 result in a flurry of attention from other
 developers — questions, patches, high-quality
 code review, bug reports, etc. But what actually happens, in
 most cases, is silence. Most good developers are busy people,
 and they're not going to pay attention to your project until they
 have some reason to. If your code is good and solves a real
 problem, you can expect word to travel to the right places
 eventually, and of course you can help that word along with
 tactically smart announcements and posts (see the section called “Publicity”). But until your code has
 had time to naturally accumulate credibility and mindshare, most
 people won't pay any attention, so you shouldn't expect that
 first release to be a big deal for anyone but you.
There is a situation in which this myth is not a myth. A
 large organization with a reputation and a dedicated public
 relations team can create buzz around an
 initial open source release. If you do this, then make sure not
 to squander that buzz: be ready to constructively engage the
 developer attention you attract right away.

	Other companies / cities / whoever
 will pick up this software and start using it right
 away.
	Adopting any software involves costs. Indeed, merely
 evaluating software involves costs. So when
 you release a new open source project that you and your team are
 excited about, that doesn't necessarily mean other entities are
 going to adopt that software right away. Many of them may
 notice it, if you've done your announcement process well, but
 that just means they'll put it on their list of things to
 investigate based on long-term organizational
 priorities — in other words, they'll take a
 closer look based on their schedule, not
 yours. So don't expect a flood of early adopters. You may get a
 few, and they should be cultivated because they will
 provide the word-of-mouth that gets you more adopters. But in
 general you're more likely to see a trickle of early adopters
 over the first year or so after your initial release, than to see
 a flood of them immediately when the release is
 made.

	We can casually copy open source code
 into our own code.
	Open source licenses are still licenses, and they come with
 a few conditions. Virtually all of them require attribution at
 the source level and inclusion of the license together with the
 covered code. Some licenses, especially the copyleft licenses
 discussed in the section called “Aspects of Licenses”, cause the
 entire derivative work to be under the same open source license,
 thus implying redistribution obligations that you may not want.
 Some licenses have patent clauses that can affect your company in complex
 ways.[77]
For all these reasons,
 incorporating open source code into software that will be
 distributed under a different license — whether
 open source or proprietary — cannot be done
 casually. Organizations that incorporate open source code into
 their products usually need a formal process for doing so, one
 that involves review by someone who understands the legal issues
 and the possible interactions between licenses.

Foster Pools of Expertise in Multiple Places

Sometimes organizations that are accustomed to procuring
proprietary software treat open source software as if it were
proprietary, in the sense that they assume there is exactly one
authoritative provider of expert support, and that therefore it is
necessary to have a commercial relationship with that provider.
That's not how open source works. One of the great strengths of
open source is the availability of support from multiple, competing
providers. It's perfectly fine, and often advisable, to have a
commercial relationship with just one of those sources, but you must
remember that support in open source is fundamentally a
marketplace, not an add-on feature that just
happens to come with the software license, as is often the case with
proprietary software. Actually, even proprietary software sometimes
has a competitive support marketplace — think for
example of the third-party support providers for Oracle databases and
Microsoft operating systems — but in open source these
marketplaces tend to be more fluid and not as dominated by single,
easily-recognizable giants, because there isn't necessarily one
commercial outfit that automatically assumes a place at the top of
the hierarchy to sell gold-label support (as Oracle or Microsoft
themselves would be, in the example just given).
The goal of fostering independent pools of expertise
should even influence how you structure contracts to develop the software
in the first place. If you hire a firm to develop new open source
software, have a few of your own programmers working alongside them if
possible, so that you accumulate some in-house expertise. This is not
necessarily because you won't want to use the same firm for future
maintenance — they might be a great
choice — but just so that you'll have a better
bargaining position and not be locked in. Essentially, the more people
in different organizations who know the code, the
healthier it is for the project, and the better position you are
in.[78] The report
Open Data For Resilience Initiative & Geonode: A Case
Study On Institutional Investments In Open
Source[79] describes in detail how this
technique was used in the GeoNode project, for example.
If your organization does not have enough in-house technical
ability to participate in the development process directly alongside
your contractor, or at least to perform knowledgeable review, then I
strongly recommend finding a third-party to provide
independent deployability and maintainability
review while the project is under way, as described in
the section called “Open Source Quality Assurance (OSQA)”.
Establish Contact Early With Relevant Communities

Another way to foster independent sources of expertise is to
establish contact with potentially interested technical communities
early and often during development. They're almost always out there.
For example, if you're developing software with geospatial
functionality, there is an open source geospatial community that
probably wants to hear about it; if you're developing software to
process financial data, or medical data, there are open source
fintech and medical data communities.
You may even have already announced your project to those people
when you began, as discussed in the section called “Announcing”. But
there's more you can do to create external reservoirs of knowledge.
When your project runs across a design issue that you suspect others
may have encountered before, it's fine to ask them how they handled
it, as long as you do your homework by first finding out what you can
from their code and documentation and then asking any remaining
questions. You can also arrange small-scale contracts with developers
who are active in related projects, to serve two goals at once:
improving your project's quality while also establishing mindshare in
places that may be strategically useful later.

Don't Let Publicity Events Drive Project Schedule

Although open source projects are amenable to software project
management techniques, in general if you have an active developer
community you do lose some control over the exact timing of events in
the life of the project, especially the scheduling of releases. Or
rather, you can still have as much control as you want, but then there
are other things you lose if you exercise that control
in the wrong way. For example, if the release manager (see the section called “Release Manager”) is someone from outside your
organization, and she's doing a good job, then if you try to force the
release to be on a certain precise date, you may cause her and many of
the developers participating in release-specific work to give up and
devote their attention to something else. You'd gain fine-grained
control of the release schedule, but at the cost of lower quality
releases and the possible loss of some of your development
community.
This is just one example illustrating the general principle that
if you have publicity needs related to an open source project, you
generally shouldn't let those needs drive the project's schedule. If you
arrange a press conference for the project reaching 1.0 and being
deployed live, but then the developers decide on an extra two weeks of
testing because of some last-minute bugs, you'll have some improvising
to do. (This example is drawn from real life, by the way.)
There are two ways to achieve this independence, and they are
not mutually exclusive. One way is to just let project events drive
publicity instead of the other way around, such as by preparing
release announcements ahead of time but being ready to publish them
based on when the release is actually done. The other way is to
create publicity events that are not bound to development milestones,
but are rather associated with project-related things that
are able to be scheduled, such as new support
offerings, new partnership announcements, major deployments,
conference appearances, hackathons, etc.
You might be tempted to try a third way: to bring the
development community into the scheduling process, so that through
consensus you are able schedule certain milestones accurately enough
to tie timed publicity to them. While that may sound like a good
idea, in practice it rarely works. An exception to this is if the
whole project is on board with doing time-based releases, as described
in Time-Based Releases vs Feature-Based Releases. If the development community
as a whole shares that goal, then they will make the sacrifices
necessary to keep to the time-based cycle — but your
organization must also be willing to abide by that schedule, even if
it doesn't always align with business needs.
An open source development community's first priority is the
software itself, and making sure it meets the needs its developers
are working toward. Of course the community wants releases and other
deadlines to be met with reasonable regularity, and every development
community makes tradeoffs for that. But even with the best of
intentions among all parties, you can never guarantee how that
tradeoff will be decided in a particular case, when things get down to
the wire. The outcome of a community's decision-making process cannot
be anticipated with perfect accuracy, by
definition — if it could, there would be no need for a
decision-making process. So while it's fine to try to influence the
community's priorities in ways that work to your advantage, you should
avoid relying on that for scheduling purposes, because you won't
succeed at it every time.

The Key Role of Middle Management

If you intend to have long-term organizational engagement with
open source software projects, the people in your middle layer of
management will play a key role in determining whether you succeed or
fail.
Supervising programmers who spend part or all of their time on
open source projects is more complex than supervising programmers on
purely internal projects. Many aspects of the developers' work and
schedule will be strongly influenced by external factors not under the
control of management, and in any case the developers' own desires may
not always perfectly line up with the employer's. After all, each
developer now has two unrelated audiences to satisfy: her employer, as
embodied by her direct manager, and her colleagues in the open source
project, many of whom may work for other employers.
If a manager is not sufficiently sensitive to this dynamic, then
developers can start to feel like they're being pulled in conflicting
directions. Sometimes this is just the result of poor planning, but
other times it may be unavoidable. Good management can prevent the
former case from happening in the first place. In the latter case,
good management is essential for recognizing the situation and
addressing it so as to give the developer clarity and a way
to handle the conflict.
Middle managers also have not only the usual upward and lateral
internal reporting responsibilities, but are to some degree
responsible for the image — the open source brand
identity — of the organization itself in the projects where
its developers are active. This essentially means having an entire extra
constituency to satisfy, and managers who have no experience with open
source participation themselves are unlikely to have a solid
understanding of how to position the organization and its developers
within the project.
The middle layer of management is often also in the best
position to serve as a communications conduit and information filter
between the project (that is, the whole project including all its
other participants) and the company. The wealth of information
available from the activity in an open source project is most useful
to the organization if there is a filtered channel by which the most
interesting activities can be communicated to the relevant
stakeholders within the organization — stakeholders
who might include other technical staff, executives, and sales team
members. Both by their position and their temperament, the
programmers themselves are often not best suited to serve as this
conduit. They may have a very deep understanding of the particular
projects they work on, but they often have a less complete view of the
organization's interests — for example, in a
commercial environment, the programmers often do not have a clear idea
of how the project fits into the company's strategy, various lines of
business, or sales processes. Middle managers are better positioned to
maintain the requisite bidirectional sensitivity: aware enough of the
project to ask the programmers for more information when necessary,
and aware enough of the organization to have a sense of what in the
project is most relevant to the organization.
Think carefully about who occupies the middle management
positions that serve as the interface between the organization's
priorities and the open source project's development direction, and
provide them with extra training if necessary. It is best if the
managers themselves have had direct, personal experience as participants in some
open source project. This doesn't have to be the same project as the
one for which they are now managing developers; the situations and
tensions that arise in open source projects tend to be similar, so
experience from one project will generally translate well to other
projects. But a manager who has never dealt with open source projects
first-hand at all will start out with limited ability to understand the
pressures faced by the organization's developers operating in
open source environments, and limited ability to be an effective
communications conduit between the organization and the
project.

InnerSourcing

InnerSource or
innersourcing means using standard open source
development practices only within the boundaries of an organization.
For example, a company might move all of its projects to GitHub
(albeit in private, not public, repositories), and declare that,
inside the company, any engineer can report bugs and contribute pull
requests to any project anywhere else in the company. Innersourcing also
often includes serious efforts at internal cultural change: managers
encouraging developers to speak their mind on both technical and
process issues, developers being given more latitude to choose which
projects and teams they work with, etc.
In early 2016 I conducted interviews[80] with open source specialists
at a number of medium- and large-sized technology companies, many of
whom had observed innersourcing efforts and were willing to talk about
the results. What they reported was pretty consistent from company to
company, and consistent with my own experience as a consultant:
innersourcing really can make a positive
difference, in several ways, but it's also definitely not the same as
true open source.
For companies that already participate in open source projects,
innersourcing can reduce the difference between internal development
practices and external ones. If some of your engineers
participate in upstream open source projects anyway, where they
must use typical open source collaboration tools and adhere to open
source standards for submitting and reviewing code and documentation,
then moving the company's internal engineering infrastructure and
processes in that direction means less context-switching overhead
for existing staff, an easier onboarding process for new hires, and
often improved technical compatibility between internal and
external projects. (For these reasons, innersourcing is also often
used as the first "baby steps" toward genuine corporate participation
in open source projects.)
But the benefits of innersourcing go beyond that. When
accompanied by a real commitment to reduce managerial and
organizational barriers to engineers participating in projects across
the company, innersourcing can improve morale, help spread expertise
around the company and make software development more
efficient.[81]
Nevertheless, innersource is not the same as open source, nor is
it even "open source lite". The managers we talked to reported that
innersourced projects don't have the provocative, uncontrolled energy of truly
open source projects, because all the actors in innersourcing are,
ultimately,embedded in the same hierarchical authority structure.
Fundamentally, open source dynamics require at least the potential for
totally permissionless modification (i.e., you don't have to worry
what someone else might think of a fork). When software only
circulates within a given management hierarchy, then that potential
for permissionless collaboration vanishes — and with
it, the potential for true open source behavior vanishes too. The
permission structure that governs one's behavior with respect to the
code is not just a matter of the code's license: it's also about
power: whom you report to, what others in the hierarchy might think
about your changes, etc.
In the long run, the dynamics of open source collaboration
require an external supply of freedom. There must always be people
who could, in principle, fork or do whatever they want without
worrying about consequences to the original authors' organization.
When that external freedom is removed, everything changes.
Innersourcing also fails the "portable résumé"
test — an employee can't take the code with her, and
her work will not be publicly visible (see the section called “Hiring Open Source Developers”).
If she leaves the company, she will be alienated from the fruits of
her work, which means that her motivation to personally invest is
reduced.
None of this means that innersourcing isn't worth it. It can be
very beneficial on its own terms, and is also sometimes useful as an
intermediate step for a traditionally closed company that's still
figuring out how to do open source participation. Just don't imagine
that innersourcing is somehow "just like open source, but inside our
company". They're two different things and shouldn't be
conflated.

[77] I am strongly opposed to software patents of
 any kind, for the reasons given in the section called “Patents”, but if you are a patent holder I
 would still like you to at least be aware of the possible patent
 consequences of incorporating open code into your
 programs.

[78] This is also one of the side benefits of holding
hackathons, as discussed in the section called “Sponsoring Conferences, Hackathons, and other Developer Meetings”.

[79] https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Investments-in-Open-Source.pdf.
I am a co-author.

[80] Actually, my
friend and business partner James Vasile and I both conducted these
interviews, and we were much aided by O'Reilly Media providing
introductions to open source staff at a few companies where we did not
have personal contacts.

[81] If you're interested in learning more, see
http://innersourcecommons.org/, where Danese Cooper and
others have organized a number of resources about
InnerSource.

Hiring Open Source Developers

If you're trying to hire developers who have open source
experience, you have a big advantage compared to hiring other kinds of
developers. Most of the résumé of an open source developer is
public — it's everything they've ever done in every
open source project they've ever worked on, because all of that
activity is publicly archived.[82]
But you shouldn't need to go searching for all of it. When you put
out a job posting, tell prospective candidates directly that the
résumé they send in should include references to their open source
profile. This means their committer accounts on the projects where
they've been active (or their account names at the overall project
hosting sites where they're been active, e.g., their usernames on
sites like GitHub, GitLab, etc), the email addresses or usernames they have used when
posting in discussion forums, documentation they have written, and
anything else that would lead you to places where you can see their
open source project activity.
Look not only at their direct
technical activity, but also at their relations with the other developers
in the project. Examine the candidate's commits, but also examine
the frequency with which they reviewed others'
commits, and examine the candidate's reaction to reviews of their own commits. In
the project's issue tracker, how often did the candidate respond
constructively to incoming bug reports or contribute useful
information to a bug ticket? Visit a threaded view of the project's
discussion forums and see how often the candidate's posts were
responded to, and what the general tone of the responses was. Someone
who consistently causes negative reactions from others in the project
may have social problems as a collaborator, which is important to know
independently of their technical ability.
If the candidate is applying for a position that would involve
working on an open source project, but seems to have little or no open
source experience themselves, this is not necessarily a showstopper,
but it's a sign that you should ask some probing questions, and that
you should expect some ramp-up time if you hire them. If the
candidate is young and inexperienced in general, then lack of
participation in open source is easy to understand. However, if the
candidate has been a programmer for a while, and especially if they
already have experience as a user of some of the open source software
you'd be hiring them to work on, and yet they have never participated
much in that project except to download and use it, then you should
ask them questions about why. There is nothing wrong with being
uninvolved as a participant in software that one uses. However, if
you're hiring someone to be a participant in a
project, and they already had a chance to be and chose not to, that
could imply a lack of intrinsic motivation to participate and may indicate
that this person's temperament is not what you're looking for. Or
there could be other reasons — for example, the
candidate's prior management forbade them from participating.
Whatever the reasons are, you should make sure you find out.
Hiring for Influence

It is very common for companies to hire an open source developer
precisely because of her existing position in an
open source project. She may be the founder or leader of the project,
or may just have commit access,[83] but
either way her ability to get things done in the upstream community is
part of her value as a prospective employee; often, it is just as
important as raw technical skill.
As noted in the section called “The Economics of Open Source”, there is
nothing wrong with purchasing influence in this way, as long as the
employer understands that the new employee will have dual loyalty. It
is inappropriate to ask the employee to take actions that would harm
her standing in the project. The employee's manager needs to be
sensitive to this, and to let the employee know that the door is open
for discussion and pushback if she ever feels she's being put into
such a situation (hence the importance of managers who understand open
source, as described in the section called “The Key Role of Middle Management”). It is
perfectly fine for the employee to promote the company's technical
interests in the project, and to do so openly, as long as the
proposals are compatible with the project's overall goals and the
company provides resources to support those proposals in a way that's
sustainable for the project.
Remember that influence in an upstream project is usually not
transferable to some other employee. Position and influence travel
with the person, not with the employer. There are occasional
exceptions to this, e.g., in corporate-driven projects where the
balance of power among competitors is especially important, or in
standards bodies with formal organizational representation policies. In these cases,
a governance committee seat may be reserved for a certain company, and
the company gets to designate who sits in that seat. But even then,
informal influence still tends to matter a lot, and individuals may not be
truly interchangeable in practice.
This makes the recommendations in the section called “Hire for the Long Term” all the more important. When an
employee holds a position of influence in an open source project that
is strategically important to your company, that employee has a pretty
good bargaining position.
Since that kind of employee is likely to be with you for the
long term, try to take advantage of it by having her help onboard
others into open source projects. Nithya Ruff,
then Director of Open Source Strategy at Western Digital, told me
that when her company acquired another company that had a history
of working on certain strategically important (to the acquirer) open
source projects, the engineering team that came with the acquisition
became a strong influence inside the newly combined company. The
developers had good reputations in the upstream projects, and the new
management not only made sure they were able to continue working in
those projects, but brought them into a company-wide open source
working group to help other engineers get involved in upstream
maintenance too.

[82] Brian Fitzpatrick has
written about the usefulness of having an open source résumé in two
articles, The Virtual Referral (https://web.archive.org/web/20171203195720/http://www.onlamp.com/pub/a/onlamp/2005/07/14/osdevelopers.html) and
The Virtual Internship (https://web.archive.org/web/20180325231558/http://www.onlamp.com/pub/a/onlamp/2005/08/01/opensourcedevelopers.html).

[83] See the section called “Committers”.

Evaluating Open Source Projects

Although this book is mainly about how to launch and run new
open source projects, that topic is inextricably linked to the problem
of evaluating existing open source projects. You can't know whether
you need to start a new project until you've evaluated what's out there
(as explained in the section called “But First, Look Around”). Furthermore, even
in a new project, you'll usually still be building on existing open
source components, and will often be in the position of choosing
between different projects that implement the same basic
functionality. That is not just a technical choice; it's also about
social health and general level of project maturity. How large and
diverse are their developer communities? Do they get new contributors
on a regular basis? Do they handle incoming bug reports in a
reasonable way? Do they make stable releases frequently enough for
your needs?
Evaluating open source projects is an art, not a
science. However, there are some shortcuts that experienced people
use. Below is what has worked for me. By "worked", I mean that
when I have applied these evaluation techniques to a project and then
checked in with that project months or years later, I have generally
found its current status to be in line with what the
evaluation predicted.
	Look at bug tracker activity first.
	The most reliable reflections of project health can usually be
 found in the bug tracker. Look at the rate of issue filings and
 the number of unique filers (because that's a proxy for the size
 and level of engagement of the user base). Look also at how often
 project developers respond in bug tickets, and
 at how they respond: are they constructive?
 Do they interact well with both the reporter and with other
 developers? Is it always the same developer responding, or is
 responsiveness well-distributed throughout the development team?
 Are they inviting technically promising reporters to try becoming
 contributors?
More bug reports is better, by the way (as discussed in the section called “Version Control and Bug Tracker Access”). The rate at which
 bug reports are closed is not as important
 as you might think; in a healthy project with an active user
 base, bug reports are often filed faster than the
 development team can close them, especially when the user base is
 growing. The relevant signal is not the rate of resolution, but
 how project developers respond to and organize the influx of
 reports.

	Measure commit diversity, not commit rate.
	Look at the distribution of commits across committers, not
 just at the raw frequency of commits. Does the project have a
 variety of people working together in a sustained way? Too often,
 evaluators look just at the commit rate, but that rate isn't very
 informative — knowing the number of commits per
 week could just tell you that someone keeps making typos and then
 correcting them in new commits. If you have time to look at the
 content of individual commits, then look at how often one
 developer's commit is a response to (i.e., refers to)
 some other developer's previous commit. This tells you that
 group code review is going on, and the more of that you see, the
 better the project is doing.

	Evaluate organizational diversity.
	In addition to looking for a variety of individual
 identities, see if you can tell how many different
 organizations are participating in the
 project — in particular, commercial
 organizations. If a number of different sources of money are all
 investing in a project, that's a sign that that project is going
 to be around for the long term. (See also the discussion of "bus
 factor" in Chapter 4, Social and Political Infrastructure.)

	Discussion forums.
	If the project has discussion forums, scan them quickly
 looking for signs of a functional community. Specifically,
 whenever you see a long thread, spot check responses from core
 developers coming late in the thread. Are they summarizing
 constructively, or taking steps to bring the thread to a
 decision while remaining polite? If you see a lot of flame wars
 going on, that can be a sign that energy is going into argument
 instead of into development.

	News, announcements, and releases.
	Any project that is functioning well will usually have made
 announcements within the past few months. Check the project's
 front page, news feed, Twitter or other microblog accounts, etc.
 If things are quiet on stage, they're probably quiet backstage
 too.

This is just a brief introduction to the art of evaluating
projects, but even using just the steps above can save you a lot of
trouble. I have found them particularly useful when evaluating the
two sides of a recent fork.[84] Even in
a recent fork, it is often possible to tell, just by looking at some
of the signals described above, which side will flourish over the long
term.

[84] That is, a "hard fork";
see the section called “"Development Forks" versus "Hard Forks"”

Crowdfunding and Bounties

Perhaps unfairly, I will group crowdfunding campaigns and
bounty-based development incentives together here, not because they
are the same thing, but because to the extent that they are
problematic as ways of funding free software development, their
problems are similar.
Crowdfunding refers to many
funders — often mostly
individuals — coming together to fund a particular
piece of development. Crowdfunding campaigns generally fall into two
categories: "all
or nothing", meaning that each funder pledges money toward a total
threshold and the pledges are collected only if the threshold is met,
or "keep it all", which is essentially traditional donation: funds go
immediately to the recipient whether or not a stated goal amount is
ever met. https://goteo.org/ and
https://kickstarter.com/ are
probably the best-known examples of all-or-nothing crowdfunding
services, though there are many others (I like Goteo because their
platform is itself free software, and because it is meant specifically
for freely-licensed projects, whereas Kickstarter does not take a
position on restrictiveness of licensing). There are also sites like
https://www.indiegogo.com/ that
support both models.[85]
Bounties are one-time rewards for
completing specific tasks, such as fixing a particular bug or implementing a new
feature. Bounties are often offered directly by the interested
parties, since there is no need for a pledge-collecting system, but
the site https://www.bountysource.com/ also serves as a clearinghouse for open
source development bounties.
While both crowdfunding and bounties have funded some open
source work, they have not been a major economic force compared to
contracted or salaried development. This does not mean you shouldn't
consider them: depending on the problem you're trying to solve, and on
the shapes of solutions you're willing to accept, crowdfunding or
bounty funding might be a good answer. The problem they share is that
they are structured around development as a one-time
event rather than as an ongoing process. This would be
problematic for any kind of software development, but is especially so
for open source development, which if anything is is optimized more
for low-intensity, long-term investment rather than for high-intensity
burst investment. Both crowdfunding campaigns and bounty prizes are
more compatible with high-intensity, one-time bursts of activity, and
do not provide for ongoing maintenance or investment past the
completion of the campaign goal or prize condition.[86]
A crowdfunding campaign can sometimes be a good way to get a
project launched, but generally is not a way to fund development after
the initial launch. Successive crowdfunding campaigns for later
stages of development or for releases will inevitably tire out even a
willing and supportive audience. There is a reason why long-running
charities, for example the public radio network in the United States,
seek to develop sustaining funders (euphemistically called "members"
despite rarely having any governance role) to provide a
long-term, stable revenue stream, and then raise funds for specific
one-time efforts separately from that.
If you do launch a crowdfunding campaign, take a close look at
how other open source projects have run theirs. There are a number of
useful techniques that can be learned from the successful ones. For
example, most campaign sites have a mechanism for offering different
rewards to backers at different monetary levels. You could offer a
mention in a SUPPORTERS file in the project, and
perhaps at higher levels a mention on a thank-you page on the
project's web site. But more creatively — I first
heard this idea from Michael Bernstein, and used
it — you can offer to dedicate a commit to each backer
at or above a certain level, by thanking the backer directly in the
commit's log message. The nice thing about this is that it's
decentralized and easy to administer: any developer on the project can
help fulfill that reward. Individual developers can also offer free
or discounted consulting about the project as a reward. However, if
you are one of those developers, be
careful not to sell too much of your time: the point of the campaign
is to raise funds for development, not to turn the development team
into a consulting team.
One thing that many crowdfunding campaigns do that I think is
not appropriate for free software projects is to sell early access.
That is, one of the rewards will be a "sneak preview" or "beta access"
to in-progress versions, before the public release. The problem with
this is that, for open source projects, the public is supposed to
already have access to in-progress work. Access to an open source
project should be limited by the time and interest of the parties
seeking the information, not by the project. So learn
what you can from other crowdfunding campaigns, but remember that some
of the techniques used by campaigns for non-free-software products may
not be suitable for an
open source project that wants to keep the good will of its users and
development community.
Finally, a word of caution: if your project accepts donations, do
some public planning of how the money will be used
before it comes in. Discussions about how to
allocate money tend to go a lot more smoothly when held before there's
actual money to spend; also, if there are significant
disagreements, it's better to find that out when the money is still
theoretical than when it's real.

[85] https://en.wikipedia.org/wiki/Comparison_of_crowdfunding_services.

[86] One
service trying to solve that problem is https://snowdrift.coop/, which aims to
provide sustainable funding for freely-licensed works using a
carefully designed matching pledge model. Whether Snowdrift will
succeed is unknowable as of this writing in mid-2015, since the
service is still in a preliminary stage, but I am watching it with
interest. Snowdrift also did a thorough survey, in the Fall of 2013,
of funding platforms for free software, and posted their results at
https://snowdrift.coop/p/snowdrift/w/en/othercrowdfunding; it's worth
a read if you're interested in this topic.

Chapter 6. Communications

An open source project must do many things: recruit users and
developers, encourage new contributors to become more deeply involved,
allow free-flowing discussion while still reaching necessary
decisions, maintain a body of knowledge and convention that guides
newcomers and experts alike, and, of course, produce working
software.
Coordinating people to accomplish all this together requires many
techniques, and because open source collaboration is ultimately based
on software code, most of those techniques revolve around the written
word. We'll start there.

Written Culture

The ability to write clearly is one of the most important skills
one can have in an open source environment. In the long run it
may matter more than programming talent. A great programmer with lousy
communications skills can get only one thing done at a time, and even
then may have trouble convincing others to pay attention. But a mediocre
programmer with good communications skills can coordinate and persuade
many people to do many different things, and thereby have a
significant effect on a project's direction and momentum.
There does not seem to be much correlation, in either direction,
between the ability to write good code and the ability to communicate
with one's fellow human beings. There is some correlation between
programming well and describing technical issues well, but describing
technical issues is only one part of the communications in a
project. Much more important is the ability to empathize with one's
audience, to see one's own posts and comments as others see them, and
to cause others to see their own posts with similar objectivity.
Equally important is noticing when a given medium or communications
method is no longer working well, perhaps because it doesn't scale as
the number or diversity of users increases, and taking the time to do something
about it.
All of this is obvious in theory. What makes it hard in
practice is that free software development environments are
bewilderingly diverse both in audiences and in communications
mechanisms. Should a given thought be expressed in a post to the
mailing list, as an annotation in the bug tracker, or as a comment
in the code? When answering a question in a public forum, how much
knowledge can you assume on the part of the reader, given that "the
reader" is not only the person who asked the question in the first place,
but all those who might see your response? How can the developers
stay in constructive contact with the users, without getting swamped
by feature requests, spurious bug reports, and general chatter? How
do you tell when a communications medium has reached the limits of its capacity, and
what do you do about it?
Solutions to these problems are usually partial, because any
particular solution is eventually made obsolete by project growth or
by changes in project structure. They are also often ad
hoc, because they're improvised responses to dynamic
situations. All participants need to be aware of when and how
communications can become bogged down, and be involved in
solutions. Helping people do this is a big part of managing an open
source project.
The sections that follow discuss both how to conduct
your own communications, and how to make maintenance of communications
mechanisms a priority for everyone in the project.[87]

[87] There
has been some interesting academic research on this topic; for example,
see Group Awareness in Distributed Software
Development by Gutwin, Penner, and Schneider. This paper
was online for a while, then unavailable, then online again at http://www.st.cs.uni-sb.de/edu/empirical-se/2006/PDFs/gutwin04.pdf.
So try there first, but be prepared to use a search engine if it moves
again.

You Are What You Write

Consider this: most of what others know about you on the
Internet comes from what you write.
You may be brilliant, perceptive, and charismatic in person — but
if your emails are rambling and unstructured, people will assume
that's the real you. Or perhaps you are rambling and
unstructured in person, but no one need ever know that if your posts
are lucid and informative.
Devoting some care to your writing will pay off hugely.
Long-time free software hacker Jim Blandy tells the following
story:
Back in 1993, I was working for the Free Software Foundation,
 and we were beta-testing version 19 of GNU Emacs. We'd make a beta
 release every week or so, and people would try it out and send us
 bug reports. There was this one guy whom none of us had met in
 person but who did great work: his bug reports were always clear and
 led us straight to the problem, and when he provided a fix himself,
 it was almost always right. He was top-notch.
Now, before the FSF can use code written by someone else, we
 have them do some legal paperwork to assign their copyright interest
 to that code to the FSF. Just taking code from complete strangers
 and dropping it in is a recipe for legal disaster.
So I emailed the guy the forms, saying, "Here's some paperwork
 we need, here's what it means, you sign this one, have your employer
 sign that one, and then we can start putting in your fixes. Thanks
 very much."
He sent me back a message saying, "I don't have an
 employer."
So I said, "Okay, that's fine, just have your university sign
 it and send it back."
After a bit, he wrote me back again, and said, "Well,
 actually... I'm thirteen years old and I live with my
 parents."

Because that kid didn't write like a thirteen-year-old, no one
knew that's what he was. Following are some ways to make your writing
give a good impression too.
Structure and Formatting

Don't fall into the trap of writing everything as though it were
a cell phone text message. Write in complete sentences, capitalizing
the first word of each sentence, and use paragraph breaks where
needed. This is most important in emails and other composed writings.
In chat rooms or similarly ephemeral forums, it's generally okay to leave out
capitalization, use compressed forms of common expressions, etc. Just
don't carry those habits over into more formal, persistent forums.
Emails, documentation, bug reports, and other pieces of writing that
are intended to have a permanent life should be written using standard
grammar and spelling, and have a coherent narrative structure. This
is not because there's anything inherently good about following
arbitrary rules, but rather that these rules are
not arbitrary: they evolved into their present
forms because they make text more readable, and you should adhere to
them for that reason. Readability is desirable not only because it
means more people will understand what you write, but because it makes
you look like the sort of person who takes the time to communicate
clearly: that is, someone worth paying attention to.
Good grammar also minimizes ambiguity. This is especially
important in technical writing, where plausible alternatives will
often be juxtaposed, and the distinction between cause and effect may
not be immediately clear from context alone. A grammatical structure
that represents things in precisely the way the writer intended
helps everyone avoid confusion.
For email in particular, experienced open source developers have
settled on certain formatting conventions:
	Send plain text mails only, not HTML, RichText, or
 other formats that might get mangled by certain online archives or
 text-based mail readers. When including screen output, snippets of
 code, or other preformatted text, offset it clearly, so that even a
 lazy eye can easily see the boundaries between your prose and the
 material you're quoting. If the overall structure of your post is
 still visible from five meters away, you're doing it right.

	For preformatted blocks, such as quoted code or
 error messages, try to stay under 80 columns wide, which has become
 the de facto standard terminal width
 (that is, some people may use wider displays, but no one uses a
 narrower one). By making your lines a little
 less than 80 columns, you leave room for a few
 levels of quoting characters to be added in others' replies without
 forcing a rewrapping of your preformatted text.

	When quoting someone
 else's mail, insert your responses where they're most appropriate,
 at several different places if necessary, and trim off the parts of
 their mail you didn't use. If you're writing a quick response that
 applies to their entire post, and your response will be sensible
 even to someone who hasn't read the original, then it's okay to
 top-post (that is, to put your response above
 the quoted text of their mail); otherwise, quote the relevant
 portion of the original text first, followed by your
 response.

	Construct the Subject lines of new mails
 carefully. The Subject line is the most important line in your mail,
 because it allows each other person in the project to decide whether
 or not to read more. Modern mail reading software organizes groups
 of related messages into threads, which can be defined not only by a
 common Subject, but by various other headers (which are sometimes
 not displayed). It follows that if a thread starts to drift to a
 new topic, you can — and should — adjust the Subject line
 accordingly when replying. The thread's integrity will be
 preserved, due to those other headers, but the new Subject will help
 people looking at an overview of the thread know that the topic has
 drifted. Likewise, if you really want to start a new topic, do it
 by posting a fresh mail, not by replying to an existing mail and
 changing the Subject. Otherwise, your mail would still be grouped
 in to the same thread as what you're replying to, and thus fool
 people into thinking it's about something it's not. Again, the
 penalty would not only be the waste of their time, but the slight
 dent in your credibility as someone fluent in using communications
 tools.

Content

Well-formatted mails attract readers, but content keeps them.
No set of fixed rules can guarantee good content, of course, but there
are some principles that make it more likely.
Make things easy for your readers.
There's a ton of information
floating around in any active open source project, and readers cannot
be expected to be familiar with most of it — indeed, they cannot
always be expected to know how to become familiar. Wherever possible,
your posts should provide information in the form most convenient for
readers. If you have to spend an extra two minutes to dig up the URL
to a particular thread in the mailing list archives, in order to save
your readers the trouble of doing so, it's worth it. If you have to
spend an extra 5 or 10 minutes summarizing the conclusions so far
of a complex thread, in order to give people context in which to
understand your post, then do so. Think of it this way: the more
successful a project is, the higher the reader-to-writer ratio will be in any
given forum. If every post you make is seen by N
people, then as N rises, the worthwhileness of
expending extra effort to save those people time rises with it. As
people see you imposing this standard on yourself, they will work
to match it in their own communications. The result is, ideally, an
increase in the global efficiency of the project: when there is a
choice between N people making an effort and one
person doing so, the project prefers the latter.
Don't engage in hyperbole.
Exaggerating in online posts is a
classic arms race. For example, a person reporting a bug may worry
that the developers will not pay sufficient attention, so he'll
describe it as a severe, showstopper problem that is preventing him
(and all his friends/coworkers/cousins) from using the software
productively, when it's actually only a mild annoyance.
But exaggeration is not limited to users — programmers often do the
same thing during technical debates, particularly when the
disagreement is over a matter of taste rather than correctness:
"Doing it that way would make the code totally
 unreadable. It'd be a maintenance nightmare, compared to
 J. Random's proposal..."

The same sentiment would actually be
stronger if phrased less sharply:
"That works, but it's less than ideal in terms of
 readability and maintainability, I think. J. Random's proposal
 avoids those problems because it..."

You will not be able to rid the project of hyperbole completely, and in
general it's not necessary to do so. Compared to other forms of
miscommunication, hyperbole is not globally damaging — it hurts
mainly the perpetrator. The recipients can compensate, it's just that
the sender loses a little more credibility each time. Therefore, for
the sake of your own influence in the project, try to err on the side
of moderation. That way, when you do need to
make a strong point, people will take you seriously.
Edit twice.
For any message longer than a medium-sized
paragraph, reread it from top to bottom before sending it but after
you think it's done the first time. This is familiar advice to anyone
who's taken a composition class, but it's especially important in
online discussion. Because the process of online composition tends to
be highly discontinuous (in the course of writing a message, you may
need to go back and check other mails, visit certain web pages, run a
command to capture its output, etc), it's especially easy to
lose your sense of narrative place. Messages that were composed
discontinuously and not checked before being sent are often
recognizable as such, much to the chagrin (or so one would hope) of
their authors. Take the time to review what you send. The more your
posts hold together structurally, the more they will be read by others.

Tone

After writing thousands of messages, you will probably find your
style tending toward the terse. This seems to be the norm in most
technical forums, and there's nothing wrong with it per se. A degree
of terseness that would be unacceptable in normal social interactions
is simply the default for free software hackers. Here's a response I
once drew on a mailing list about some free content management
software, quoted in full:
Can you possibly elaborate a bit more on exactly what problems
you ran into, etc?
Also:
What version of Slash are you using? I couldn't tell from your
original message.
Exactly how did you build the apache/mod_perl source?
Did you try the Apache 2.0 patch that was posted about on
slashcode.com?
Shane

Now that's terse! No greeting, no sign-off
other than his name, and the message itself is just a series of
questions phrased as compactly as possible. His one declarative
sentence was an implicit criticism of my original message. And yet, I
was happy to see Shane's mail, and didn't take his terseness as a sign
of anything other than him being a busy person. The mere fact that he
was asking questions, instead of ignoring my post, meant that he was
willing to spend some time on my problem.
Will all readers react positively to this style? Not
necessarily; it depends on the person and the context. For example,
if someone has just posted acknowledging that he made a mistake
(perhaps he wrote a bug), and you know from past experience that
this person tends to be a bit insecure, then while you may still write
a compact response, you should make sure to leaven it with some sort
of acknowledgement of his feelings. The bulk of your response might
be a brief, engineer's-eye analysis of the situation, as terse as you
want. But at the end, sign off with something indicating that your
terseness is not to be taken as coldness. For example, if you've just
given reams of advice about exactly how the person should fix the bug,
then sign off with "Good luck, <your name here>" to indicate
that you wish him well and are not mad. A strategically placed
smiley face or other emoticlue can often be enough to reassure an
interlocutor, too.
It may seem odd to focus as much on the participant's feelings
as on the surface of what they say, but, to put it baldly, feelings
affect productivity. Feelings are important for other reasons too,
but even confining ourselves to purely utilitarian grounds, we may
note that unhappy people write worse software and tackle fewer bugs. Given
the restricted nature of most electronic media, though, there will
often be no overt clue about how a person is feeling. You will have
to make an educated guess based on a) how most people would feel in
that situation, and b) what you know of this particular person from
past interactions.
Some people prefer a more hands-off attitude, and
simply deal with everyone at face value, the idea being that if a
participant doesn't say outright that he feels a particular way, then
one has no business treating him as though he does. I don't buy this
approach, for a couple of reasons. One, people don't behave that way
in real life, so why would they online? Two, since most interactions
take place in public forums, people tend to be even more restrained in
expressing emotions than they might be in private. To be more
precise, they are often willing to express emotions directed at
others, such as gratitude or outrage, but not emotions directed
inwardly, such as insecurity or pride. Yet most humans work better
when they know that others are aware of their state of mind. By
paying attention to small clues, you can usually guess right most of
the time, and motivate people to stay involved to a greater degree
than they otherwise might.
I don't mean, of course, that your role is to be a group
therapist, constantly helping everyone to get in touch with their
feelings. But by paying careful attention to long-term patterns in
people's behavior, you will begin to get a sense of them as
individuals even if you never meet them face-to-face. And by being
sensitive to the tone of your own writing, you can have a surprising
amount of influence over how others feel, to the ultimate benefit of
the project.

Recognizing Rudeness

One of the defining characteristics of open source culture is
its distinctive notions of what does and does not constitute rudeness.
While the conventions described below are not unique to free software
development, nor even to software in general — they would be
familiar to anyone working in mathematics, the hard sciences, or
engineering disciplines — free software, with its porous
boundaries and constant influx of newcomers, is an environment where
these conventions are especially likely to be encountered by people
unfamiliar with them. (This is one reason why it's good to be
generous when trying to figure out whether someone has violated the
code of conduct, in a project that has one — see the section called “Codes of Conduct”.)
Let's start with the things that are not
rude:
Technical criticism, even when direct and unpadded, is not rude.
Indeed, it can be a form of flattery: the critic is saying, by
implication, that the recipient is worth taking seriously — is worth
spending some time on. That is, the more viable it would have been to
simply ignore someone's post, the more of a compliment it becomes to
take the time to criticize it instead (unless the critique descends into an
ad hominem attack or some other form of
obvious rudeness, of course).
Blunt, unadorned questions, such as Shane's questions to me in
the previously quoted email, are not rude either. Questions that in
other contexts might seem cold, rhetorical, or even mocking, are often
intended seriously, and have no hidden agenda other than eliciting
information as quickly as possible. The famous technical support
question "Is your computer plugged in?" is a classic example of this.
The support person really does need to know if your computer is
plugged in, and after the first few days on the job, has gotten tired
of prefixing her question with polite blandishments ("I beg your
pardon, I just want to ask a few simple questions to rule out some
possibilities. Some of these might seem pretty basic, but bear with
me..."). At this point, she doesn't bother with the padding anymore,
she just asks straight out: is it plugged in or not? Equivalent
questions are asked all the time on free software mailing lists. The
intent is not to insult the recipient, but to quickly rule out the
most obvious and most common explanations. Recipients who
understand this and react accordingly win points for taking a
broad-minded view without prompting. But recipients who react badly
must not be reprimanded, either. It's just a collision of cultures,
not anyone's fault. Explain amiably that your question (or criticism)
had no hidden meanings; it was just meant to get (or transmit)
information as efficiently as possible, nothing more.
So what is rude?
By the same principle under which detailed technical criticism
is a form of flattery, failure to provide quality criticism can be a
kind of insult. I don't mean simply ignoring someone's work, be it a
proposal, code change, new ticket filing, or whatever. Unless you
explicitly promised a detailed reaction in advance, it's usually okay
to simply not react at all. People will assume you just didn't have
time to say anything. But if you do react, don't
skimp: take the time to really analyze things, provide concrete
examples where appropriate, dig around in the archives to find related
posts from the past, etc. Or if you don't have time to put in that
kind of effort, but still need to write some sort of brief response,
then state the shortcoming openly in your message ("I think there's a
ticket filed for this, but unfortunately didn't have time to search for
it, sorry"). The main thing is to explicitly recognize the existence of the
cultural norm, either by fulfilling it or by openly acknowledging
that one has fallen short this time. Either way, the norm is
strengthened. But failing to meet that norm while at the same time
not explaining why you failed to meet it is like
saying the topic (and those participating in it) was not worth much
of your time — that your time is more valuable than theirs.
Better to show that your time is valuable by being terse than by being
lazy.
There are many other forms of rudeness, of course, but most of
them are not specific to free software development, and common sense
is a good enough guide to avoid them. See also
the section called “Nip Rudeness in the Bud”, if you haven't
already.

Face

There is a region in the human brain devoted specifically to
recognizing faces. It is known informally as the "fusiform face
area" and apparently its capabilities are at least partly inborn, not
learned. It turns out that recognizing individual people is such a
crucial survival skill that we have evolved specialized hardware to do
it.
Internet-based collaboration is therefore psychologically odd,
because it involves tight cooperation between human beings who almost
never get to identify each other by the most natural, intuitive
methods: facial recognition first of all, but also sound of voice,
posture, etc.
To compensate for this, try to use a consistent
screen name everywhere. Ideally it would be the front
part of your email address (the part before the @-sign), your chat
handle, your repository committer name, your ticket tracker username,
and so on. This name is your online "face": a short identifying
string that serves some of the same purpose as your real face,
although it does not, unfortunately, stimulate the same built-in
hardware in the brain.
The screen name should be some intuitive permutation of your
real name (mine, for example, is "kfogel"). In some situations it
will be accompanied by your full name anyway, for example in mail
headers:

From: "Karl Fogel" <kfogel@whateverdomain.com>

Actually, there are two things going on in that example. As
mentioned earlier, the screen name matches the real name in an
intuitive way. But also, the real name is real.
That is, it's not some made-up appellation like:

From: "Wonder Hacker" <wonderhacker@whateverdomain.com>

There's a famous cartoon by Paul Steiner, from the July 5, 1993
issue of The New Yorker, that shows one dog
logged into a computer terminal, looking down and telling another
conspiratorially: "On the Internet, nobody knows you're a dog." This
kind of thought probably lies behind a lot of the self-aggrandizing,
meant-to-be-hip online identities people give themselves — as if
calling oneself "Wonder Hacker" will actually cause people to believe
one is a wondrous hacker. But the fact remains:
even if no one knows you're a dog, you're still a dog. A fantastical
online identity never impresses readers. Instead, it makes them think
you're more into image than substance, or that you're simply insecure.
Use your real name for all interactions, or if for some reason you
prefer pseudonymity, then make up a name and use it consistently.
If you have an
official title (e.g., "doctor", "professor", "director"), don't flaunt
it, nor even mention it except when it's directly relevant to the
conversation. Hackerdom in general, and free software culture in
particular, tends to view title displays as exclusionary and as a sign of
insecurity. It's okay if your title appears as part of a standard
signature block at the end of every mail you send, but never use
it as a tool to bolster your position in a discussion — the
attempt is guaranteed to backfire. You want folks to respect the
person, not the title.
Speaking of signature blocks: keep them small and tasteful, or
better yet, nonexistent. Avoid large legal disclaimers tacked on to
the end of every mail, especially when they express sentiments
incompatible with participation in a free software project. For
example, the following classic of the genre appears at the end of
every post a particular user makes to a certain project mailing list:

IMPORTANT NOTICE

If you have received this e-mail in error or wish to read our e-mail
disclaimer statement and monitoring policy, please refer to the
statement below or contact the sender.

This communication is from Deloitte & Touche LLP. Deloitte &
Touche LLP is a limited liability partnership registered in England
and Wales with registered number OC303675. A list of members' names
is available for inspection at Stonecutter Court, 1 Stonecutter
Street, London EC4A 4TR, United Kingdom, the firm's principal place of
business and registered office. Deloitte & Touche LLP is
authorised and regulated by the Financial Services Authority.

This communication and any attachments contain information which is
confidential and may also be privileged. It is for the exclusive use
of the intended recipient(s). If you are not the intended
recipient(s) please note that any form of disclosure, distribution,
copying or use of this communication or the information in it or in
any attachments is strictly prohibited and may be unlawful. If you
have received this communication in error, please return it with the
title "received in error" to IT.SECURITY.UK@deloitte.co.uk then delete
the email and destroy any copies of it.

E-mail communications cannot be guaranteed to be secure or error free,
as information could be intercepted, corrupted, amended, lost,
destroyed, arrive late or incomplete, or contain viruses. We do not
accept liability for any such matters or their consequences. Anyone
who communicates with us by e-mail is taken to accept the risks in
doing so.

When addressed to our clients, any opinions or advice contained in
this e-mail and any attachments are subject to the terms and
conditions expressed in the governing Deloitte & Touche LLP client
engagement letter.

Opinions, conclusions and other information in this e-mail and any
attachments which do not relate to the official business of the firm
are neither given nor endorsed by it.

For someone who's just showing up to ask a question now and
then, that huge disclaimer looks a bit silly but probably doesn't do
any lasting harm. However, if this person wanted to participate
actively in the project, that legal boilerplate would start to have a
more insidious effect. It would send at least two potentially
destructive signals: first, that this person doesn't have full control
over his tools — he's trapped inside some corporate mailer that
tacks an annoying message to the end of every email, and he hasn't got
any way to route around it — and second, that he has little or no
organizational support for his free software activities. True, the
organization has apparently not banned him outright from posting to
public lists, but it has made his posts look distinctly unwelcoming,
as though the risk of letting out confidential information must trump
all other priorities.
If you work for an organization that insists on adding such
signature blocks to all outgoing mail, and you can't get the policy
changed, then consider using your personal email account to post, even
if you're being paid by your employer for your participation in the
project.

Avoiding Common Pitfalls

Certain anti-patterns appear again and again in threaded
discussion forums. Below are the ones that seem to come up most often
in open source project forums, and some advice on how to handle
them.
Don't Post Without a Purpose

A common pitfall in online project participation is to think
that you have to respond to everything. You don't. First of all,
there will usually be more threads going on than you can keep track
of, at least after the project really gets going. Second,
even in the threads that you have decided to engage in, much of what
people say does not require a response. Development forums in
particular tend to be dominated by four kinds of messages:
	Messages asking a question

	Messages proposing something non-trivial

	Messages expressing support or opposition to
 something someone else has said

	Summing-up messages

None of these inherently requires your
response, particularly if you can be fairly sure, based on watching
the thread so far, that someone else is likely to say what you would
have said anyway. (If you're worried that you'll be caught in a
wait-wait loop because all the others are using this tactic too, don't
be; there's almost always someone out there
who'll feel like jumping into the fray.) A response should be
motivated by a definite purpose. Ask yourself first: do you know what
you want to accomplish? And second: will it not get accomplished
unless you say something?
Two good reasons to add your voice to a thread are a) when you
see a flaw in a proposal and suspect that you're the only one who sees
it, and b) when you see that miscommunication is happening between
others, and know that you can fix it with a clarifying post. It's
also generally fine to post just to thank someone for doing something,
or to say "Me too!" if you want to strengthen a developing consensus,
because a reader can tell right away that such
posts do not require any response or further action, and therefore the
mental effort demanded by the post ends cleanly when the reader
reaches the last line of the mail. But even then, think twice before
saying something; it's always better to leave people wishing you'd
post more than wishing you'd post less.[88]

Productive vs Unproductive Threads

On a busy mailing list, you have two imperatives. One,
obviously, is to figure out what you need to pay attention to and what
you can ignore. The other is to behave in a way that
avoids causing noise: not only do you want your
own posts to have a high signal/noise ratio, you also want them to be
the sorts of messages that stimulate other people
to either post with a similarly high signal/noise ratio, or not post
at all.
To see how to do that, let's consider the context in which it is
done. What are some of the hallmarks of unproductive threads?
	Arguments that have already been made start to be
 repeated in the same thread, as though the poster thinks
 no one heard them the first time.

	Increasing levels of hyperbole and intensity as
 the stakes get smaller and smaller.

	A majority of comments coming from people who do
 little or nothing in the project, while the people who tend to get things
 done are silent.

	Many ideas discussed without clear proposals ever
 being made. (Of course, any interesting idea starts out
 as an imprecise vision; the important question is what
 direction it goes from there. Does the thread seem to be
 turning the vision into something more concrete, or is it
 spinning off into sub-visions, side-visions, and
 ontological disputes?)

Just because a thread is not productive at first doesn't mean
it's a waste of time. It might be about an important topic, in which
case the fact that it's not making any headway is all the more
troublesome.
Guiding a thread toward usefulness without being pushy is an
art. It won't work to simply admonish people to stop wasting their
time, or to ask them not to post unless they have something constructive
to say. You may, of course, think these things privately, but if you
say them out loud then you will be offensive — and
ineffective. Instead, you have to
suggest conditions for further progress: give people a route, a
path to follow that leads to the results you want, yet without
sounding like you're dictating conduct. The distinction is largely
one of tone. For example, this is bad:
This discussion is going nowhere. Can we please
 drop this topic until someone has a patch to implement one of
 these proposals? There's no reason to keep going around and
 around saying the same things. Code speaks louder than
 words, folks.

Whereas this is good:
Several proposals have been floated in this
 thread, but none have had all the details fleshed out, at least
 not enough for an up-or-down vote. Yet we're also not saying
 anything new now; we're just reiterating what has been said
 before. So the best thing at this point would probably be for
 further posts to contain either a complete specification for the
 proposed behavior, or a patch. Then at least we'd have a
 definite action to take (i.e., get consensus on the
 specification, or apply and test the patch).

Contrast the second approach with the first. The second way
does not draw a line between you and the others, or accuse them of
taking the discussion into a spiral. It talks about "we", which is
important whether or not you actually participated in the thread
before now, because it reminds everyone that even those who have been
silent thus far still have a stake in the thread's outcome. It
describes why the thread is going nowhere, but does so without
pejoratives or judgements — it just dispassionately states
some facts. Most importantly, it offers a positive course of action,
so that instead of people feeling like discussion is being closed off
(a restriction against which they can only be tempted to rebel), they
will feel as if they're being offered a way to take the conversation
to a more constructive level, if they're willing to make the effort.
This is a standard that most productive people will naturally want to
meet.
Sometimes you'll be equally happy if a thread either makes it to
the next level of constructiveness or just goes away. The
purpose of your post, then, is to make it do one or the other. If you
can tell from the way the thread has gone so far that no one is
actually going to take the steps you suggested,
then your post effectively shuts down the thread without seeming to do
so. Of course, there isn't any foolproof way to shut down a thread,
and even if there were, you wouldn't want to use it. But asking
participants to either make visible progress or stop posting is
perfectly defensible, if done diplomatically. Be wary of quashing
threads prematurely, however. Some amount of speculative chatter can
be productive, depending on the topic, and asking for it to be
resolved too quickly will stifle the creative process, as well as make
you look impatient.
Don't expect any thread to stop on a dime. There will probably
still be a few posts after yours, either because mails got crossed in
the pipe, or because people want to have the last word. This is
nothing to worry about, and you don't need to post again. Just let
the thread peter out, or not peter out, as the case may be. You can't
have complete control; on the other hand, you can expect to have a
statistically significant effect across many threads.

The Smaller the Topic, the Longer the Debate

Although discussion can meander in any topic, the probability of
meandering goes up as the technical difficulty of the topic goes down.
After all, the greater the technical complexity, the fewer
participants can really follow what's going on. Those who can are
likely to be the most experienced developers, who have already taken
part in such discussions many times before, and know what sort
of behavior is likely to lead to a consensus everyone can live
with.
Thus, consensus is hardest to achieve in technical questions
that are simple to understand and easy to have an opinion about, and
in "soft" topics such as organization, publicity, funding, etc,
people can participate in those arguments forever, because there are
no qualifications necessary for doing so, no clear ways to decide (even
afterward) if a decision was right or wrong, and because simply
outwaiting or outposting other discussants is sometimes a successful tactic.
The principle that the amount of discussion is inversely
proportional to the complexity of the topic has been around for a long
time, and is known informally as the Bikeshed
Effect. Here is Poul-Henning Kamp's explanation of it,
from a now-famous post made to BSD developers:
It's a long story, or rather it's an old story, but it is quite
short actually. C. Northcote Parkinson wrote a book in the early
1960'ies, called "Parkinson's Law", which contains a lot of insight
into the dynamics of management.
[...]
In the specific example involving the bike shed, the other vital
component is an atomic power-plant, I guess that illustrates the age
of the book.
Parkinson shows how you can go in to the board of directors and
get approval for building a multi-million or even billion dollar
atomic power plant, but if you want to build a bike shed you will be
tangled up in endless discussions.
Parkinson explains that this is because an atomic plant is so
vast, so expensive, and so complicated that people cannot grasp it, and
rather than try, they fall back on the assumption that somebody else
checked all the details before it got this far. Richard P. Feynmann
gives a couple of interesting, and very much to the point, examples
relating to Los Alamos in his books.
A bike shed on the other hand. Anyone can build one of those
over a weekend, and still have time to watch the game on TV. So no
matter how well prepared, no matter how reasonable you are with your
proposal, somebody will seize the chance to show that he is doing his
job, that he is paying attention, that he
is here.
In Denmark we call it "setting your fingerprint". It is about
personal pride and prestige, it is about being able to point somewhere
and say "There! I did that." It is a strong
trait in politicians, but present in most people given the chance.
Just think about footsteps in wet cement.

(Kamp's complete post is very much worth reading; see
https://bikeshed.com/.)
Anyone who's ever taken regular part in group decision-making
will recognize what Kamp is talking about. However, it is usually
impossible to persuade everyone to avoid painting
bikesheds. The best you can do is point out that the phenomenon
exists (when you see it happening) and persuade the senior
developers — the people whose posts carry the most weight — to
drop their paintbrushes early, so at least they're not contributing to
the noise. Bikeshed painting parties will never go away entirely, but
you can make them shorter and less frequent by spreading an awareness
of the phenomenon in the project's culture.

Avoid Holy Wars

A holy war is a dispute, often but not
always over a relatively minor issue, which is not resolvable on the
merits of the arguments, but about which people feel passionate enough to
continue arguing anyway in the hope that their side will prevail.
Holy wars are not quite the same as bikeshed painting. People
painting bikesheds may be quick to jump in with an opinion, but they
won't necessarily feel strongly about it,
and indeed will sometimes express other, incompatible opinions, to
show that they understand all sides of the issue. In a holy war, on
the other hand, understanding the other sides is a sign of weakness.
In a holy war, everyone knows there is One Right Answer; they just
don't agree on what it is.
Once a holy war has started, it generally cannot be resolved to
everyone's satisfaction. It does no good to point out, in the midst
of a holy war, that a holy war is going on. Everyone knows that
already. Unfortunately, a common feature of holy wars is disagreement
on the very question of whether the dispute is
resolvable by continued discussion. Viewed from outside, it is clear
that neither side is changing the other's mind. Viewed from inside,
the other side is being obtuse and not thinking clearly, but they
might come around if browbeaten enough. Now, I am
not saying there's never a right side in a holy
war. Sometimes there is — in the holy wars I've participated
in, it's always been my side, of course. But it doesn't matter,
because there's no algorithm for convincingly demonstrating that one
side or the other is right.
A common, but unsatisfactory, way people try to resolve holy
wars is to say "We've already spent far more time and energy
discussing this than it's worth! Can we please just drop it?" There
are two problems with this. First, that time and energy has already
been spent and can never be recovered.[89]
The only question now is, how much more effort remains? If some people
feel that just a little more discussion will resolve the issue in
their favor, then it still makes sense (from their point of view) to
continue.
The second problem with asking for the matter to be dropped is
that this is often equivalent to allowing one side, the status quo, to
declare victory by inaction. And in some cases, the status quo is
known to be unacceptable anyway: everyone agrees that some decision
must be made, some action taken. Dropping the subject would be worse
for everyone than simply giving up the argument would be for anyone.
But since that dilemma applies to all equally, it's still possible to
end up arguing forever about what to do.
So how should you handle holy wars?
The first answer is, try to set things up so they don't happen.
This is not as hopeless as it sounds:
You can anticipate certain standard holy wars: they tend to come
up over programming languages, licenses (see
the section called “The GPL and License Compatibility”), reply-to munging (see
the section called “The Great Reply-to Debate”), and a few
other topics. Each project
usually has a holy war or two all of its own, which longtime
developers will quickly become familiar with. The techniques for
stopping holy wars, or at least limiting their damage, are pretty much
the same everywhere. Even if you are positive your side is right, try
to find some way to express sympathy and
understanding for the points the other side is making. Often the
problem in a holy war is that because each side has built its walls
as high as possible and made it clear that any other opinion is sheer
foolishness, the act of surrendering or changing one's mind becomes
psychologically unbearable: it would be an admission not just of being
wrong, but of having been certain and still being
wrong. The way you can make this admission palatable for the other
side is to express some uncertainty yourself — precisely by
showing that you understand the arguments they are making and find
them at least sensible, if not finally persuasive. Make a gesture
that provides space for a reciprocal gesture, and usually the
situation will improve. You are no more or less likely to get the
technical result you wanted, but at least you can avoid unnecessary
collateral damage to the project's morale.
When a holy war can't be avoided, decide early how much you
care, and then be willing to publicly give up. When you do so, you
can say that you're backing out because the holy war isn't worth it,
but don't express any bitterness and don't take
the opportunity for a last parting shot at the opposing side's
arguments. Giving up is effective only when done gracefully.
Programming language holy wars are a bit of a special case,
because they are often highly technical, yet many people feel
qualified to take part in them, and the stakes are very high, since
the result may determine what language a good portion of the project's
code is written in. The best solution is to choose the language
early, with buy-in from influential initial developers, and then
defend it on the grounds that it's what you are all comfortable
writing in, not on the grounds that it's better
than some other language that could have been used instead. Never let
the conversation degenerate into an academic comparison of programming
languages; that's a death topic that you must simply
refuse to be drawn into.
For more historical background on holy wars, see http://catb.org/~esr/jargon/html/H/holy-wars.html, and the
paper by Danny Cohen that popularized the term, https://www.ietf.org/rfc/ien/ien137.txt.

The "Noisy Minority" Effect

In any mailing list discussion, it's easy for a small minority
to give the impression that there is a great deal of dissent, by
flooding the list with numerous lengthy emails. It's a bit like a
filibuster, except that the illusion of widespread dissent is even
more powerful, because it's divided across an arbitrary number of
discrete posts and most people won't bother to keep track of who said
what, when. They'll just have a vague impression that the topic
is very controversial and wait for the fuss to die down.
The best way to counteract this effect is to point it out very
clearly and provide quantitative evidence showing how small the actual
number of dissenters is, compared to those in agreement. In order to
increase the disparity, you may want to privately poll people who have
been mostly silent, but who you suspect would agree with the majority.
Don't say anything that suggests the dissenters were deliberately
trying to inflate the impression they were making. Chances are they
weren't, and even if they were, there would be no strategic advantage
to pointing it out. All you need do is show the actual numbers in a
side-by-side comparison, and people will realize that their impression
of the situation does not match reality.
This advice doesn't just apply to issues with clear
for-and-against positions. It applies to any discussion where a fuss
is being made but it's not clear that most people consider the issue
under discussion to be a real problem. After a while, if you agree that
the issue is not worthy of action, and can see that it has failed to
get much traction (even if it has generated a lot of mails), you can
just observe publicly that it's not getting traction. If the "Noisy
Minority" effect has been at work, your post will seem like a breath of
fresh air. Most people's impression of the discussion up to that
point will have been somewhat murky: "Huh, it sure feels like there's
some big deal here, because there sure are a lot of posts, but I can't
see any clear progress happening." By explaining how the form of the
discussion made it appear more turbulent than it really was, you
retrospectively give it a new shape, through which people can recast
their understanding of what transpired.

Don't Bash Competing Open Source Products

Refrain from giving negative opinions about competing open
source software. It's perfectly okay to give negative
facts — that is, easily confirmable
assertions of the sort often seen in honest comparison charts. But
negative characterizations of a less rigorous nature are best avoided,
for two reasons. First, they are liable to start flame wars that
detract from productive discussion. Second, and more importantly,
some of the developers in your project
may turn out to work on the competing project as well, or developers
from the other project may be considering contributing in yours.
This kind of crossover is more likely than it at first might
seem. The projects are already in the same domain (that's why they're
in competition), and developers with expertise in a domain tend to
make contributions wherever their expertise is applicable. Even when
there is no direct developer overlap, it is likely that developers on
your project are at least acquainted with developers on related
projects. Their ability to maintain constructive personal ties could
be hampered by overly negative marketing messages.
Bashing competing closed-source products seems to be somewhat widely
accepted in the open source world. Personally, I deplore this tendency (though again,
there's nothing wrong with straightforward factual comparisons), not
merely because it's rude, but also because it's dangerous for a
project to start believing its own hype and thereby ignore the ways in
which the proprietary competition may be technically superior.
In general, watch out for the effect that your project's
marketing statements can have on your own
development community. People may be so excited at being backed by
marketing dollars that they lose objectivity about their software's
true strengths and weaknesses. It is normal, and even expected, for a
company's developers to exhibit a certain detachment toward marketing
statements, even in public forums. Clearly, they should not come out
and contradict the marketing message directly (unless it's actually
wrong, though one hopes that sort of thing would have been caught
earlier). But they may poke fun at it from time to time, as a way of
bringing the rest of the development community back down to
earth.
See also the related advice in the section called “Don't Bash Competing Vendors' Efforts”.

[88] The second half
of Poul-Henning Kamp's "bikeshed" post, referenced from the section called “The Smaller the Topic, the Longer the Debate”, offers some further thoughts about how to behave
on a busy mailing list.

[89]
https://en.wikipedia.org/wiki/Sunk_cost#Fallacy_effect

Difficult People

Difficult people are no easier to deal with in electronic forums
than they are in person. By "difficult" I don't mean "rude". Rude
people are annoying, but they're not necessarily difficult. This book
has already discussed how to handle them: comment on the rudeness the
first time, and from then on, either ignore them or treat them the same
as anyone else. If they continue being rude, they will usually make
themselves so unpopular as to have no influence on others in the
project, so they are a self-containing problem.[90]
The really difficult cases are people who are not overtly rude,
but who manipulate or abuse the project's processes in a way that ends
up costing other people time and energy yet do not bring any benefit
to the project.[91]
Often, such people look for wedgepoints in the project's
procedures, to give themselves more influence than they might
otherwise have. This is much more insidious than mere rudeness,
because neither the behavior nor the damage it causes is apparent to
casual observers. A classic example is the filibuster, in which
someone (always sounding as reasonable as possible, of course) keeps
claiming that the matter under discussion is not ready for
resolution,[92]
and offers more and more possible solutions, or new viewpoints on old
solutions, when what is really going on is that he senses that a
consensus or a ballot is about to form and he doesn't like where it's
headed. Another example is when there's a debate that won't converge
on consensus, but the group tries to at least clarify the points of
disagreement and produce a summary for everyone to refer to from then
on. The obstructionist, who knows the summary may lead to a result he
doesn't like, will often try to delay even the summary by
relentlessly complicating the question of what should be in it, either
by objecting to reasonable suggestions or by introducing unexpected
new items.
Handling Difficult People

To counteract such behavior, it helps to understand the
mentality of those who engage in it. People generally do not do it
consciously. No one wakes up in the morning and says to himself:
"Today I'm going to cynically manipulate procedural forms in order to
be an irritating obstructionist."
Instead, such behavior is often prompted by a kind of insecurity, a
feeling (not necessarily based in reality) of being shut out of group
interactions and decisions. The person feels he is not being taken
seriously, or, in the more severe cases, that there is almost a
conspiracy against him — that the other project members have decided to
form an exclusive club, of which he is not a member. This then
justifies, in his mind, interpreting rules with maximum literalness and engaging in a
formal manipulation of the project's procedures, in order
to make everyone else take him seriously. In
extreme cases, the person can even believe that he is fighting a
lonely battle to save the project from itself.
It is the nature of such an attack from within that not everyone
will notice it at the same time, and some people may not see it at all
unless presented with very strong evidence. This means that
neutralizing it can be quite a bit of work. It's not enough to
persuade yourself that it's happening; you have to marshal enough
evidence to persuade others too, and then you have to distribute that
evidence in a thoughtful way.
Given that it's so much work to fight, it's often better just to
tolerate it for a while. Think of it like a parasitic but mild
disease: if it's not too debilitating, the project can afford to
remain infected, and medicine might have harmful side effects.
However, when it gets too damaging to tolerate, then it's time for
action. Start gathering notes on the patterns you see. Make sure to
include references to public archives — this is one of the reasons
projects keep records, so you should use them. Once you've
got a good case built, start having private conversations with other
project participants. Don't tell them what you've observed; instead,
first ask them what they've observed. This may be your last chance to
get unfiltered feedback about how others see the troublemaker's
behavior; once you start openly talking about it, opinion will
become polarized and no one will be able to remember what they
formerly thought about the matter.
If private discussions indicate that at least some others see
the problem too, then it's time to do something. That's when you
have to get really cautious, because it's very
easy for this sort of person to make it appear as though you're
picking on them unfairly. Whatever you do, never accuse them of
maliciously abusing the project's procedures, of behaving in a
paranoid manner, or, in
general, of any of the other things that you suspect are probably
true. Your strategy should be to look both more reasonable and more
concerned with the overall welfare of the project than they are, with the goal of
either reforming the person's behavior or getting them to go away
permanently. Depending on the other developers and your relationship
with them, it may be advantageous to gather allies privately first.
Or it may not; that might just create ill will behind the scenes, if
people think you're engaging in an improper whispering
campaign.
Remember that although the other person may be the one behaving
destructively, you will be the one who appears
destructive if you make a public charge that you can't back up. Be
sure to have plenty of examples to demonstrate what you're saying, and
say it as gently as possible while still being direct. You may not
persuade the person in question, but that's okay as long as you
persuade everyone else.

Case study

I remember only a few situations, in almost 30 years of working
in free software, where things got so bad that we actually had to ask
someone to stop posting altogether. In the example I'll use here, the
person was not rude, and sincerely wanted only to be helpful. He just
didn't know when to post and when not to post. Our forums were open to the
public, and he was posting so often, and asking questions on so many
different topics, that it was getting to be a noise problem for the
community. We'd already tried asking him nicely to do a little more
research for answers before posting, but that had no effect.
The strategy that finally worked is a perfect example of how to
build a strong case on neutral, quantitative data. One of the
developers, Brian Fitzpatrick, did some digging in the archives, and
then sent the
following message privately to a few other developers. The offender (the
third name on the list below, shown here as "J. Random") had very
little history with the project, and had contributed no code or
documentation. Yet he was the third most active poster on the mailing
lists:

From: "Brian W. Fitzpatrick" <fitz@collab.net>
To: [... recipient list omitted for anonymity ...]
Subject: The Subversion Energy Sink
Date: Wed, 12 Nov 2003 23:37:47 -0600

In the last 25 days, the top 6 posters to the svn
[dev|users] list have been:

 294 Karl Fogel
 236 "C. Michael Pilato"
 220 "J. Random"
 176 Branko Cibej
 130 Philip Martin
 126 Ben Collins-Sussman

I would say that five of these people are contributing to
Subversion hitting 1.0 in the near future.

I would also say that one of these people is consistently
drawing time and energy from the other 5, not to mention the
list as a whole, thus (albeit unintentionally) slowing the
development of Subversion. I did not do a threaded
analysis, but vgrepping my Subversion mail spool tells me
that every mail from this person is responded to at least
once by at least 2 of the other 5 people on the above list.

I think some sort of radical intervention is necessary here,
even if we do scare the aforementioned person away.
Niceties and kindness have already proven to have no effect.

dev@subversion is a mailing list to facilitate development
of a version control system, not a group therapy session.

-Fitz, attempting to wade through three days of svn mail
 that he let pile up

Though it might not seem so at first, J. Random's behavior was a
classic case of abusing project procedures. He wasn't doing something
obvious like trying to filibuster a vote, but he was taking advantage
of the mailing list's policy of relying on self-moderation by its
members. We left it to each individual's judgement when to post and
on what topics. Thus, we had no procedural recourse for dealing with
someone who either did not have, or would not exercise, such judgement.
There was no rule one could point to and say the person was violating
it, yet everyone except him knew that his frequent posting was getting
to be a serious problem.
Fitz's strategy was, in retrospect, masterful. He gathered
damning quantitative evidence, but then distributed it discreetly,
sending it first to a few people whose support would be key in any
drastic action. They agreed that some sort of action was necessary,
and in the end we called J. Random on the phone, described the problem
to him directly, and asked him to simply stop posting. He never
really did understand the reasons why; if he had been capable
of understanding, he probably would have exercised appropriate
judgement in the first place. But he agreed to stop posting, and the
mailing lists became useable again. Part of the reason this strategy
worked was, perhaps, the implicit threat that we could start
restricting his posts via the forum's moderation features. But the
reason we were able to have that option in reserve was that Fitz had
gathered the necessary support from key people first.

[90]
the section called “Codes of Conduct” discusses how to handle people whose
problematic behavior goes beyond mere rudeness.

[91] For an extended discussion of one
particular subspecies of difficult person, see Amy Hoy's hilariously
on-target https://slash7.com/2006/12/22/vampires/. Quoting Hoy: "It's so regular you
could set your watch by it. The decay of a community is just as
predictable as the decay of certain stable nuclear isotopes. As soon
as an open source project, language, or what-have-you achieves a
certain notoriety — its half-life, if you
will — they swarm in, seemingly
draining the very life out of the community itself.
They are the Help Vampires. And I'm here to stop
them..."

[92] I recently learned the delightful and very
useful term sealioning, which refers to a
particular type of filibuster: repeated insistence that more evidence
is needed, or asking endless questions with the alleged purpose of
clarifying but with the actual purpose of delaying. See https://en.wikipedia.org/wiki/Sealioning. Persons engaging
in sealioning may not even be consciously aware that their behavior is
not actually good-faith participation in debate.

Handling Growth

The price of success is heavy in the open source world. As your
software gets more popular, the number of people who show up looking
for information increases dramatically, while the number of people
able to provide information increases much more slowly. Furthermore,
even if the ratio were evenly balanced, there is still a fundamental
scalability problem with the way most open source projects handle
communications. Consider mailing lists, for example. Most projects
have a mailing list for general user questions — sometimes the
list's name is "users", "discuss", "help", or something else.
Whatever its name, the purpose of the list is always the same: to
provide a place where people can get their questions answered, while
others watch and (presumably) absorb knowledge from observing these
exchanges.
These mailing lists work very well up to a few thousand users
and/or a couple of hundred posts a day. But somewhere after that, the
system starts to break down, because every subscriber sees every post;
if the number of posts to the list begins to exceed what any
individual reader can process in a day, the list becomes a burden to
its members. Imagine, for instance, if Microsoft had such a mailing
list for Windows. Windows has hundreds of millions of users; if
even one-tenth of one percent of them had questions in a given
twenty-four hour period, then this hypothetical list would get
hundreds of thousands of posts per day! Such a list could never
exist, of course, because no one would stay subscribed to it.
This problem is not limited to mailing lists; the same logic applies
to chat rooms, other discussion forums, indeed to any system in
which a group hears questions from individuals. The implications are
ominous: the usual open source model of massively parallelized support
simply does not scale to the levels needed for world
domination.[93]
There is no explosion when forums reach the breaking point.
There is just a quiet negative feedback effect: people unsubscribe
from the lists, or leave the chat room, or at any rate stop
bothering to ask questions, because they can see they won't be heard
in all the noise. As more and more people make this highly rational
choice, the forum's activity will seem to stay at a manageable level.
But it appears manageable precisely because the rational (or at
least, experienced) people have started going elsewhere for
information — while the inexperienced people stay behind and
continue posting. In other words, one side effect of continuing to
use unscalable communications models as a project grows is that the
average quality of communications tends to go
down. As the benefit/cost ratio of using high-population forums
goes down, naturally those with the experience to do so start to look
elsewhere for answers first.
Adjusting communications mechanisms to cope with project growth
therefore involves two related strategies:
	Recognizing when particular parts of a forum are
 not suffering unbounded growth, even
 if the forum as a whole is, and separating those parts
 off into new, more specialized forums (i.e., don't let
 the good be dragged down by the bad).

	Making sure there are many automated sources
 of information available, and that they are kept
 organized, up-to-date, and easy to find.

Strategy (1) is usually not too hard. Most projects start out
with one main forum: a general discussion mailing list, on which
feature ideas, design questions, and coding problems can all be hashed
out. Everyone involved with the project is in that forum. After a
while, it usually becomes clear that the list has evolved into several
distinct topic-based sublists. For example, some threads are clearly
about development and design; others are user questions of the "How do
I do X?" variety; maybe there's a third topic family centered around
processing bug reports and enhancement requests; and so on. A given
individual, of course, might participate in many different thread
types, but the important thing is that there is not a lot of overlap
between the types themselves. They could be divided into separate
forums without causing harmful balkanization, because the threads
rarely cross topic boundaries.
Actually doing this division is a two-step process. You create
the new list (or chat room, or whatever it is to be), and then you
spend whatever time is necessary gently nagging and reminding people
to use the new forums appropriately. That latter
step can last for weeks, but eventually people will get the idea. You
simply have to make a point of always telling the sender when a post
is sent to the wrong destination, and doing so visibly, so that other
people are encouraged to help out with routing. It's also useful to
have a web page providing a guide to all the forums available; your
responses can simply reference that web page and, as a bonus, the
recipient may learn something about looking for guidelines before
posting.
Strategy (2) is an ongoing process, lasting the lifetime of the
project and involving many participants. Of course it is partly a
matter of having up-to-date documentation (see
the section called “Documentation”) and making sure to
point people there. But it is also much more than that; the sections
that follow discuss this strategy in detail.
Conspicuous Use of Archives

Typically, all communications in an open source project, except
private chat conversations, are archived. The archives are public
and searchable, and have referential stability: that is, once a given
piece of information is recorded at a particular address (URL), it
stays at that address forever.
Use those archives as much as possible, and as conspicuously as
possible. Even when you know the answer to some question off the top
of your head, if you think there's a reference in the archives that
contains the answer, spend the time to dig it up and present it.
Every time you do that in a publicly visible way, some people learn
for the first time that the archives are there, and that searching in
them can produce answers. Also, by referring to the archives instead
of rewriting the advice, you reinforce the social norm against
duplicating information. Why have the same answer in two different
places? When the number of places it can be found is kept to a
minimum, people who have found it before are more likely to remember
what to search for to find it again. Well-placed references also
contribute to improving search results, because they
strengthen the targeted resource's ranking in Internet search
engines.
There are times when duplicating information makes sense,
however. For example, suppose there's a response already in the
archives, not from you, saying:

It appears that your Scanley indexes have become frobnicated.
To unfrobnicate them, run these steps:

1. Shut down the Scanley server.
2. Run the 'defrobnicate' program that ships with Scanley.
3. Start up the server.

Then, months later, you see another post indicating that
someone's indexes have become frobnicated. You search the archives
and come up with the old response above, but you realize it's missing
some steps (perhaps by mistake, or perhaps because the software has
changed since that post was written). The classiest way to handle
this is to post a new, more complete set of instructions, and
explicitly obsolete the old post by mentioning it:

It appears that your Scanley indexes have become frobnicated.
We saw this problem back in July, and J. Random posted a
solution at http://blahblahblah/blah. Below is a more
complete description of how to unfrobnicate your indexes,
based on J. Random's instructions but extending them a bit:

1. Shut down the Scanley server.
2. Become the user the Scanley server normally runs as.
3. Run the 'defrobnicate' program on the indexes.
4. Run Scanley by hand to see if the indexes work now.
5. Restart the server.

(In an ideal world, it would be possible to attach a note to the
old post, saying that there is newer information available and
pointing to the new post. However, I don't know of any archiving
software that offers an "obsoleted by" tag. This is another reason
why creating dedicated web pages with answers to common questions is a
good idea.[94]
)
Archives are probably most often searched for answers to
technical questions, but their importance to the project goes well
beyond that. If a project's formal guidelines are its statutory law,
the archives are its common law: a record of all decisions made and
how they were arrived at. In any recurring discussion, it's pretty
much obligatory nowadays to start with an archive search. This allows
you to begin the discussion with a summary of the current state of
things, anticipate objections, prepare rebuttals, and possibly
discover angles you hadn't thought of. Also, the other participants
will expect you to have done an archive search.
Even if the previous discussions went nowhere, you should include
pointers to them when you re-raise the topic, so people can see for
themselves a) that they went nowhere, and b) that you did your
homework, and therefore are probably saying something now that has not
been said before.
Treat All Resources Like Archives

All of the preceding advice applies to more than just mailing
list archives. Having each particular piece of information be located
at a stable, conveniently findable address (or
permalink) should be an organizing principle
for all of the project's information. Let's take the project FAQ as a
case study.
How do people use a FAQ?
	They want to search in it for specific words and phrases.
Therefore: the FAQ should be available in some
 sort of textual format.

	They expect search engines such as Google to know about the
 FAQ's content, so that searches can result in FAQ entries.
Therefore: the FAQ should be available as a web
 page.

	They want to browse it, soaking up information without
 necessarily looking for answers to specific questions.
Therefore: the FAQ should not only be available as
 a web page, it should be designed for easy browsability and
 have a table of contents.

	They want to be able to refer other people directly to specific
 items in the FAQ.
Therefore: each
 individual entry in the FAQ should be reachable via a
 unique URL (e.g., using HTML IDs and named anchors, which are tags
 that allow people to reach a particular location on the
 page).

	They want to be able to add new material to the FAQ, though
 note that this happens much less often than answers are
 looked up — FAQs are far more often read from than
 written to.
Therefore: the source files for the FAQ should be
 conveniently available (see the section called “Version Everything”), in a format that's
 easy to edit.

Formatting the FAQ like this is just one example of how to make
a resource presentable. The same properties — direct
searchability, availability to major Internet search engines,
browsability, referential stability, and (where applicable)
editability — apply to other web pages, to the source code tree,
to the bug tracker, to Q&A forums, etc. It just happens that most
mailing list archiving software long ago recognized the importance of
these properties, which is why mailing lists tend to have this
functionality natively, while other formats may require a little extra
effort on the maintainer's part. Chapter 8, Managing Participants discusses how to spread that
maintenance burden across many participants.

Codifying Tradition

As a project acquires history and complexity, the amount of data
each new incoming participant must absorb increases. Those who have been
with the project a long time were able to learn, and invent, the
project's conventions as they went along. They will often not be
consciously aware of what a huge body of tradition has accumulated, and
may be surprised at how many missteps recent newcomers seem to make.
Of course, the issue is not that the newcomers are of any lower
quality than before; it's that they face a bigger acculturation burden
than newcomers did in the past.
The traditions a project accumulates are as much about how to
communicate and organize information as they are about coding
standards and other technical minutiae. We've already looked at both
sorts of standards, in
the section called “Developer Documentation” and
the section called “Writing It All Down” respectively, and
examples are given there. What this section is about is how to keep
such guidelines up-to-date as the project evolves, especially
guidelines about how communications are managed, because those are the
ones that change the most as the project grows in size and
complexity.
First, watch for patterns in how people get confused. If you
see the same situations coming up over and over, especially with new
participants, chances are there is a guideline that needs to be
documented but isn't. Second, don't get tired of saying the same
things over and over again, and don't sound like
you're tired of saying them. You and other project veterans will have
to repeat yourselves often; this is an inevitable side effect of the
arrival of newcomers.
Every web page, every mailing list message, and every chat room
should be considered advertising space — not for commercial
advertisements, but for ads about your project's own resources. What
you put in that space depends on the demographics of those likely to
read it. An chat room for user questions, for example, is likely to
get people who have never interacted with the project
before — often someone who has just installed the software, and
has a question she'd like answered immediately (after all, if it
could wait, she'd have sent it to a mailing list instead, which would
probably use less of her total time, although it would take longer
for an answer to come back). Most people don't make a permanent
investment in a support chat; they show up, ask their question,
and leave.
Therefore, the room's topic banner[95] should be aimed at people looking
for technical answers about the software right
now, rather than at, say, people who might get involved
with the project in a long term way and for whom community interaction
guidelines might be more appropriate.
With mailing lists, the "ad space" is a tiny footer appended to
every message. Most projects put subscription/unsubscription
instructions there, and perhaps a pointer to the project's home page
or FAQ page as well. You might think that anyone subscribed to the
list would know where to find those things, and they probably
do — but many more people than just subscribers see those mailing
list messages. An archived post may be linked to from many places;
indeed, some posts become so widely known that they eventually have
more readers off the list than on it.
Formatting can make a big difference. For example, in the
Subversion project, we were having limited success using the
bug-filtering technique described in
the section called “Pre-Filtering the Bug Tracker”. Many bogus
bug reports were still being filed by inexperienced people, because
Subversion was experiencing dramatic user growth, and each
time it happened, the filer had to be educated in exactly the same way
as the 500 people before him. One day, after one of our developers had
finally gotten to the end of his rope and flamed some poor user who
didn't read the ticket tracker guidelines carefully enough, another
developer decided this pattern had gone on long enough. He suggested
that we reformat the ticket tracker front page so that the most
important part, the injunction to discuss the bug on the mailing lists
or chat rooms before filing, would stand out in huge, bold red
letters, on a bright yellow background, centered prominently above
everything else on the page. We did so (it's been reformatted a bit
since then, but it's still very prominent — you can see the results at
https://subversion.apache.org/reporting-issues.html), and
the result was a noticeable drop in the rate of bogus ticket filings.
The project still got them, of course, but the rate
slowed considerably, even as the number of users increased. The
outcome was not only that the bug database contained less junk, but that
those who responded to ticket filings stayed in a better mood, and were more
likely to remain friendly when responding to one of the now-rare bogus
filings. This improved both the project's image and the mental health
of its participants.
The lesson for us was that merely writing up the guidelines was
not enough. We also had to put them where they'd be seen by those who
need them most, and format them in such a way that their status as
introductory material would be immediately clear to people unfamiliar
with the project.
Static web pages are not the only venue for advertising the
project's customs. A certain amount of interactive monitoring (in the
friendly-reminder sense, not the prison-panopticon sense) is also
required. All peer review, even the commit reviews described in
the section called “Practice Conspicuous Code Review”, should include review
of people's adherence to project norms,
especially with regard to communications conventions.
Another example from the Subversion project: we settled on a
convention of "r12908" to mean "revision 12908 in the version control
repository." The lower-case "r" prefix is easy to type, and because
it's half the height of the digits it makes an easily-recognizable
block of text when combined with the digits. Of course, settling on
the convention doesn't mean that everyone will begin using it
consistently right away. Thus, when a change comes in with a commit
message like this:

Typo fixes from J. Random Contributor

* trunk/contrib/client-side/psvn/psvn.el:
 Fixed some typos from revision 12828.

...part of reviewing that commit is to say "By the way, please
use 'r12828', not 'revision 12828' when referring to past changes."
This isn't just pedantry; it's important as much for automatic
parsability as for human readership.[96]
By following the general principle that there should be
canonical referral methods for common entities, and that these
referral methods should be used consistently everywhere, the project
in effect exports certain standards. Those standards enable people to
write tools that present the project's communications in more useable
ways — for example, a revision formatted as "r12828" could be
transformed into a live link into the repository browsing system.
This would be harder to do if the revision were written as "revision
12828", both because that form could be divided across a line break,
and because it's less distinct (the word "revision" will often appear
alone, and groups of numbers will often appear alone, whereas the
combination "r12828" can only mean a revision number). Similar
concerns apply to ticket numbers, FAQ items, etc.[97]

(Note that for Git commit IDs, the widely-accepted standard
syntax is "commit c03dd89305, that is, the word
"commit", followed by a space, followed by the first 8-10 characters
of the commit hash. Some very busy projects have standardized on 12
characters, to avoid collisions; the only time all 40 characters of
the hash are used is in non-human-readable contexts, like saving a
commit ID in an automated release-tracking system or something.)
Even for entities where there is not an obvious short, canonical
form, people should still be encouraged to provide key pieces of
information consistently. For example, when referring to a mailing
list message, don't just give the sender and subject; also give the
archive URL and the Message-ID header. The last
allows people who have their own copy of the mailing list (people
sometimes keep offline copies, for example to use on a laptop while
traveling) to unambiguously identify the right message in a search even if they
don't have access to the online archives. The sender and subject wouldn't be
enough, because the same person might make several posts in the same
thread, even on the same day.
The more a project grows, the more important this sort of
consistency becomes. Consistency means that everywhere people look,
they see the same patterns being followed, and start to follow
those patterns themselves. This, in turn, reduces the number of
questions they need to ask. The burden of having a million readers is
no greater than that of having one; scalability problems start to
arise only when a certain percentage of those readers ask questions.
As a project grows, therefore, it must reduce that percentage by
increasing the density and findability of information, so that any
given person is more likely to find what she needs without having to
ask.

[93] An interesting experiment would be a
probablistic mailing list, that sends each new thread-originating post
to a random subset of subscribers, based on the approximate traffic
level they signed up for, and keeps just that subset subscribed to the
rest of the thread; such a forum could in theory scale without limit.
If you try it, let me know how it works out.

[94] Many technical questions about open source
software also have answers posted on Stack Overflow (https://stackoverflow.com/), a
collaborative knowledge-sharing site. If you happen to know about an
item on Stack Overflow that needs to be updated due to changes in the
software, then posting the new answer in that item may be worthwhile.
Stack Overflow is often the first place people go to find answers, and
its answers tend to rank very highly in search
engines, at least as of this writing in early 2022 and for some years
preceding.

[95] Not all chat
platforms support per-room topic banners. The advice given here
applies only to those that do.

[96] For more about
how to write good commit messages, see Chris Beams' excellent post
"How to Write a Git Commit Message" at https://chris.beams.io/posts/git-commit/. Many projects refer to that
post as their baseline standard for commit
messages.

[97] A
more extended example of the kinds of benefits such standards make
possible is the Contribulyzer example mentioned in the section called “The Automation Ratio”.

Choose the Right Forum

One of the trickiest things about managing an open source
project is getting people to be thoughtful about which forum they
choose for different kinds of communications. It's tricky partly
because it's not immediately obvious that it matters. During any
given conversation, the participants are mostly concerned with what
the people involved are saying, and won't usually stop to think about
whether or not the forum itself gives others who
might want to take part the opportunity to do
so.
For example, a real-time forum like chat is terrific for quick
questions, for opportunistic synchronization of work, for reminding
someone of something they promised to do, etc. But it's not a good
forum for making decisions that affect the whole project, because the
people who take part in a conversation in chat are just whoever
happened to be in the room at that moment — which is
very dependent on work schedules, time zones, etc. On the other hand,
the development mailing list is a great place for making formal
project-wide decisions, since it's archived and every interested party will have an
opportunity to see and respond to the relevant posts, even though email is
not as well-suited to quick, real-time interactions as chat is.
Another example comes up frequently in bug tracker usage,
especially in the last decade or so as bug trackers have become
well-integrated with email. Sometimes people will be drawn into a
discussion in a bug ticket[98] and because they simply see project-related
emails coming in to their email client, they treat the discussion as
though it's happening on the real development list. But it's not:
anyone who wasn't watching that bug and who wasn't explicitly invited
into the conversation usually won't even be aware it's happening. If
things are discussed in that bug ticket that go beyond the scope of
just that one bug, those things will be discussed without input from
people who should have had at least the chance to participate.
The solution to this is to encourage conscious, intentional
forum changes. If a discussion starts to get into questions beyond
the scope of its original forum, then at some point someone involved
should ask that the conversation move over to the main development
list or some other more appropriate forum.
It's not enough for you to do this on your own. You have to
create a culture where it's normal for everyone to do it, so everyone
thinks about forum appropriateness as a matter of course, and feels
comfortable raising questions of forum whenever necessary in any
discussion. Obviously, documenting the practice will help (see the section called “Writing It All Down”), but you'll probably also
need to remind people of it often, especially when your project is
starting out. A good rule of thumb is: if the conversation looks
convergent, then it's okay to keep it in the bug ticket or other
original forum. But if it looks likely to diverge (e.g.,
widening into philosophical issues about how the software should
behave, or raising design issues that go beyond just the one bug)
for a while before it converges, then ask that the discussion be moved
to a better forum, usually the development mailing list.
Cross-Link Between Forums

When a discussion moves from one place to another, cross-link
between the old and new place. For example, if discussion moves from
the ticket tracker to the mailing list, link to the mailing list
thread from the ticket, and mention the original ticket at the start
of the new list thread. It's important for someone following the
ticket to be able to reach the later discussion; it's also important
for someone who encounters the ticket a year later to be able to
follow to where the conversation went to in the mailing list archives.
The person who does the move may find this cross-linking slightly
laborious, but open source is fundamentally a writer-responsible
culture. It's more important to make things easy for the tens or
hundreds of people who may read the bug than for the three or five
people writing about it.
It's also fine to take important conclusions or summaries from
the list discussion and paste them into the ticket at the end, if that
will make things convenient for readers. A common idiom is to move
discussion to the mailing list, put a link to that thread in the
ticket, and then when the discussion finishes, paste the final summary
into the ticket (along with a link to the message containing that
summary), so someone browsing the ticket later can easily see what
conclusion was reached without having to click to somewhere else or do
detective work. Note that the usual "two masters" data duplication
problem does not exist here, because both archives and ticket comments
are usually treated as static and unchangeable anyway.

[98] For example, on GitHub,
simply mentioning someone's GitHub account name with an @-sign (e.g.,
@kfogel) in a comment on a ticket will cause that person
to be added to the email thread associated with that
ticket.

Publicity

In free software, there is a fairly smooth continuum between
purely internal discussions and public relations statements. This is
partly because the target audience is not strictly bounded: because
posts are publicly accessible, the project doesn't have
full control over the impression the world gets. Someone — say, a
https://news.ycombinator.com/
poster or https://slashdot.org/
editor — may draw millions of readers' attention to a post that no
one ever expected to be seen outside the project. This is a fact of
life that all open source projects live with, but in practice, the
risk is usually small. In general, the announcements that the project
wants most publicized most are the ones that will be most publicized,
assuming you use the right mechanisms to indicate relative
newsworthiness to the outside world.
Announcing Releases and Other Major Events

For major announcements, there tend to be a few main channels of
distribution, in which announcements should be made as nearly
simultaneously as possible:
	Your project's front page is probably seen by more
 people than any other part of the project. If you have a
 really major announcement, put a blurb there. The blurb
 should be a very brief synopsis that links to the press
 release (see below) for more information.

	At the same time, you should also have a "News" or
 "Press Releases" area of the web site, where the
 announcement can be written up in detail. Part of the
 purpose of a press release is to provide a single,
 canonical "announcement object" that other sites can link
 to, so make sure it is structured accordingly: either as
 one web page per release, as a discrete blog entry, or
 as some other kind of entity that can be linked to while
 still being kept distinct from other press releases in the
 same area.

	Make sure the announcement gets broadcast by any
 relevant Twitter or other microblog handles, and goes out on any news
 channels and RSS feeds. (The latter should happen
 automatically when you publish the announcement, if things
 are set up properly.)

	Post to forums as appropriate, in the manner
 described in
 the section called “Announcing”).

	Send a mail to your project's announcement mailing
 list. This list's name should actually be "announce",
 that is, announce@yourprojectdomain.org,
 because that's a fairly standard convention now, and the
 list's charter should make it clear that it is very
 low-traffic, reserved for major project announcements.
 Most of those announcements will be about new releases of
 the software, but occasionally other events, such as a
 fundraising drive, the discovery of a security
 vulnerability (see
 the section called “Announcing Security Vulnerabilities”), or a
 major shift in project direction may be posted there as
 well. Because it is low traffic and used only for
 important things, the announce list
 typically has the highest subscribership of any mailing
 list in the project (of course, this means you shouldn't
 abuse it — consider carefully before posting). To
 avoid random people making announcements, or worse, spam
 getting through, the announce list must
 always be moderated.

Try to make the announcements in all these places at the same
time, as nearly as possible. People might get confused if they see an
announcement on the mailing list but then don't see it reflected on
the project's home page or in its press releases area. If you get the
various changes (emails, web page edits, etc) queued up and
then send them all in a row, you can keep the window of inconsistency
very small.
For a less important event, you can eliminate some or all of the
above outlets. The event will still be noticed by the outside world
in direct proportion to its importance. For example, while a new
release of the software is a major event, merely setting the date of
the next release, while still somewhat newsworthy, is not nearly as
important as the release itself. Setting a date is worth an email to
the daily mailing lists (not the announce list), and an update of the
project's timeline or status web page, but no more.
However, you might still see that date appearing in discussions
elsewhere on the Internet, wherever there are people interested in the
project. People who are lurkers on your mailing lists, just listening
and never saying anything, are not necessarily silent elsewhere. Word
of mouth gives very broad distribution; you should count on it, and
construct even minor announcements in such a way as to encourage
accurate informal transmission. Specifically, posts that you expect
to be quoted should have a clearly meant-to-be-quoted portion, just as
though you were writing a formal press release. For example:
Just a progress update: we're planning to release
 version 2.0 of Scanley in mid-August 2022. You can always check
 http://www.scanley.org/status.html for updates. The major new
 feature will be regular-expression searches.
Other new features include: ... There will
 also be various bugfixes, including: ...

The first paragraph is short, gives the two most important
pieces of information (the release date and the major new feature),
and a URL to visit for further news. If that paragraph is the only
thing that crosses someone's screen, you're still doing pretty well.
The rest of the mail could be lost without affecting the gist of the
content. Of course, sometimes people will link to the entire mail
anyway, but just as often, they'll quote only a small part. Given that
the latter is a possibility, you might as well make it easy for them,
and in the bargain get some influence over what gets quoted.

Announcing Security Vulnerabilities

Handling a security vulnerability is different from handling any
other kind of bug report. In free software, doing things openly and
transparently is normally almost a religious credo. Every step of the
standard bug-handling process is visible to all who care to watch: the
arrival of the initial report, the ensuing discussion, and the
eventual fix.
Security bugs are different. They can compromise users' data,
and possibly users' entire computers. To discuss such a problem
openly would be to advertise its existence to the entire
world — including to all the parties who might make malicious use
of the bug. Even merely committing a fix effectively announces the
bug's existence (there are organizations who watch the commit
logs of public projects, systematically looking for changes that
indicate security problems in the pre-change code; these organizations
do not have your users' interests in mind).
Most open source projects have settled on approximately the same
set of steps to handle this conflict between openness and secrecy,
based on these basic guidelines:
	Don't talk about the bug publicly until a fix is
 available, and then supply the fix publicly at the same
 instant you announce the bug.
It may make sense to supply the fix by packaging it
 as a release, or it may be enough to just commit it to the
 project's public repository. Whichever of those you you
 do, doing it effectively announces the vulnerability, so
 your formal announcement should go out in tandem with that
 fix.

	Come up with that fix as fast as you
 can — especially if someone outside the project
 reported the bug, because then you know there's at least
 one person outside the project who is able to exploit the
 vulnerability.

In practice, those principles lead to a fairly standardized
series of steps, which are described in the sections below.
Receive the Report

Obviously, a project needs the ability to receive security bug
reports from anyone. But the regular bug reporting channels won't do,
because they can be watched by anyone too. Therefore, have a separate
mailing list or contact form for receiving security bug reports. That
forum must not have publicly readable archives, and its subscribership
must be strictly controlled — only long-time, trusted developers
can be on the list, and people whom such developers have consensus
that they trust.[99] (If you need a formal definition of "trusted
developer", you can use "anyone who has had commit access for two
years or more" or something like that, to avoid favoritism.) This is
the group that will handle security bugs.
Ideally, that reporting gateway should not be spam-protected or
moderated, since you don't want an urgent report to get filtered
out or delayed just because no moderators happened to be online that
weekend. If you do use automated spam-protection software, try to
configure it with high-tolerance settings; it's better to let a few spams
through than to miss a vulnerability report.
The submission mechanism should itself be secure. That is, if
it is a contact form, it should be on an https://
(TLS-protected) page, or if it is an email address, there should be a
well-advertised public key (digitally signed by as many of the core
developers as possible) so people can send encrypted mails to that
address.[100] A web form submission
or an email sent to your project may travel over many Internet hops on
its way there; you have no reason to trust whoever runs those
intermediate servers, and there is a flourishing market for new
security vulnerabilities. Assume the worst and design
accordingly.

Develop the Fix Quietly

So what does the security list do when it receives a report?
The first task is to evaluate the problem's severity and
urgency:
	How serious is the vulnerability? Does it allow a
 malicious attacker to take over the computer of someone
 who uses your software? Or does it, say, merely leak
 information about the sizes of some of their files?

	How easy is it to exploit the vulnerability? Can
 an attack be scripted, or does it require circumstantial
 knowledge, educated guessing, and luck?

	Who reported the problem to
 you? The answer to this question doesn't change the
 nature of the vulnerability, of course, but it does give
 you an idea of how many other people might know about it.
 If the report comes from one of the project's own
 developers, you can breathe a little easier (but only a
 little), because you can trust them not to have told
 anyone else about it. On the other hand, if it came in an
 email from anonymous14@globalhackerz.net,
 then you'd better act as fast as you can. The person did
 you a favor by informing you of the problem at all, but you
 have no idea how many other people she's told, or how long
 she'll wait before exploiting the vulnerability on live
 installations.

Note that the difference we're talking about here is often just
a narrow range between urgent
and extremely urgent. Even when the report
comes from a known, friendly source, there could be other people on
the Net who discovered the bug long ago and just haven't reported it.
The only time things aren't urgent is when the bug inherently does not
compromise security very severely.
The "anonymous14@globalhackerz.net" example
is not facetious, by the way (though that particular email address is).
You really may get bug reports from
identity-cloaked people who, by their words and behavior, never quite
clarify whether they're on your side or not. It doesn't matter: if
they've reported the security hole to you, they'll feel they've done
you a good turn, and you should respond in kind. Thank them for the
report, give them a date on or before which you plan to release a
public fix, and keep them in the loop. Sometimes they may
give you a date — that is, an implicit threat
to publicize the bug on a certain date, whether you're ready or not.
This may feel like a bullying power play, but it's more likely a
preëmptive action resulting from past disappointment with
unresponsive software producers who didn't take security reports
seriously enough. Either way, you can't afford to tick this person
off. After all, if the bug is severe, she has knowledge that could
cause your users big problems. Treat such reporters well, and hope
that they treat you well.
Another frequent reporter of security bugs is the security
professional, someone who audits code for a living and keeps up on the
latest news of software vulnerabilities. These people usually have
experience on both sides of the fence — they've both received and
sent reports, probably more than most developers in your project have.
They too will usually give a deadline for fixing a vulnerability
before going public. The deadline may be somewhat negotiable, but
that's up to the reporter; deadlines have become recognized among
security professionals as pretty much the only reliable way to get
organizations to address security problems promptly. So don't treat
the deadline as rude; it's a time-honored tradition, and there are
good reasons for it. Negotiate if you absolutely must, but remember
that the reporter holds all the cards.
Once you know the severity and urgency, you can start working on
a fix. There is sometimes a tradeoff between doing a fix elegantly
and doing it speedily; this is why you must agree on the urgency
before you start. Keep discussion of the fix restricted to the
security list members, of course, plus the original reporter (if she
wants to be involved) and any developers who need to be brought in for
technical reasons.
Do not commit the fix to any public
repository before the go-public date. If you were to
commit it publicly, even with an
innocent-looking log message, someone might notice and understand the
change. You never know who is watching your repository and why they
might be interested. Turning off commit emails wouldn't help; first
of all, the gap in the commit mail sequence would itself look
suspicious, and anyway, the data would still be in the repository.
Just do all development in some private place known only to the people
already aware of the bug.

CVE Numbers

You may have seen a CVE number associated
with a particular security problems — e.g., a number
like "CVE-2014-0160", where the first numeric part is the year, and
the second is an increasing sequence number (it may exceed four digits
if more than 10,000 numbers are handed out in a given year).
A CVE number is an entry in the "Common Vulnerabilities and
Exposures" list maintained at https://www.cve.org/.[101] The purpose of the list is to a provide
standardized name for every known computer security problem, so that
everyone has a unique, canonical name to use when discussing it, and a
central place to go to find out more information.[102]
A CVE entry does not itself contain a full description of the
bug and how to protect against it. Instead, it contains a brief
summary, and a list of references to external resources (such as a
announcement post from the project in question) where people can go to
get more detailed information. The real purpose of https://www.cve.org/ is to provide a
well-organized space in which every vulnerability has a single name,
and people have a clear route to get more data about it. See https://www.cve.org/CVERecord?id=CVE-2014-0160 for an
example of an entry.
If your vulnerability meets the criteria, you may wish to obtain
a CVE number for it. You can request one using the instructions at
https://www.cve.org/ResourcesSupport/ReportRequest, but if there is someone in
your project who has already obtained CVE numbers, or who knows
someone who has, let them do it. The CVE Program gets a lot of
submissions, many of them spurious or poorly formed; by submitting
through an experienced and trusted source, you will save everyone time
and possibly get your CVE number assigned more quickly. The other
advantage of doing it this way is that somewhere along the chain,
someone may know enough to tell you that a) it wouldn't count as a
vulnerability or exposure according to the official criteria, so there is
no point submitting it, or b) the vulnerability already
has a CVE number. The latter can happen if the
bug has already been published on another security advisory list
(and if that happened without your project hearing about it, then you
should worry what else might be going on that you don't know
about.)
If you get a CVE number at all, you usually want to get it in
the early stages of your bug investigation, so that all further
communications can refer to that number. The entry won't become
public right away — see https://www.cve.org/About/Process
for how and when public disclosure happens — but the
number will be reserved, and that in itself makes coordination and
management of the vulnerability easier.

Common Vulnerability Scoring System (CVSS) Scores

Describing the severity of a vulnerability accurately is
actually a difficult task. Does the vulnerability require physical
access to the computer, or is network access enough? Does it require
an authenticated user or not? Is it technically difficult to exploit,
or can any bored teenager with some coding skills run it? Does it
affect data integrity? Does it cause the software to crash?
Therefore, don't try to improvise language for expressing
severity. Instead, use the Common Vulnerability Scoring
System (CVSS) developed by the
National Vulnerability Database at the U.S. National Institute of
Standards: https://nvd.nist.gov/vuln-metrics/cvss
NVD has thought very carefully about how to accurately and
completely characterize severity for digital vulnerabilities, and
their standardized expression format has become a standard in computer
security. You can see an example in the "Severity:" section of the
sample pre-notification email in the section called “Pre-Notification” below.

Pre-Notification

Once your security response team (that is, those developers who
are on the security mailing list, or who have been brought in to deal
with a particular report) has a fix ready, you need to decide how to
distribute it.
If you simply commit the fix to your repository, or otherwise
announce it to the world, you effectively force everyone using your
software to upgrade immediately or risk being hacked. It is sometimes
appropriate, therefore, to do pre-notification
for certain important users.
Pre-notification is somewhat controversial, because it
privileges some users over others. I personally think there are some
circumstances where it is the right choice, particularly when there
are well-known online services that use the software and that are
tempting targets for attackers (perhaps because those services hold a
lot of commercial or personal data about users). Those service's
administrators would appreciate having an extra day or two to do the
upgrade, so that they are already protected by the time the exploit
becomes public knowledge — and their users, if they
knew about this at all, would appreciate it too.
Pre-notification simply means contacting those administrators
privately before the go-public date, telling them of the vulnerability
and how to fix it. You should send pre-notification only to people
you trust to be discreet with the information, and with whom you can
communicate securely. That is, the qualification for receiving
pre-notification is threefold: the recipient must run a large,
important service where a compromise would be a serious matter; the
recipient must be known to be someone who won't blab about the
security problem before the go-public date; and you must have a way to
communicate securely with the recipient, so that any eavesdroppers
between you and your recipient can't read the
message.[103]
Pre-notification should be done via secure means. If email,
then encrypt it, for the same reasons explained in the section called “Receive the Report”, but if you have a phone number or
other out-of-band secure way to contact the administrator, use that.
When sending encrypted pre-notification emails, send them individually
(one at a time) to each recipient. Do not send
to the entire list of recipients at once, because then they would see
each others' names — meaning that you would essentially be
alerting each recipient to the fact that each
other recipient may have a security hole in her
service. Sending it to them all via blind CC (BCC) isn't a good
solution either, because some admins protect their inboxes with spam
filters that either block or reduce the priority of BCC'd mail, since
so much spam is sent via BCC.
Here's a sample pre-notification mail:

From: Your Name Here
To: admin@large-famous-server.com
Reply-to: Your Address Here (not the security list's address)
Subject: Confidential notification regarding a security vulnerability.

[[[BEGIN ENCRYPTED AND DIGITALLY-SIGNED MAIL]]]

This email is a confidential pre-notification of a security
alert in the Scanley server software.

Please *do not forward* any part of this mail to anyone.
The public announcement is not until May 19th, and we'd like
to keep the information embargoed until then.

You are receiving this mail because (we think) you run a
Scanley server, and would want to have it patched before
this security hole is made public on May 19th.

References:
===========

 CVE-2022-892346: Scanley stack overflow in queries

Vulnerability:
==============

 The server can be made to run arbitrary commands if the
 server's locale is misconfigured and the client sends a
 malformed query.

Severity:
=========

 CVSSv2 Base Score: 9.0
 CVSSv2 Base Vector: AV:N/AC:L/Au:N/C:C/I:C/A:C

 (See https://nvd.nist.gov/CVSS/Vector-v2.aspx for how to
 interpret these expressions.)

Workarounds:
============

 Setting the 'natural-language-processing' option to 'off'
 in scanley.conf closes this vulnerability.

Patch:
======

 The patch below applies to Scanley 3.0, 3.1, and 3.2.

 A new public release (Scanley 3.2.1) will be made on or
 just before May 19th, so that it is available at the same
 time as this vulnerability is made public. You can patch
 now, or just wait for the public release. The only
 difference between 3.2 and 3.2.1 will be this patch.

[...patch goes here...]

If you have a CVE number, include it in the pre-notification (as
shown above), even though the information is still embargoed and
therefore the corresponding MITRE page will show nothing at the time
of pre-notification. Including the CVE number allows the recipient to
know with certainty that the bug they were pre-notified about is the
same one they later hear about through public channels, so they don't
have to worry whether further action is necessary or not, which is
precisely the point of CVE numbers.

Distribute the Fix Publicly

The last step in handling a security bug is to distribute the
fix publicly. In a single, comprehensive announcement, you should
describe the problem, give the CVE number if any, describe how to
work around it, and how to permanently fix it. Usually "fix" means
upgrading to a new version of the software, though sometimes it can
mean applying a patch, particularly if the software is normally run in
source form anyway. If you do make a new release, it should differ
from some existing release by exactly the security patch. That way,
conservative admins can upgrade without worrying about what else they
might be affecting; they also don't have to worry about future upgrades,
because the security fix will be in all future releases as a matter of
course. (Details of release procedures are discussed in
the section called “Security Releases”.)
Whether or not the public fix involves a new release, do the
announcement with roughly the same priority as you would a new
release: send a mail to the project's announce
list, make a new press release, etc. While you should never try to
play down the existence of a security bug out of concern for the
project's reputation, you may certainly set the tone and prominence of
a security announcement to match the actual severity of the problem.
If the security hole is just a minor information exposure, not an
exploit that allows the user's entire computer to be taken over, then
it may not warrant a lot of fuss. See https://www.cve.org/ResourcesSupport/Glossary for a good
introduction to how to think about and discuss vulnerabilities.
In general, if you're unsure how to treat a security problem,
find someone with experience and talk to them about it. Assessing and
handling vulnerabilities is very much an acquired skill, and it's easy
to make missteps the first few times.

Further Reading on Handling Security Vulnerabilities

	https://www.cve.org/
 is the official source of information about the CVE process.

	https://www.debian.org/security/cve-compatibility is a particularly
 clear exposition of one open source project's use of CVE numbers.

	The post "A minimal security response process" at
 https://access.redhat.com/blogs/766093/posts/1975833
 is a good writeup from a security engineer at RedHat.

	The Apache Software Foundation's guidelines on
 handling security vulnerabilities at https://www.apache.org/security/committers.html are are an
 excellent checklist that you can compare against to see if you're
 doing everything carefully.

[99] E.g., a release manager who maybe isn't
a core developer but who is already trusted to roll releases anyway.
I've seen cases where companies who had been long involved in a project
had managers as members of the project's security group, even though
those managers had never committed a line of code, because by common
consent the project's maintainers trusted them and felt it was to the
project's benefit for them to see vulnerability reports as soon as
possible. There is no one rule that will be appropriate for all projects,
but in general, the core maintainers should follow the principle that
anyone who receives security reports must be trustable both in terms
of intention and in terms of their technical ability to not
accidentally leak information (e.g., someone whose email gets hacked
regularly should probably not be on the security
list).

[100] If you don't know what all of these terms
mean, find people you trust who do and get them to help your project.
Handling security vulnerablities competently requires a working
knowledge of these concepts.

[101] Formerly at
https://cve.mitre.org/,
so if you're accustomed to the older URL, note that the site is
transitioning to www.cve.org. The transition
started in late September 2021 and is planned to be completed within
one year.

[102] In
the past, a CVE number would start out as a CAN number ("CAN" for
"candidate") until it was approved for inclusion in the official list,
at which point the "CAN" would be replaced with "CVE" while the number
portion remained the same. However, nowadays they are just assigned a
"CVE-" prefix from the start, although that prefix does not guarantee
that the vulnerability will be included in the official list. (For
example, it might be later discovered to be a duplicate of an existing
CVE, in which case the earlier one — the lower
number — should be used.)

[103] Remember that Subject lines in emails aren't
encrypted, so don't put too much information about the vulnerability
in a Subject line.

Chapter 7. Packaging, Releasing, and Daily Development

This chapter is about how free software projects package and
release their software, and how overall development patterns organize
around those goals.
A major difference between open source projects and proprietary
ones is the lack of centralized control over the development team.
When a new release is being prepared, this difference is especially
stark: if a single corporation manages the entire development team, it
can ask them to focus on
an upcoming release, putting aside new feature development and
non-critical bug fixing until the release is done. But open source
developer communities are rarely so monolithic. People work on the
project for all sorts of
reasons, and those not interested in helping with a given release
still want to continue regular development work while the release is
going on. Because development doesn't stop, open source release
processes tend to take longer, but be less disruptive, than commercial
release processes.
It's a bit like highway repair. There are two
ways to fix a road: you can shut it down completely, so that a repair
crew can swarm all over it at full capacity until the problem is
solved, or you can work on a couple of lanes at a time, while leaving the
others open to traffic. The first way is very efficient for
the repair crew, but not for anyone else — the road is
entirely shut down until the job is done. The second way involves
much more time and trouble for the repair crew (now they have to work
with fewer people and less equipment, in cramped conditions, with
flaggers to slow and direct traffic, etc), but at least the road
remains useable, albeit not at full capacity.
Open source projects tend to work the second way. In fact, for
a mature piece of software with several different release lines being
maintained simultaneously, the project is sort of in a permanent state
of minor road repair. There are always a couple of lanes closed; a
consistent but low level of background inconvenience is always being
tolerated by the development group as a whole, so that releases get
made on a regular schedule.
The model that makes this possible generalizes to more than just
releases. It's the principle of parallelizing tasks that are not
mutually interdependent — a principle that is by no means unique
to open source development, of course, but one which open source
projects implement in their own particular way. They cannot afford to
annoy either the roadwork crew or the regular traffic too much, but
they also cannot afford to have people dedicated to standing by the
orange cones and flagging traffic along. Thus they gravitate toward
processes that have flat, constant levels of administrative overhead,
rather than peaks and valleys. Developers are generally willing to
work with small but consistent amounts of inconvenience; the
predictability allows them to come and go without worrying about
whether their schedule will clash with what's happening in the
project. But if the project were subject to a master schedule in
which some activities excluded other activities, the result would be a
lot of developers sitting idle a lot of the time — which would be
not only inefficient but boring, and therefore dangerous, in that a
bored developer is likely to soon be an ex-developer.
Release work is usually the most noticeable non-development task
that happens in parallel with development, so the methods described in
the following sections are geared mostly toward enabling releases.
However, note that they also apply to other parallelizable tasks, such
as translations and internationalization, broad API changes made
gradually across the entire codebase, etc.

Release Numbering

Before we talk about how to make a release, let's look at how to
name releases, which requires knowing what releases actually mean to
users. A release means that:
	Some old bugs have been fixed. This is probably the one
 thing users can count on being true of every release.

	New bugs have been added. This too can usually
 be counted on, except sometimes in the case of security
 releases or other one-offs (see
 the section called “Security Releases”).

	New features may have been added.

	New configuration options may have been added, or
 the meanings of old options may have changed subtly. The
 installation or upgrade procedures may have changed slightly since
 the last release too.

	Incompatible changes may have been introduced, for
 example such
 that the data formats used by older versions of the
 software are no longer useable without undergoing some
 sort of (possibly manual) one-way conversion step.

As you can see, not all of these are good things. This is why
experienced users approach new releases with some trepidation,
especially when the software is mature and was already mostly doing
what they wanted (or thought they wanted). Even the arrival of new
features is a mixed blessing, in that it may mean the software
will now behave in unexpected ways.
The purpose of release numbering, therefore, is twofold:
obviously the numbers should unambiguously communicate the ordering of
releases within a given series (i.e., by looking at the numbers of any
two releases in the same series, one can know which came later), but
also they should indicate as compactly as possible the degree and
nature of the changes in each release.
Some Projects Just Need Release Identifiers, Not Release
Numbers.

The advice in the rest of this section only applies to projects
where release number semantics matter. Use your judgement: if your
project isn't offering API predictability anyway, or if it practices
continuous development with auto-deployment in the way that (for
example) some Javascript projects do, then maybe you can get away with
just letting git commit IDs double as release identifiers, or with
some other similarly lightweight method. Just make sure to consider
the question carefully, and to base your decision on how users
actually deploy and upgrade the software. When it comes to release
numbering, it's better to be overly strict than overly lax. Remember
that the project's core developers are not the main audience for
release numbers; those developers already know what's happening in the
project, what APIs have changed, etc. Release numbers are most
important for people who don't follow the project
on a daily basis, and who are therefore naturally underrepresented in
project discussions about how strictly to adhere to a release
numbering scheme. If you believe in the users, stand up for
them!

All that in a number? Well, more or less, yes. Release
numbering strategies are one of the oldest bikeshed discussions around
(see the section called “The Smaller the Topic, the Longer the Debate”), and the world is
unlikely to settle on a single, complete standard anytime soon.
However, a few good strategies have emerged, along with one
universally agreed-on principle: be consistent.
Pick a numbering scheme, document it, and stick with it. Your users
will thank you.
Release Number Components

This section describes the usual conventions of release
numbering in detail, and assumes very little prior knowledge. It is
intended mainly as a reference. If you're already familiar with these
conventions, you can skip this section.
Release numbers are groups of digits separated by dots:
Scanley 2.3

Singer 5.11.4

...and so on. The dots are not decimal
points, they are merely separators; "5.3.9" would be followed by
"5.3.10". A few projects have occasionally hinted otherwise, most
famously the Linux kernel with its "0.95", "0.96"... "0.99" sequence
leading up to Linux 1.0, but the convention that the dots are not
decimal points is now firmly established and should be considered a
standard. There is no limit to the number of components (digit
portions containing no dots), but most projects do not go beyond three
or four. The reasons why will become clear later.
In addition to the numeric components, projects sometimes tack
on a descriptive label such as "Alpha" or "Beta" (see
Alpha and Beta), for example:
Scanley 2.3.0 (Alpha)

Singer 5.11.4 (Beta)

An Alpha or Beta qualifier means that this
release precedes a future release that will have
the same number without the qualifier. Thus, "2.3.0 (Alpha)"
leads eventually to "2.3.0". In order to allow several such candidate
releases in a row, the qualifiers themselves can have meta-qualifiers.
For example, here is a series of releases in the order that they would
be made available to the public:
Scanley 2.3.0 (Alpha 1)

Scanley 2.3.0 (Alpha 2)

Scanley 2.3.0 (Beta 1)

Scanley 2.3.0 (Beta 2)

Scanley 2.3.0 (Beta 3)

Scanley 2.3.0

Notice that when it has the "Alpha" qualifier, Scanley "2.3" is
written as "2.3.0". The two numbers are equivalent — trailing
all-zero components can always be dropped for brevity — but when a
qualifier is present, brevity is out the window anyway, so one might
as well go for completeness instead.
Other qualifiers in semi-regular use include "Stable",
"Unstable", "Development", and "RC" (for "Release Candidate"). The
most widely used ones are still "Alpha" and "Beta", with "RC" running
a close third place, but note that "RC" always includes a numeric
meta-qualifier. That is, you don't release
"Scanley 2.3.0 (RC)", you release
"Scanley 2.3.0 (RC 1)", followed by RC2, etc.
Those three labels, "Alpha", "Beta", and "RC", are pretty widely
known now, and I don't recommend using any of the others, even though
the others might at first glance seem like better choices because they
are normal words, not jargon. But people who install software from
releases are already familiar with the big three, and there's no
reason to do things gratuitously differently from the way everyone
else does them.
Although the dots in release numbers are not decimal points,
they do indicate place-value significance. All "0.X.Y" releases
precede "1.0" (which is equivalent to "1.0.0", of course). "3.14.158"
immediately precedes "3.14.159", and non-immediately precedes
"3.14.160" as well as "3.15.anything", and so.
A consistent release numbering policy enables a user to look at
two release numbers for the same piece of software and tell, just from
the numbers, the important differences between those two releases. In
a typical three-component system, the first component is
the major number, the second is
the minor number, and the third is the
micro number (sometimes also called the
"patch" number). For example, release
"2.10.17" is the eighteenth micro release (or patch release) in the
eleventh minor release
line within the second major release series[104]. The words "line" and
"series" are used informally here, but they mean what one would
expect: a major series is simply all the releases that share the same
major number, and a minor series (or minor line) consists of all the releases
that share the same minor and major number. That
is, "2.4.0" and "3.4.1" are not in the same minor series,
even though they both have "4" for their minor number; on the other
hand, "2.4.0" and "2.4.2" are in the same minor line, though they are
not adjacent if "2.4.1" was released between them.
The meanings of these numbers themselves are also roughly what
you'd expect: an
increment of the major number indicates that major changes happened;
an increment of the minor number indicates minor changes; and an
increment of the micro number indicates really trivial changes. Some
projects add a fourth component, usually called
the patch number, for especially
fine-grained control over the differences between their releases
(confusingly, other projects use "patch" as a synonym for "micro" in a
three-component system, as mentioned earlier). There are also projects that use the last
component as a build number, incremented
every time the software is built and representing no change other than
that build. This helps the project link every bug report with a
specific build, and is probably most useful when binary packages are
the default method of distribution.
Although there are many different conventions for how many
components to use, and what the components mean, the differences tend
to be minor — you get a little leeway, but not a lot. The next
two sections discuss some of the most widely used conventions.

Semantic Versioning

Most projects have rules about what kinds of changes are allowed
into a release if one is only incrementing the micro number, different
rules for the minor number, and still different ones for the major
number. Here I will describe a policy that has been used successfully
by multiple projects. You may want to just adopt this policy in your
own project, but even if you don't, it's still a good example of the
kind of information release numbers should convey. This policy is now
formalized as Semantic Versioning at http://semver.org/.[105]
	Changes to the micro number only (that is, changes
 within the same minor line) must be both forward- and
 backward-compatible. The changes should be bug
 fixes only, or very small enhancements to existing
 features. New features should not be introduced in a
 micro release.

	Changes to the minor number (that is, within the
 same major line) must be backward-compatible, but not
 necessarily forward-compatible. It's normal to introduce
 new features in a minor release, but usually not too many
 new features at once.

	Changes to the major number mark compatibility
 boundaries. A new major release can be forward- and
 backward-incompatible. A major release is expected to
 have new features, and may even have entire new feature
 sets.

What backward-compatible
and forward-compatible mean, exactly, depends on
what your software does, but in context they are usually not open to
much interpretation. For example, if your project is a client/server
application, then "backward-compatible" means that upgrading the
server to 2.6.0 should not cause any existing 2.5.4 clients to lose
functionality or behave differently than they did before (except for
bugs that were fixed, of course). On the other hand, upgrading one of
those clients to 2.6.0, along with the server, might
make new functionality available for that client,
functionality that 2.5.4 clients don't know how to take advantage of.
If that happens, then the upgrade is not
"forward-compatible": clearly you can't now downgrade that client
back to 2.5.4 and keep all the functionality it had at 2.6.0, since
some of that functionality was new in 2.6.0.
This is why micro releases are essentially for bug fixes only.
They must remain compatible in both directions: if you upgrade from
2.5.3 to 2.5.4, then change your mind and downgrade back to 2.5.3, no
functionality should be lost. Of course, the bugs fixed in 2.5.4
would reappear after the downgrade, but you wouldn't lose any
features, except insofar as the restored bugs interfere with the use of some
existing features.
Client/server protocols are just one of many possible
compatibility domains. Another is data formats: does the software
write data to permanent storage? If so, the formats it reads and
writes need to follow the compatibility guidelines promised by the
release number policy. Version 2.6.0 needs to be able to read the
files written by 2.5.4, but may silently upgrade the format to
something that 2.5.4 cannot read, because the ability to downgrade is
not required across a minor number boundary. If your project
distributes code libraries for other programs to use, then APIs are a
compatibility domain too: you must make sure that source and binary
compatibility rules are spelled out in such a way that the informed
user need never wonder whether or not it's safe to upgrade in place.
She should be able to look at the numbers and know instantly.
In this system, you don't get a chance for a fresh start until
you increment the major number. This can often be a real
inconvenience: there may be features you wish to add, or protocols
that you wish to redesign, that simply cannot be done while
maintaining compatibility. There's no magic solution to this, except
to try to design things in an extensible way in the first place (a
topic easily worth its own book, and certainly outside the scope of
this one). But publishing a release compatibility policy, and
adhering to it, is an inescapable part of distributing software. One
nasty surprise can alienate a lot of users. The policy just described
is good partly because it's already quite widespread, but also because
it's easy to explain and to remember, even for those not already familiar
with it.
It is generally understood that these rules do not apply to
pre-1.0 releases (although your release policy should probably state
so explicitly, just to be clear). A project that is still in initial
development can release 0.1, 0.2, 0.3, and so on in sequence, until
it's ready for 1.0, and the differences between those releases can be
arbitrarily large. Micro numbers in pre-1.0 releases are optional.
Depending on the nature of your project and the differences between
the releases, you might find it useful to have 0.1.0, 0.1.1, etc, or
you might not. Conventions for pre-1.0 release numbers are fairly
loose, mainly because people understand that strict compatibility
constraints would hamper early development too much, and because early
adopters tend to be forgiving anyway.
Remember that all these injunctions only apply to this
particular three-component system. Your project could easily come up
with a different three-component system, or even decide it doesn't
need such fine granularity and use a two-component system instead.
The important thing is to decide early, publish exactly what the
components mean, and stick to it.

The Even/Odd Strategy

Some projects use the parity of the minor number component to
indicate the stability of the software: even means stable, odd means
unstable. This applies only to the minor number, not the major or
micro numbers. Increments in the micro number still indicate bug
fixes (no new features), and increments in the major number still
indicate big changes, new feature sets, etc.
The advantage of the even/odd system, which has been used by the
Linux kernel project[106]
among others, is that it offers a way to release
new functionality for testing without subjecting production users to
potentially unstable code. People can see from the numbers that
"2.4.21" is okay to install on their live web server, but that "2.5.1"
should probably stay confined to experimental servers. The
development team handles the bug reports that come in from the
unstable (odd-minor-numbered) series, and when things start to settle
down after some number of micro releases in that series, they
increment the minor number (thus making it even), reset the micro
number back to "0", and release a presumably stable package.
This system preserves, or at least does not conflict with, the
compatibility guidelines given earlier. It simply overloads the minor
number with some extra information. This forces the minor number to
be incremented about twice as often as would otherwise be necessary,
but there's no real harm in that. The even/odd system is probably
best for projects that have very long release cycles, and which by
their nature have a high proportion of conservative users who value
stability above new features. It is not the only way to get new
functionality tested in the wild, however. In
the section called “Stabilizing a Release” we will examine another, perhaps more common,
method of releasing potentially unstable code to the public, in which
the release number is further marked so that people have a clear picture of
the risk/benefit trade-offs immediately on seeing the release's name.

[104] Not
seventeenth and tenth, because numbering starts from 0, not
1 in the minor and micro components.

[105] Except that the semver.org
standard apparently does not include the forward-compatibility
requirement for increments in the micro (patch)
number.

[106] Though Linux no longer uses it;
see https://en.wikipedia.org/wiki/Linux_kernel#History.

Release Branches

From a developer's point of view, a free software project is in
a state of continuous release. Developers usually run the latest
available code at all times, because they want to spot bugs, and
because they follow the project closely enough to be able to stay away
from currently unstable areas of the feature space. They often update
their copy of the software every day, sometimes more than once a day,
and when they check in a change, they can reasonably expect that every
other developer will have it within a day or two.
How, then, should the project make a formal release? Should it
simply take a snapshot of the tree at a moment in time, package it up,
and hand it to the world as, say, version "3.5.0"? Common sense says
no. First, there may be no moment in time when the entire development
tree is clean and ready for release. Newly-started features could be
lying around in various states of completion. Someone might have
checked in a major change to fix a bug, but the change could be
controversial and under debate at the moment the snapshot is taken.
If so, it wouldn't work to simply delay the snapshot until the debate
ends, because in the meantime another, unrelated debate could start,
and then you'd have wait for that one to end too.
This process is not guaranteed to halt.
In any case, using full-tree snapshots for releases would inevitably
interfere with ongoing development work even if the tree could be put
into a releasable state. Say this snapshot is going to be "3.5.0";
presumably, the next snapshot would be "3.5.1", and would contain
mostly fixes for bugs found in the 3.5.0 release. But if both are
snapshots from the same tree, what are the developers supposed to do
in the time between the two releases? They can't be adding new
features; the compatibility guidelines prevent that. But not everyone
will be enthusiastic about fixing bugs in the 3.5.0 code. Some people
may have new features they're trying to complete, and will become
irate if they are forced to choose between sitting idle and working on
things they're not interested in, just because the project's release
processes demand that the development tree remain unnaturally
quiescent.
The solution to these problems is to always use
a release branch. A release branch is just a
branch in the version control system (see
branch), on which the code
destined for the corresponding release can be isolated from mainline
development.
The concept of release branches is certainly not original to free
software; many proprietary development organizations use them too.
However, in closed-source environments, release branches are sometimes
considered a luxury — a kind of theoretical "best practice" that can,
in the heat of a major deadline, be dispensed with while everyone on
the team scrambles to stabilize the main tree.
Release branches are close to a necessity in open source
projects, however. Even though developers typically create their own
short-lived branches for work on individual bugfixes and features,
they also expect to be able to merge their work to the common "main"
branch as soon as the work is ready. If the main branch is
artificially frozen — that is, gated to allow
release-related changes only — then overall
development momentum is slowed, and developers become frustrated that
their work is delayed from appearing in the shared arena where it
would be most easily usable by others. Furthermore, the release
itself may suffer if the few people working on it are hurrying to
finish so everyone else could get back to regular working order on the
main branch. Finally, having a release branch facilitates developer
autonomy: many developers are happy to contribute
some of their attention to a release branch, as
long as that's a choice they can make according to their own schedules
and interests in the same way that they do regarding feature and
bugfix branches.
Mechanics of Release Branches

The exact mechanics of creating a release branch depend on your
version control system, of course, but the general concepts are the
same in most systems. A branch usually sprouts from another branch or
from the main line. Commonly, the main line is where developers'
changes are first integrated, unfettered by release constraints, and
the release branch — say, the one leading to the "1.0"
release — sprouts from main. (The details of how to create and manage branches in
your particular version control system are beyond the scope of this
book, but the semantics are roughly the same everywhere.) Note that
you might want to name the branch "1.0.x" (with a literal "x") instead
of "1.0.0". That way you can use the same minor line — i.e., the
same branch — as the branch source for all the micro
releases in that line.
The social and technical process of stabilizing the branch for
release is covered in the section called “Stabilizing a Release”. Here we are
concerned just with the high-level version control actions that relate
to the release process. When the release branch is stabilized and
ready, it is time to tag a snapshot from the branch (see tag or snapshot) with a name like, e.g.,
"1.0.0". The resultant tag represents the exact state of the
project's source tree in the 1.0.0 release (this is useful when
developers need to compare against an old version while tracking down
a bug). The next micro release in the same line is likewise prepared
on the 1.0.x branch, and when it is ready, a tag is made for 1.0.1.
Lather, rinse, repeat for 1.0.2, and so on. When it's time to start
thinking about a 1.1.x release, make a new branch from main.
Maintenance can continue in parallel along both 1.0.x and 1.1.x,
and releases can be made independently from both lines (while new
development work happens either directly on the main branch or in
short-lived "feature branches" that get merged into the main branch as
soon as they're ready).
In fact, it is not unusual to publish near-simultaneous releases
from two different lines.[107] The older series is
recommended for more conservative site administrators, who may not
want to make the big jump from (say) 1.0.5 to 1.1 without careful
preparation, and so the project releases 1.0.6 in parallel with 1.1.
Meanwhile, more adventurous people usually take the most recent
release on the highest line, to make sure they're getting the latest
features, even at the risk of greater instability.

This is not the only release branch strategy, of course. In
some circumstances it may not even be the best, though it works
pretty well for many projects. Use any strategy that
seems to work, but remember the main points: the purpose of a release
branch is to isolate release work from the fluctuations of daily
development, and to give the project a physical entity — the
release branch — around which to organize its release process.
That process is described in detail in the next section.

[107] See the section called “Maintaining Multiple Release Lines”.

Stabilizing a Release

Stabilization is the process of getting a
release branch into a releasable state; that is, of deciding which
changes will be in the release, which will not, and shaping the branch
content accordingly.
There's a lot of potential grief contained in the word "deciding".
The last-minute feature rush is a familiar phenomenon in
collaborative software projects: as soon as developers see that a
release is about to happen, they scramble to finish their current
changes, in order not to miss the boat. This, of course, is the exact
opposite of what you want at release time. It would be much better
for people to work on features at a comfortable pace, and not worry
too much about whether their changes make it into this release or the
next one. The more changes one tries to cram into a release at the
last minute, the less stable the code is and (usually) the more
new bugs are created.
Time-Based Releases vs Feature-Based Releases

Some software projects use "time-based
releases", as opposed to "feature-based
releases". With time-based releases, the project puts out
a new releases at an absolutely regular rhythm, typically something
like every six months, and the rule is that the release goes out no
matter what new features and bugfixes are ready or not
ready — anything that isn't ready simply isn't
included in the release.[108] Developers who didn't make the deadline are
told to just wait for the next train, but this is easy for them to
accept because they can count on the next train coming by in exactly
six months (or whatever the release period is) anyway. The advice in
this section applies to both time-based and feature-based releases,
but keep both methods in mind as you read. Depending on your
project's goals or culture, one or other other method may be more
appropriate.[109]

Most software engineers agree in theory on rough criteria for
what changes should be allowed into a release line during its
stabilization period. Obviously, fixes for severe bugs can go in,
especially for bugs without workarounds. Documentation updates are
fine, as are fixes to error messages (except when they are considered
part of the interface and must remain stable). Many projects also
allow certain kinds of low-risk or non-core changes to go in during
stabilization, and may have formal guidelines for measuring risk. But
no amount of formalization can obviate the need for human judgement.
There will always be cases where the project simply has to make a
decision about whether a given change can go into a release. The
danger is that since each person wants to see their own favorite
changes admitted into the release, then there will be plenty of people
motivated to allow changes and not enough people motivated to resist
them.
Thus, the process of stabilizing a release is mostly about
creating mechanisms for saying "no". The trick for open source
projects, in particular, is to come up with ways of saying "no" that
won't result in too many hurt feelings or disappointed developers, and
also won't prevent deserving changes from getting into the release.
There are many different ways to do this. It's pretty easy to design
systems that satisfy these criteria, once the team has focused on them
as the important criteria. Here I'll briefly describe two of the most
popular systems, at the extreme ends of the spectrum, but don't let
that discourage your project from being creative. Plenty of other
arrangements are possible; these are just two that I've seen work in
practice.
Dictatorship by Release Owner

The group agrees to let one person be the release
owner. This person has final say over what changes make
it into the release. Of course, it is normal and expected for there
to be discussions and arguments, but in the end the group must grant
the release owner sufficient authority to make final decisions. For
this system to work, it is necessary to choose someone with the
technical competence to understand all the changes, and the social
standing and people skills to navigate the discussions leading up to
the release without causing too many hurt feelings.
A common pattern is for the release owner to say "I don't think
there's anything wrong with this change, but we haven't had enough
time to test it yet, so it shouldn't go into this release." It helps
a lot if the release owner has broad technical knowledge of the
project, and can give reasons why the change could be potentially
destabilizing (for example, its interactions with other parts of the
software, or portability concerns). People will sometimes ask for such
decisions to be justified, or will argue that a change is not as risky
as it looks. These conversations need not be confrontational, as long
as the release owner is able to consider all the arguments objectively
and not reflexively dig in her heels.
Note that the release owner need not be the same person as the
project leader (in cases where there is a project leader at all; see
the section called “Benevolent Dictators”). In fact,
sometimes it's
good to make sure they're not the same person.
The skills that make a good development leader are not necessarily the
same as those that make a good release owner. In something as
important as the release process, it may be wise to have someone
provide a counterbalance to the project leader's judgement. In that
case, the project leader needs to remember that overriding a decision
by the release owner will undermine the release owner's authority;
that alone may be enough reason, in most situations, to let the
release owner win when there is a disagreement.
Contrast the release owner role with the less dictatorial role
described in
the section called “Release Manager”.

Voting on Changes

At the opposite extreme from dictatorship by release owner,
developers can simply vote on which changes to include in the release.
However, since the most important function of release stabilization is
to exclude changes, it's important to design the
voting system in such a way that getting a change into the release
involves positive action by multiple developers. Including a change
should need more than just a simple majority (see the section called “Who Votes?”). Otherwise,
one vote for and none against a given change would suffice to get it
into the release, and an
unfortunate dynamic would be set up whereby each developer would vote
for her own changes, yet would be reluctant to vote against others'
changes, for fear of possible retaliation. To avoid this, the system
should be arranged such that subgroups of developers must act in
cooperation to get any change into the release. This not only means
that more people review each change, it also makes any individual
developer less hesitant to vote against a change, because she knows
that no particular one among those who voted for it would take her
vote against as a personal affront. The greater the number of people
involved, the more the discussion becomes about the change and less
about the individuals.
The system used for many years in the Subversion project seems
to have struck
a good balance, so I'll recommend it here. In order for a change to
be applied to the release branch, at least three developers must vote
in favor of it, and none against. A single "no" vote is enough to
stop the change from being included; that is, a "no" vote in a release
context is equivalent to a veto (see the section called “Vetoes”).
Naturally, any such vote must be accompanied by a justification, and
in theory the veto could be overridden if enough people feel it is
unreasonable and force a special vote over it. In practice, this
never happens. People are
conservative around releases anyway, and when someone feels strongly
enough to veto the inclusion of a change, there's usually a good
reason for it.
Because the release procedure is deliberately biased toward
conservatism, the justifications offered for vetoes are sometimes
procedural rather than technical. For example, a person may feel that
a change is well-written and unlikely to cause any new bugs, but vote
against its inclusion in a micro release simply because it's too
big — perhaps it adds a new feature, or in some subtle way fails
to fully follow the compatibility guidelines. I've occasionally even
seen developers veto something because they simply had a gut feeling
that the change needed more testing, even though they couldn't spot
any bugs in it by inspection. People grumbled a little bit, but the
vetoes stood and the change was not included in the release (I don't
remember if any bugs were found in later testing or not,
though).
Managing Collaborative Release Stabilization

If your project chooses a change-voting system for releases, the
physical mechanics of setting up ballots and casting votes must be
as convenient as possible. Although there is plenty of open source
electronic voting software available, setting it up and using it is
not worth the overhead. Instead, just do something easy and simple,
such as putting a text file, called STATUS or
VOTES or something like that, in the release
branch. This file lists each proposed change — any
developer can propose a change for inclusion — along with all the
votes for and against it, plus any notes or comments. (Proposing a
change doesn't necessarily mean voting for it, by the way, although
the two often go together.) An entry in such a file might look like
this:

* commit b31910a7180fc (issue #49)
 Prevent client/server handshake from happening twice.
 Justification:
 Avoids extra network turnaround;
 small change and easy to review.
 Notes:
 Discussed in https://.../msg-7777.html
 and other messages in that thread.
 Votes:
 +1: jsmith, kimf
 -1: tmartin (breaks compatibility with some
 pre-1.0 servers; true, those
 servers are buggy, but why be
 incompatible if we don't have to?)

In this case, the change acquired two positive votes, but was
vetoed by tmartin, who gave the reason for the veto in a parenthetical
note. The exact format of the entry doesn't matter; whatever your
project settles on is fine — perhaps tmartin's explanation for the
veto should go up in the "Notes:" section, or perhaps the change
description should get a "Description:" header to match the other
sections. The important things are that all the information needed to
evaluate the change is easily accessible and that the mechanism for casting
votes is as lightweight as possible. The proposed change is referred
to by its revision number in the repository (in the above case a single
commit, b31910a7180fc, although a proposed change could just as easily
consist of multiple commits). The revision is assumed to refer to a
change made on the main branch; if the change were already on the release
branch, there would be no need to vote on it.[110]
Those proposing or voting for a change are responsible for
making sure it applies cleanly to the release branch, that is, applies
without conflicts (see conflict).
If there are conflicts, then the entry should point to a temporary
branch that holds an adjusted version of the change, for example:

* r13222, r13223, r13232
 Rewrite libsvn_fs_fs's auto-merge algorithm
 Justification:
 unacceptable performance (>50 minutes for a small commit) in
 a repository with 300,000 revisions
 Branch:
 1.1.x-fs-automerge-rewrite
 Votes:
 +1: epg, ghudson

That example is taken from real life; it comes from the
STATUS file for the Subversion 1.1.4 release
process. Notice how it uses the original revisions as canonical
handles on the change, even though there is also a branch with a
conflict-adjusted version of the change (the branch also combines the
three mainline revisions into one, r13517, to make it easier to merge the
change into the release, should it get approval). The original
revisions are provided because they're still the easiest entity to
review, since they have the original log messages. The temporary
branch wouldn't have those log messages. In order to avoid duplication
of information (see
the section called “Singularity of Information”), the
branch's log message for r13517 should simply say "Adjust r13222,
r13223, and r13232 for backport to 1.1.x branch." All other
information about the changes can be chased down at their original
revisions.

Release Manager

The actual process of merging (see
merge or port) approved changes into the
release branch can be performed by any developer. There does not need
to be one person whose job it is to merge changes; if there are a lot
of changes, it can be better to spread the burden around.
However, although both voting and merging happen in a
decentralized fashion, in practice there are usually one or two people
driving the release process. This role is sometimes formally blessed
as release manager, but it is quite different
from a release owner (see
the section called “Dictatorship by Release Owner”) who has
final say over the changes. Release managers keep track of how many
changes are currently under consideration, how many have been
approved, how many seem likely to be approved, etc. If they sense
that important changes are not getting enough attention, and might be
left out of the release for lack of votes, they will gently nag other
developers to review and vote. When a batch of changes are approved,
these people will often take it upon themselves to merge them into the
release branch; it's fine if others leave that task to them, as
long as everyone understands that the release managers are not
obligated to do all the
work unless they have explicitly committed to it. When the time comes
to put the release out the door (see
the section called “Testing and Releasing”), the release managers
also take care of the logistics of creating the final release
packages, collecting digital signatures, uploading the packages, and
making the public announcement.

[108] While any release methodology
requires some degree of branch management, time-based releases imply
that the development team must use a fairly strict gateway policy
at all times. Development work must stay isolated from release
branches until that work is truly ready to be shipped. Otherwise,
unfinished code might be hard to extricate from the release branch
when release time rolls
around.

[109] For an alternative approach, you
may wish to read Martin Michlmayr's Ph.D. thesis Quality
Improvement in Volunteer Free and Open Source Software Projects:
Exploring the Impact of Release Management
(https://www.cyrius.com/publications/michlmayr-phd.html). It
is about using time-based release processes, as opposed to
feature-based, in large free software projects. See also https://www.cyrius.com/publications/michlmayr_hunt_probert-release_management.pdf,
by Martin Michlmayr, Francis Hunt, and David Probert. Finally,
Michlmayr gave a talk at Google on the subject: https://www.youtube.com/watch?v=IKsQsxubuAA.

[110] For
projects on a Git hosting platform, a "merge request" or "pull
request" ID can be the way to uniquely identify a
change.

Packaging

The canonical form for distribution of free software is as
source code. This is true regardless of whether the software normally
runs in source form (i.e., interpreted, like Perl, Python, PHP,
etc) or is typically compiled first (like C, C++, Java, Rust, etc). With
compiled software, most users will probably not compile the sources
themselves, but will instead install from pre-built binary packages
(see the section called “Binary Packages”). However, those binary
packages are still derived from a particular source distribution. The
point of the source package is to unambiguously define the release.
When the project distributes "Scanley 2.5.0", what it means,
specifically, is "The tree of source code files that, when compiled
(if necessary) and installed, produces Scanley 2.5.0."
There is a fairly strict standard for how source releases
should look. One will occasionally see deviations from this standard,
but they are the exception, not the rule. Unless there is a compelling
reason to do otherwise, your project should follow this standard
too.
Format

The source code should be shipped in the standard formats for
transporting directory trees. For Unix and Unix-like operating
systems, the convention is to use TAR format, compressed
by compress, gzip,
bzip or bzip2. For MS Windows,
the standard method for distributing directory trees
is zip format, which compresses
automatically. For JavaScript projects, it is customary to ship the
"minified"[111]
versions of the files together with the human-readable source files.

Name and Layout

The name of the package should consist of the software's name
plus the release number, plus the format suffixes appropriate for the
archive type. For example, Scanley 2.5.0, packaged for Unix using GNU
Zip (gzip) compression, would look like this:
scanley-2.5.0.tar.gz

or for Windows using zip compression:
scanley-2.5.0.zip

Either of these archives, when unpacked, should create a single
new directory tree named scanley-2.5.0 in the
current directory. Underneath the new directory, the source code
should be arranged in a layout ready for compilation (if compilation
is needed) and installation. In the top level of new directory tree,
there should be a plain text README file
explaining what the software does and what release this is, and giving
pointers to other resources, such as the project's web site, other
files of interest, etc. Among those other files should be an
INSTALL file, sibling to
the README file, giving instructions on how to build
and install the software for all the operating systems it supports.
As mentioned in
the section called “How to Apply a License to Your Software”, there should also
be a LICENSE or COPYING
file, giving the software's terms of distribution.[112]
There should also be a CHANGES file
(sometimes called NEWS or
ChangeLog or something similar), explaining
what's new in this release.[113] The CHANGES
file accumulates changelists for all releases, in reverse
chronological order, so that the list for this release appears at the
top of the file. Completing that list is usually the last thing done
on a stabilizing release branch; some projects write the list
piecemeal as they're developing, others prefer to save it all up for
the end and have one person write it, getting information by combing
the version control logs. The list looks something like this:

Version 2.5.0
(20 December 2022, from branch 2.5.x)
http://scanley.org/repos/tags/2.5.0/

 New features and enhancements:
 * Added regular expression queries (issue #53)
 * Added support for UTF-16 documents
 * Documentation translated into Malagasy, Polish, Russian
 * ...

 Bugfixes:
 * fixed reindexing bug (issue #945)
 * fixed some query bugs (issues #815, #1007, #1008)
 * ...

The list can be as long as necessary, but don't bother to
describe every little bugfix and feature enhancement in detail. The point is
to give users an overview of what they would gain by upgrading to
the new release, and to tell them about any incompatible changes. In
fact, the changelist is customarily included in the announcement email
(see the section called “Testing and Releasing”), so write it with that
audience in mind.
The actual layout of the source code inside the tree should be
the same as, or as similar as possible to, the source code layout one
would get by checking out the project directly from its version
control repository. Sometimes there are a few differences, for example
because the package contains some generated files needed for
configuration and compilation (see
the section called “Compilation and Installation”), or because the distribution includes
third-party software that is not maintained by the project, but that
is required and that users are not likely to already have. But even
if the distributed tree corresponds exactly to some development tree
in the version control repository, the distribution itself should not
be a working copy (see working copy or working files).
The release is supposed to represent a static reference point — a
particular, unchangeable configuration of source files. If it were a
working copy, the danger would be that the user might update it, and
afterward think that he still has the release when in fact he has
something different.
The package should be the same regardless of the
packaging. The release — that is, the precise entity referred to
when someone says "Scanley 2.5.0" — is the tree created by
unpacking a zip file or tarball. So the project might offer all of
these for download:
scanley-2.5.0.tar.bz2

scanley-2.5.0.tar.gz

scanley-2.5.0.zip

...but the source tree created by unpacking them would be the
same. That source tree itself is the distribution; the form in which it is
downloaded is merely a matter of convention or convenience. Certain minor
differences between source packages are allowable: for example, in the
Windows package, text files may have lines ending with CRLF
(Carriage Return and Line Feed), while Unix packages would use just
LF. The trees may be arranged slightly differently between source
packages destined for different operating systems, too, if those
operating systems require different sorts of layouts for compilation.
However, these are all basically trivial transformations. The basic
source files should be the same across all the packagings of a given
release.
To Capitalize or Not to Capitalize

When referring to a project by name, people generally capitalize
it as a proper noun, and capitalize acronyms if there are any:
"MySQL 5.0", "Scanley 2.5.0", etc. Whether this
capitalization is reproduced in the package name is up to the project.
Either Scanley-2.5.0.tar.gz or
scanley-2.5.0.tar.gz would be fine, for example
(I personally prefer the latter, because I don't like to make people
hit the shift key, but plenty of projects ship capitalized packages).
The important thing is that the directory created by unpacking the
tarball use the same capitalization. There should be no surprises:
the user must be able to predict with perfect accuracy the name of the
directory that will be created when she unpacks a distribution.

Pre-Releases

When shipping a pre-release or candidate release, the qualifier
is a part of the release number, so include it in the name of
the package's name. For example, the ordered sequence of alpha and
beta releases given earlier in
the section called “Release Number Components” would result in
package names like this:
scanley-2.3.0-alpha1.tar.gz

scanley-2.3.0-alpha2.tar.gz

scanley-2.3.0-beta1.tar.gz

scanley-2.3.0-beta2.tar.gz

scanley-2.3.0-beta3.tar.gz

scanley-2.3.0.tar.gz

The first would unpack into a directory
named scanley-2.3.0-alpha1, the second into
scanley-2.3.0-alpha2, and so on.

Compilation and Installation

For software requiring compilation or installation from source,
there are usually standard procedures that experienced users expect to
be able to follow. For example, for programs written in C, C++, or
certain other compiled languages, the standard for a long time under
Unix-like systems was for the user to type:

 $./configure
 $ make
 $ sudo make install

The first command autodetects as much about the environment as
it can and prepares for the build process, the second command builds
the software in place (but does not install it), and the last command
installs it on the system.
This is not the only standard, though it has historically been
one of the most widespread. These days there are often instructions
for how to deploy into a popular container environment such as Docker
as well. Furthermore, other programming languages have their own
standards for building and installing packages. If it's not obvious
to you what the applicable standards are for your project, ask an
experienced developer; you can safely assume that
some standard applies, even if you don't yet know
it.
Whatever the appropriate standards for your project are, don't
deviate from them unless you absolutely must. Standard installation
procedures are practically spinal reflexes for a lot of system
administrators. If they see familiar invocations documented in
your project's INSTALL file, that instantly
raises their faith that your project is generally aware of
conventions, and that it is likely to have gotten other things right
as well. Also, as discussed in
the section called “Downloads”, having a standard
build procedure pleases potential developers.
On Windows, the standards for building and installing are a bit
less settled. For projects requiring compilation, the general
convention seems to be to ship a tree that can fit into the
workspace/project model of the standard Microsoft development
environments (Developer Studio, Visual Studio, VS.NET, MSVC++, etc).
Depending on the nature of your software, it may be possible to offer
a Unix-like build option on Windows using MinGW or Cygwin. And of course,
if you're using a language or programming framework that comes with
its own build and install conventions — e.g.,
Python — you should simply use whatever the standard
method is for that framework, whether on Windows, Unix, Mac OS X, or
any other operating system.
Be willing to put in a lot of extra effort in order to make your
project conform to the relevant build or installation standards.
Building and installing is an entry point: it's okay for things to get
harder after that, if they absolutely must, but it would be a shame
for the user's or developer's very first interaction with the software
to require unexpected steps.

Binary Packages

Although the formal release is a source code package, users often
install software from binary packages, either provided by their operating
system's software distribution mechanism, or obtained manually from
the project web site or from some third party. Here, "binary" doesn't
necessarily mean "compiled"; it's a general term for
a pre-configured form of
the package that allows the user to install it on her computer without
going through the usual source-based build and install procedures. On
RedHat GNU/Linux, it is the RPM system; on Debian GNU/Linux, it is the
APT (.deb) system; etc.
Whether these binary packages are assembled by people closely
associated with the project, or by distant third parties, users are
going to treat them as equivalent to the
project's official releases, and will file tickets in the project's bug
tracker based on the behavior of the binary packages. Therefore, it
is in the project's interest to provide packagers with clear
guidelines, and work closely with them to ensure that what they
produce represents the software fairly and accurately.
The main thing packagers need to know is that they should always
base their binary packages on an official source release. Sometimes
packagers are tempted to pull an unstable incarnation of the code from the
repository, or to include selected changes that were committed after the
release was made, in order to provide users with certain bug fixes or
other improvements. The packager thinks he is doing his users a favor
by giving them the more recent code, but actually this practice can
cause a great deal of confusion. Projects are prepared to receive
reports of bugs found in released versions, and bugs found in recent
mainline and major branch code (that is, found by people who deliberately
run bleeding edge code). When a bug report comes in from these
sources, the responder will often be able to confirm immediately that
the bug is
known to be present in that snapshot, and perhaps that it has since
been fixed and that the user should upgrade or wait for the
next release. If it is a previously unknown bug, knowing the precise
release makes it easier to reproduce and easier to categorize in the
tracker.
However, projects are not prepared to receive bug reports based
on unspecified intermediate or hybrid versions. Such bugs can be hard
to reproduce; also, they may be due to unexpected interactions between
individual changes pulled together from different development stages, and thereby cause
misbehaviors that the project's developers should not have to take the
blame for. I have even seen dismayingly large amounts of time wasted
because a bug was absent when it should have been
present: someone was running a slightly patched-up version, based on
(but not identical to) an official release, and when the predicted bug
did not happen, everyone had to dig around a lot to figure out
why.
Still, there will sometimes be circumstances when a packager
insists that modifications to the source release are necessary.[114]
Packagers should be encouraged to bring this up with the project's
developers and describe their plans. They may get approval, but
failing that, they will at least have notified the project of their
intentions, so the project can watch out for unusual bug reports. The
developers may respond by putting a disclaimer on the project's web
site, and may ask that the packager do the same thing in the
appropriate place, so that users of that binary package know what they
are getting is not exactly the same as what the project officially
released. There need be no animosity in such a situation, though
unfortunately there often is. It's just that packagers have a
slightly different set of goals from developers. The packagers mainly
want the best out-of-the-box experience for their users. The
developers want that too, of course, but they also need to ensure that
they know what versions of the software are out there, so they can
receive coherent bug reports and make compatibility guarantees.
Sometimes these goals conflict. When they do, it's good to keep in
mind that the project has no control over the packagers, and that the
bonds of obligation run both ways. It's true that the project is
doing the packagers a favor simply by producing the software. But the
packagers are also doing the project a favor, by taking on a mostly
unglamorous job in order to make the software more widely
available — often orders of magnitude more available.
It's fine to disagree with packagers, but don't flame them; just try
to work things out as best you can.

[111] See https://en.wikipedia.org/wiki/Minification_%28programming%29.

[112] Your
all-caps files — README, INSTALL,
etc — may of course have ".md" extensions to indicate
Markdown (https://daringfireball.net/projects/markdown/) format,
or ".txt" to indicate plain text, etc.

[113] Sumana Harihareswara points
out that there is a distinction between a changelog and
release notes: "Release notes are a prose
summary of what's changed, which exist in addition to a changelog (the
release notes might link to the changelog or include a copy at the
bottom), and which focus on changes the user might perceive. ... If a
changelog is too overwhelming and an end user is left thinking, 'but
what matters to me?' they can go read
the release notes." Her full post is at harihareswara.net/posts/2024/changelogs-and-release-notes and
is worth reading.

[114]
https://en.wikipedia.org/wiki/Mozilla_Corporation_software_rebranded_by_the_Debian_project#Iceweasel
gives a well-known example of this.

Testing and Releasing

Once the source distribution is produced from the stabilized
release branch, the public part of the release process begins. But
before the distribution is made available to the world at large, it
should be tested and approved by some minimum number of developers,
usually three or more. That approval must then be signaled to the
world at large, using digital signatures and identifying hashes.
The purpose of signing and hashing is to give users a way to
verify that the copy they receive has not been maliciously tampered
with. Users are about to run this code on their computers — if
the code has been tampered with, an attacker could suddenly have a
back door to all their data. (See also the section called “Security Releases”.) The details of creating
digital signatures and release hashes are beyond the scope of this
book, but if you're not familiar with them, see https://www.apache.org/dev/release-signing.html, and you might also want
to do an Internet search for these phrases (simultaneously):
"open source" "digital signature"
"web of trust".
Gaining developer approval is not simply a matter of them
inspecting the release for obvious flaws. Ideally, the developers
download the package, build and install it onto a clean system, run
the regression test suite (see
the section called “Automated testing”), and do some
manual testing. Assuming it passes these checks, as well as any other
release checklist criteria the project may have, each developer then
digitally signs each container (the .tar.gz file, .zip file, etc) using
GnuPG (https://www.gnupg.org/) or some other
program capable of producing OpenPGP-compliant signatures.
In most projects, the developers just use their personal digital
signatures, instead of a shared project key, and as many developers as
want to may sign (i.e., there is a minimum number, but not a maximum).
The more developers sign, the more testing the release undergoes, and
also the greater the likelihood that a security-conscious user can
find a web-of-trust path from herself to the release.
Once approved, the release (that is, all tarballs, zip files,
and whatever other formats are being distributed) should be placed
into the project's download area, accompanied by the digital
signatures and hashes.
There are various standards for doing this. One way is to accompany
each released package with a file giving the corresponding digital
signatures, and another file giving the checksum. For example, if one
of the released packages is scanley-2.5.0.tar.gz,
place in the same directory a file
scanley-2.5.0.tar.gz.asc containing the digital
signature for that tarball, another file
scanley-2.5.0.tar.gz.md5 containing its MD5
checksum, perhaps another,
scanley-2.5.0.tar.gz.sha256, containing its SHA256
checksum, etc. A different way to provide checking is to collect all the
signatures for all the released packages into a single file,
scanley-2.5.0.sigs; the same may be done with the
checksums.
It doesn't really matter which way you do it. Just keep to a
simple scheme, describe it clearly, and be consistent from release to
release.
Candidate Releases

For important releases containing many changes, many projects
prefer to put out release candidates first,
e.g., scanley-2.5.0-beta1 before
scanley-2.5.0. The purpose of a candidate is to
subject the code to wide testing before blessing it as an official
release. If problems are found, they are fixed on the release branch
and a new candidate release is rolled out
(scanley-2.5.0-beta2). The cycle continues until
no unacceptable bugs are left, at which point the last candidate
release becomes the official release — that is, the only
difference between the last candidate release and the real release
is the removal of the qualifier from the version number.
In most other respects, a candidate release should be treated
the same as a real release. The alpha,
beta, or rc qualifier is
enough to warn conservative users to wait until the real release, and
of course the announcements for the candidate releases should
point out that their purpose is to solicit feedback. Other than
that, give candidate releases the same amount of care as regular
releases. After all, you want people to use the candidates, because
exposure is the best way to uncover bugs, and also because you never
know which candidate release will end up becoming the official
release.

Announcing Releases

Announcing a release is like announcing any other event, and
should use the procedures described in
the section called “Publicity”. There are a few
specific things to do for releases, though.
Whenever you write the URL to the downloadable release tarball,
make sure to also write the MD5/SHA1 checksums and pointers to the
digital signatures file. Since the announcement happens in multiple
forums (mailing list, news page, etc), this means users can get the
checksums from multiple sources, which gives the most
security-conscious among them extra assurance that the checksums
themselves have not been tampered with. Meanwhile, giving the link to the
digital signature files multiple times doesn't make those signatures
more secure, but it does reassure people (especially those who don't
follow the project closely) that the project takes security
seriously.
In the announcement email, and on news pages that contain more
than just a blurb about the release, make sure to include the relevant
portion of the CHANGES file, so people can see why it might be in
their interests to upgrade. This is as important with candidate
releases as with final releases; the presence of bugfixes and new
features is important in tempting people to try out a candidate
release.
Finally, don't forget to thank the development team, the
testers, and all the people who took the time to file good bug
reports. Don't single out anyone by name, though, unless there's
someone who is individually responsible for a huge piece of work,
the value of which is widely recognized by everyone in the
project. Be wary of sliding down the slippery slope of credit
inflation (see the section called “Credit”).

Maintaining Multiple Release Lines

Most mature projects maintain multiple release lines in
parallel. For example, after 1.0.0 comes out, that line should
continue with micro (bugfix) releases 1.0.1, 1.0.2, etc, until the
project explicitly decides to end the line, and
releasing 1.1.0 is not sufficient reason to end the 1.0.x line. For
example, some users make it a policy never to upgrade to the first
release in a new minor or major series — they let others shake the
bugs out of, say 1.1.0, and wait until 1.1.1. This isn't necessarily
selfish (remember, they're forgoing the bugfixes and new features
too); it's just that, for whatever reason, they've decided to be very
careful with upgrades. Accordingly, if the project learns of a major
bug in 1.0.3 right before it's about to release 1.1.0, it would be a
bit severe to just put the bugfix in 1.1.0 and tell all the old 1.0.x
users they should upgrade. Why not release both 1.1.0 and 1.0.4, so
everyone can be happy?
After the 1.1.x line is well under way, you can declare 1.0.x to
be at end of life. This should be announced
officially. The announcement could stand alone, or it could be
mentioned as part of a 1.1.x release announcement; however you do
it, users need to know that the old line is being phased out, so they
can make upgrade decisions accordingly.
Some projects set a window of time during which they pledge to
support the previous release line. In an open source context,
"support" means accepting bug reports against that line, and making
maintenance releases when significant bugs are found. Other projects
don't give a definite amount of time, but watch incoming bug reports
to gauge how many people are still using the older line. When the
percentage drops below a certain point, they declare end of life for
the line and stop supporting it.
For each release, make sure to have a target
version or target milestone
available in the bug tracker, so people filing bugs will be able to do
so against the proper release. Don't forget to also have a target
called "development" or "latest" for the most recent development
sources, since some people — and not only active
developers — stay ahead of the official
releases.
Security Releases

Most of the details of handling security bugs were covered in
the section called “Announcing Security Vulnerabilities”, but there are some
special details to discuss for doing security releases.
A security release is a release made
solely to close a security vulnerability. The code that fixes the bug
cannot be made public until the release is available, which means not
only that the fixes cannot be committed to any public repository until the
day of the release, but also that the release cannot be publicly
tested before it goes out the door. Obviously, the developers can
examine the fix among themselves, and test the release privately, but
widespread real-world testing is not possible.
Because of this lack of testing, a security release should
always consist of some existing release plus the fixes for the
security bug, with no other changes. This is
because the more changes you ship without testing, the more likely
that one of them will cause a new bug, perhaps even a new security
bug! This conservatism is also friendly to administrators who may
need to deploy the security fix, but whose upgrade policy stipulates
that they not deploy any other changes at the same time.
Making a security release sometimes involves some minor
deception. For example, the project may have been working on a 1.1.3
release, with certain bug fixes to 1.1.2 already publicly declared,
when a security report comes in. Naturally, the developers cannot
talk about the security problem until they make the fix available;
until then, they must continue to talk publicly as though 1.1.3 will
be what it's always been planned to be. But when 1.1.3 actually
comes out, it will differ from 1.1.2 only in the security fixes, and
all those other fixes will have been deferred to 1.1.4 (which, of
course, will now also contain the security
fix, as will all other future releases).
You could add an extra component to an existing release to
indicate that it contains security changes only. For example, people
would be able to tell just from the numbers that 1.1.2.1 is a security
release against 1.1.2, and they would know that any release "higher"
than that (e.g., 1.1.3, 1.2.0, etc) contains the same security fixes.
For those in the know, this system conveys a lot of information. On
the other hand, for those not following the project closely, it can be
a bit confusing to see a three-component release number most of the
time with an occasional four-component one thrown in seemingly at
random. Most projects choose consistency and simply
use the next regularly scheduled number for security releases, even
when it means shifting other planned releases by one number.

Releases and Daily Development

Maintaining parallel releases simultaneously has implications
for how daily development is done. In particular, it makes
a discipline that would be recommended anyway practically mandatory:
have each commit be a single logical change, and don't mix unrelated
changes in the same commit. If a change is too big or too disruptive
to do in one commit, break it across N commits, where each commit is a
well-partitioned subset of the overall change, and includes nothing
unrelated to the overall change.
Here's an example of an ill-thought-out commit:

commit 3b1917a01f8c50e25db0b71edce32357d2645759
Author: J. Random <jrandom@example.com>
Date: Sat 2022-06-28 15:53:07 -0500

Fix Issue #1729: warn on change during re-indexing.

Make indexing gracefully warn the user when a file is
changing as it is being indexed.

* ui/repl.py
 (ChangingFile): New exception class.
 (DoIndex): Handle new exception.

* indexer/index.py
 (FollowStream): Raise new exception if file changes during
 indexing.
 (BuildDir): Unrelatedly, remove some obsolete comments,
 reformat some code, and fix the error check when creating
 a directory.

Other unrelated cleanups:

* www/index.html: Fix some typos, set next release date.

The problem with it becomes apparent as soon as someone needs to
port the BuildDir error check fix over to a
branch for an upcoming maintenance release. The porter doesn't want
any of the other changes — for example, perhaps the fix for ticket
#1729 wasn't approved for the maintenance branch at all, while the
index.html tweaks would simply be irrelevant
there. But she cannot easily grab just the
BuildDir change via the version control tool's
merge functionality, because the version control system was told that
that change is logically grouped with all these other unrelated
things. In fact, the problem would become apparent even before the
merge. Merely listing the change for voting would become problematic:
instead of just giving the revision number, the proposer would have to
make a special change branch just to isolate the portion of
the commit being proposed. That would be a lot of work for others to
suffer through, and all because the original committer couldn't be
bothered to break things into logical groups.
The original commit really should have been
four separate commits: one to fix issue
#1729, another to remove obsolete comments and reformat code in
BuildDir, another to fix the error check in
BuildDir, and finally, one to tweak
index.html. The third of those commits would be
the one proposed for the maintenance release branch.
Of course, release stabilization is not the only reason why
having each commit be one logical change is desirable.
Psychologically, a semantically unified commit is easier to review,
and easier to revert if necessary (in some version control systems,
reversion is really a special kind of merge anyway). A little
up-front discipline on each developer's part can save the project a
lot of headache later.
Planning Releases

One area where open source projects have historically differed
from proprietary projects is in release planning. Proprietary
projects usually have firmer deadlines. Sometimes it's because
customers were promised that an upgrade would be available by a
certain date, because the new release needs to be coordinated with
some other effort for marketing purposes, or because the venture
capitalists who invested in the whole thing need to see some results
before they put in any more funding. Free software projects, on the
other hand, are concerned with maintaining a cooperative working
atmosphere among many parties — some of who may be
business competitors with others — and the
preservation of the working relationship is more important than any
single party's deadlines.
Of course, many open source projects are funded by corporations,
and are correspondingly influenced by deadline-conscious management. This is in
many ways a good thing, but it can
cause conflicts between the priorities of those developers who care
about a particular release date and everyone else. The developers who
are under pressure will naturally want to just pick a date when the
release will occur and have everyone's activities fall into line. But
the rest of the developers may have other
agendas — perhaps features they want to complete, or
some testing they want to have done — that they feel
the release should wait for.
There is no general solution to this problem except discussion
and compromise, of course. But you can minimize the friction by decoupling the proposed
existence of a given release from the date when
it would go out the door. That is, try to steer discussion toward the
subject of which releases the project will be making in the near- to
medium-term future, and what features will be in them, without at
first mentioning anything about dates (except for rough guesses with
wide margins of error).[115]
By nailing down feature sets early, you reduce
the complexity of the discussion about any individual release,
and thus improve predictability. This then creates a kind of
inertial bias against anyone who proposes to expand the definition of
a release by adding new features or other complications. If the
release's contents are fairly well defined, the onus is on the
proposer to justify the expansion, even though the date of the release
may not have been set yet. Once the release's contents have been
defined, discussion about dates will be much easier.
An alternative strategy for dealing with the tension between
project release timing and corporate needs is for the company to
simply make separate interim releases for its customers. As discussed
in the section called “The Economics of Open Source”, such releases can be public and
open source, and won't do the project any harm as long as they are
clearly distinguished from the project's official releases. However,
maintaining separate release lines independently from the project
involves overhead in tracking changes and porting them back
and forth. This technique only works when a company can dedicate
enough people to release management to handle that overhead.
It is crucial, of course, to never present any individual
suggestion or decision as written in stone. In the comments associated with each
assignment of a ticket to a specific future release, invite
discussion, dissent, and be genuinely willing to be persuaded whenever
possible. Never exercise control merely for the sake of exercising
control: the more deeply others feel they can participate in the
release planning process (see
the section called “Share Management Tasks as Well as Technical Tasks”), the easier it
will be to persuade them to share your priorities on the issues that
really matter for you.
The other way the project can lower tensions around release
planning is to make releases fairly often (even if you're not using a
time-based release scheme — see Time-Based Releases vs Feature-Based Releases). When there's a long time
between releases, the importance of any individual release is
magnified in everyone's minds; people are that much more crushed when
their code doesn't make it in, because they know how long it might be
until the next chance. Depending on the complexity of the release
process and the nature of your project, somewhere between every three
and six months is usually about the right gap between releases, though
maintenance lines may put out micro releases a bit faster, if there is
demand for them.

[115] Or you could consider doing
time-based releases, as described in Time-Based Releases vs Feature-Based Releases.

Chapter 8. Managing Participants

Getting people to agree on what a project needs, and to work
together to achieve it, requires more than just a genial atmosphere
and a lack of obvious dysfunction. It requires someone, or several
someones, consciously managing all the people involved. Managing
participants who work for different organizations or
for themselves may not be a technical craft in the same sense as
computer programming, but it is a craft in the sense that it can be
improved through study and practice.
This chapter is a grab-bag of specific techniques for managing
diverse participants in an open source project. It draws, perhaps
more heavily than previous chapters, on
the Subversion project as a case study, partly because I was working
on that project as I wrote the first edition of this book and had all
the primary sources close
at hand, and partly because it's more acceptable to cast critical
stones into one's own glass house than into others'. But I have also
seen in various other projects the benefits of applying — and the
consequences of not applying — the recommendations that follow;
when it is politically feasible to give examples from some of those
other projects, I will do so.
Speaking of politics, this is as good a time as any to drag that
much-maligned word out for a closer look. Many engineers like to
think of politics as something other people engage in.
"I'm just advocating the best course for the
project, but she's raising objections for
political reasons." I believe this distaste for politics (or for what
is imagined to be politics) is especially strong in engineers because
engineers are bought into the idea that some solutions are objectively
superior to others. Thus, when someone acts in a way that seems
motivated by non-technical considerations — say, the maintenance of her
own position of influence, the lessening of someone else's
influence, outright horse-trading, or avoiding hurting someone's
feelings — other participants in the project may get annoyed. Of
course, this rarely prevents them from behaving in the same way when
their own vital interests are at stake.
If you consider "politics" a dirty word and hope to keep your
project free of it, give up right now. Politics are inevitable
whenever people have to cooperatively manage a shared resource. In
the case of an open source project, even though the code itself is not
that kind of shared resource (since it can be copied by anyone), attention,
credibility, and influence in the project very much are: they are by
definition not copyable, and therefore not forkable.
Thus it is quite reasonable that one of the considerations
in each person's decision-making process is the question of
how a given action might affect her own future influence in the
project. After all, if you trust your own judgement and skills, as
most programmers do, then the potential loss of future influence has
to be considered a technical result, in a sense. Similar reasoning
applies to other behaviors that might seem, on their face, like "pure"
politics. In truth, there is no such thing as pure politics: it is
precisely because actions have multiple real-world consequences that
people become politically conscious in the first place. Politics is,
in the end, simply an acknowledgement that all
consequences of decisions must be taken into account. If a particular
decision leads to a result that most participants find technically
satisfying, but involves a change in power relationships that leaves
key people feeling isolated, the latter is just as important a result
as the former. To ignore it would not be high-minded but
shortsighted.
So as you read the advice that follows, and as you work with
your own project, remember that there is no one
who is above politics. Appearing to be above politics is merely one
particular political strategy, and sometimes a very useful one, but it
is never the reality. Politics is simply what happens when people
disagree on the use or allocation of a shared asset, and successful
projects evolve political mechanisms for managing such
disagreement constructively.

Community and Motivation

Why do people work on free software
projects?[116] Of course, in some
cases the answer is that it's their job — their
manager asked them to. But even then, most participants have some
degree of intrinsic motivation that goes beyond a mere management
request. As every manager knows, people are much more successful when
they have their own motivations for wanting to succeed than when they
are merely performing work in return for a paycheck.
Most open source developers — I would even go so far
as to say the vast majority of them — are not in it
only for the paycheck. There is something more to it than that.
When asked, many claim they do it because they want to produce
good software, or want to be personally involved in fixing the bugs
that matter to them. But these reasons are usually not the whole
story. After all, could you imagine a participant staying with a
project even if no one ever said a word in appreciation of her work,
or listened to her in discussions? Of course not. Clearly, people
spend time on free software for reasons beyond just an abstract desire
to produce good code. Understanding people's true motivations will
help you arrange things so as to attract and keep them. The desire to
produce good software may be among those motivations, along with the
challenge and educational value of working on hard problems. But
humans also have a built-in desire to work with other humans, and to
give and earn respect through cooperative activities. Groups engaged
in cooperative activities must evolve norms of behavior such that
status is acquired and kept through actions that help the group's
goals.
Those norms won't always arise by themselves. For example, on
some projects — experienced open source developers can probably
name several off the tops of their heads — people apparently feel
that status is acquired by posting frequently and verbosely. They
don't come to this conclusion accidentally; they come to it because
they are rewarded with respect for making long, intricate arguments,
whether or not that actually helps the project. Following are some
techniques for creating an atmosphere in which status-acquiring
actions are also constructive actions.
Delegation

Delegation is not merely a way to spread the workload around; it
is also a political and social tool. Consider all the effects when
you ask someone to do something. The most obvious effect is that, if
he accepts, he does the task and you don't. But another effect is
that he is made aware that you trusted him to handle the task.
Furthermore, if you made the request in a public forum, then he knows
that others in the group have been made aware of that trust too. He
may also feel some pressure to accept, which means you must ask in a
way that allows him to decline gracefully if he doesn't really want
the job. If the task requires coordination with others in the
project, you are effectively proposing that he become more involved,
form bonds that he might not otherwise have been formed, and perhaps
become a source of authority in some subdomain of the project. The
added involvement may be daunting, or it may lead him to become
engaged in new ways from an increased feeling of overall
commitment.
Because of all these effects, it often makes sense to ask
someone else to do something even when you know you could do it faster
or better yourself. Of course, there is sometimes a strict economic
efficiency argument for this anyway: perhaps the opportunity cost of
doing it yourself would be too high — there might be something
even more important you could do with that time. But even when that
kind of comparative advantage argument doesn't apply, you may
still want to ask someone else to take on the
task, because in the long run you want to draw that person deeper into
the project, even if it means spending extra time watching over them
at first. The converse technique also applies: if you occasionally
volunteer for work that someone else doesn't want or have time to do,
you will gain her good will and respect. Delegation and
substitution are not just about getting individual tasks done; they're
also about drawing people into a closer commitment with each other and to the
project.
Distinguish Clearly Between Inquiry and Assignment

Sometimes it is fair to expect that a person will accept a
particular task. For example, if someone writes a bug into the code,
or commits code that fails to comply with project guidelines in some
obvious way, then it is enough to point out the problem and thereafter
behave as though you assume the person will take care of it. Also, if
they have stated publicly that they will do something, it is
reasonable to depend on that. But there are other situations where it
is by no means clear that you have a right to expect action. The
person may do as you ask, or may not. Since no one likes to be taken
for granted, you need to be sensitive to the difference between these
two types of situations, and tailor your requests accordingly.
One thing that almost always causes people instant annoyance is
being asked to do something in a way that implies that you think it is
clearly their responsibility to do it when they feel otherwise. For
example, assignment of incoming tickets is particularly fertile ground
for this kind of annoyance. The participants in a project usually
know who is expert in what areas, so when a bug report comes in, there
will often be one or two people whom everyone knows could probably fix
it quickly. However, if you assign the ticket over to one of those
people without her prior permission, she may feel she has been
put into an uncomfortable position. She senses the pressure of
expectation, but also may feel that she is, in effect, being
punished for her expertise. After all, the way to acquire
expertise is by fixing bugs, so perhaps someone else should take this
one! (Note that ticket trackers that automatically assign tickets to
particular people based on information in the bug report are less
likely to offend, because everyone knows that the assignment was made
by an automated process, and is not an indication of human
expectations.)
While it would be nice to spread the load as evenly as possible,
there are certain times when you just want to encourage the person who
can fix a bug the fastest to do so. Given that you can't afford a
communications turnaround for every such assignment ("Would you be
willing to look at this bug?" "Yes." "Okay, I'm assigning the ticket
over to you then." "Okay."), you should simply make the assignment in
the form of an inquiry, conveying no pressure. Virtually all ticket
trackers allow a comment to be associated with the assignment of a
ticket. In that comment, you can say something like this:
Assigning this over to you, jrandom, because you're most
 familiar with this code. Feel free to bounce this back if you
 don't have time to look at it, though. (And let me know if you'd
 prefer not to receive such requests in the future.)

This distinguishes clearly between the
request for assignment and the
recipient's acceptance of that assignment. The
audience here isn't only the assignee, it's everyone: the entire group
sees a public confirmation of the assignee's expertise, but the
message also makes it clear that the assignee is free to accept or
decline the responsibility.

Follow Up After You Delegate

When you ask someone to do something, remember that you have
done so, and follow up with her no matter what. Most requests are
made in public forums, and are roughly of the form "Can you take care
of X? Let us know either way; no problem if you can't, I just need to
know." You may or may not get a response. If you do, and the
response is negative, the loop is closed — you'll need to try some
other strategy for dealing with X. If there is a positive response,
then keep an eye out for progress on the issue, and comment on the
progress you do or don't see (everyone works better when they know
someone else is appreciating their work). If there is no response
after a few days, ask again, or post saying that you got no
response and are looking for someone else to do it. Or just do it
yourself, but still make sure to say that you got no response to the
initial inquiry.
The purpose of publicly noting the lack of response is
not to humiliate the person, and your remarks
should be phrased so as not to have that effect. The purpose is
simply to show that you keep track of what you have asked for, and
that you notice the reactions you get. This makes people more likely
to say yes next time, because they will observe (even if only
unconsciously) that you are likely to notice any work they do, given
that you noticed the much less visible event of someone failing to
respond.

Notice What People Are Interested In

Another thing that makes people happy is to have their interests
noticed — in general, the more aspects of someone's personality
you notice and remember, the more comfortable she will be, and the
more she will want to work with groups of which you are a
part.
For example, there was a sharp distinction in the Subversion
project between people who wanted to reach a definitive 1.0 release
(which we eventually did), and people who mainly wanted to add new
features and work on interesting problems but who didn't much care
when 1.0 came out. Neither of these positions is better or worse than
the other; they're just two different kinds of developers, and both
kinds do lots of work on the project. But we swiftly learned that it
was important to not assume that the excitement
of the 1.0 drive was shared by everyone. Electronic media can be very
deceptive: you may sense an atmosphere of shared purpose when, in fact,
it's shared only by the people you happen to have been talking to,
while others have completely different priorities.
The more aware you are of what different people want out of the project,
the more effectively you can make requests of them. Even just
demonstrating an understanding of what they want, without making any
associated request, is useful, in that it confirms to each person that
she's not just another particle in an undifferentiated mass.

Praise and Criticism

Praise and criticism are not opposites; in many ways, they are
very similar. Both are primarily forms of attention, and are most
effective when specific rather than generic. Both should be deployed
with concrete goals in mind. Both can be diluted by inflation: praise
too much or too often and you will devalue your praise; the same is
true for criticism, though in practice, criticism is usually reactive
and therefore a bit more resistant to devaluation.
An important feature of technical culture is that detailed,
dispassionate criticism is often taken as a kind of praise (as
discussed in the section called “Recognizing Rudeness”), because of the
implication that the recipient's work is worth the time required to
analyze it. However, both of those
conditions — detailed and
dispassionate — must be met for this to be
true. For example, if someone makes an incorrect change to the code, it
is useless (and actually harmful) to follow up saying simply "That was
sloppy." Sloppiness is ultimately a characteristic of a
person, not of their work, and it's important to
keep your reactions focused on the work. It's much more effective to
describe whatever is wrong with the change, tactfully and without
malice. If this is the third or fourth careless change in a row by
the same person, it's appropriate to say that — again without
anger — at the end of your critique, to make it clear that the
pattern has been noticed.
If someone does not improve in response to criticism, the
solution is not more or stronger criticism. The solution is for the
group to remove that person from the position of incompetence, in a
way that minimizes hurt feelings as much as possible; see
the section called “Transitions” for examples. That is a rare
occurrence, however. Most people respond pretty well to criticism
that is specific, detailed, and contains a clear (even if unspoken)
expectation of improvement.
Praise won't hurt anyone's feelings, of course, but that doesn't
mean it should be used any less carefully than criticism. Praise is a
tool: before you use it, ask yourself why you
want to use it. As a rule, it's not a good idea to regularly praise people for
doing what they usually do, or for actions that are a normal and
expected part of participating in the group. If you were to do that,
it would be hard to know when to stop: should you praise
everyone for doing the usual things? After all,
if you leave some people out, they'll wonder why. It's much better to
express praise and gratitude sparingly, in response to unusual or
unexpected efforts, with the intention of encouraging more such
efforts. When a participant seems to have moved permanently into a
state of higher productivity, adjust your praise threshold for that
person accordingly. Repeated praise for normal behavior gradually
becomes meaningless anyway. Instead, that person should sense that
her high level of productivity is now considered normal and natural,
and only work that goes beyond that should be specially noticed.
This is not to say that the person's contributions shouldn't be
acknowledged, of course. But remember that if the project is set up
right, everything that person does is already visible anyway, and so
the group will know (and the person will know that the rest of the
group knows) everything she does. There are also ways to acknowledge
someone's work by means other than direct praise. You could mention
in passing, while discussing a related topic, that she has done a lot
of work in the given area and is the resident expert there; you
could publicly consult her on some question about the code; or perhaps
most effectively, you could conspicuously make further use of the work
she has done, so she sees that others are now comfortable relying on
the results of her work. It's probably not necessary to do these
things in any calculated way. Someone who regularly makes large
contributions in a project will know it, and will occupy a position of
influence by default. There's usually no need to take explicit steps
to ensure this, unless you sense that, for whatever reason, a
contributor is underappreciated.

Prevent Territoriality

Watch out for participants who try to stake out exclusive
ownership of certain areas of the project, and who seem to want to do
all the work in those areas, to the extent of aggressively taking over
work that others start. Such behavior may even seem healthy at first.
After all, on the surface it looks like the person is taking on more
responsibility, and showing increased activity within a given area.
But in the long run, it is destructive. When people sense a "no
trespassing" sign, they stay away. This results in reduced review in
that area, and greater fragility, because the lone developer becomes a
single point of failure. Worse, it fractures the cooperative,
egalitarian spirit of the project. The theory should always be that
any developer is welcome to help out on any task at any time. Of
course, in practice things work a bit differently: people do have
areas where they are more and less influential, and non-experts
frequently defer to experts in certain domains of the project. But
the key is that this is all voluntary: informal authority is granted
based on competence and proven judgement, but it should never be
actively
taken. Even if the person desiring the authority
really is competent, it is still crucial that she hold that authority
informally, through the consensus of the group, that the exact
boundaries of the authority remain fuzzy and subjective, and that the
authority never cause her to exclude others from working in that area.
Rejecting or editing someone's work for technical reasons is an
entirely different matter, of course. There, the decisive factor
is the content of the work, not who happened to act as gatekeeper. It
may be that the same person happens to do most of the reviewing for a
given area, but as long as he never tries to prevent someone else from
doing that work too, things are probably okay.
Cookie Licking

The wonderful term cookie licking,
 which I first heard from Sumana Harihareswara, can be used for the
 situation where someone claims, in front of the group, that they're
 going to take care of a certain task but then does nothing with it.
 As Sumana says[117]:
 "Nobody in their right mind would pick up and eat the licked cookie
 or finish the [task]." If you think you see an instance of cookie
 licking happening in your project, simply pointing it out may be
 enough to de-territorialize the task in question and make others
 consider picking it up (may be enough to sterilize the cookie,
 I guess, though at this point staying with the analogy may be more
 confusing than helpful).

In order to combat incipient territorialism, or even the
appearance of it, many projects have taken the step of banning the
inclusion of author names or designated maintainer names in source
files. I wholeheartedly agree with this practice: we follow it in the
Subversion project, and it is more or less official policy at the
Apache Software Foundation. ASF member Sander Striker puts it this
way:
At the Apache Software foundation we discourage the
 use of author tags in source code. There are various reasons for
 this, apart from the legal ramifications. Collaborative
 development is about working on projects as a group and caring for
 the project as a group. Giving credit is good, and should be done,
 but in a way that does not allow for false attribution, even by
 implication. There is no clear line for when to add or remove an
 author tag. Do you add your name when you change a comment? When
 you put in a one-line fix? Do you remove other author tags when
 you refactor the code and it looks 95% different? What do you do
 about people who go about touching every file, changing just enough
 to make the virtual author tag quota, so that their name will be
 everywhere?
There are better ways to give credit, and our
 preference is to use those. From a technical standpoint author
 tags are unnecessary; if you wish to find out who wrote a
 particular piece of code, the version control system can be
 consulted to figure that out. Author tags also tend to get out of
 date. Do you really wish to be contacted in private about a piece
 of code you wrote five years ago and were glad to have
 forgotten?

A software project's source code files are the core of its
identity. They should reflect the fact that the developer community
as a whole is responsible for them, and not be divided up into
little fiefdoms.
People sometimes argue in favor of author or maintainer tags in
source files on the grounds that this gives visible credit to those
who have done the most work there. There are two problems with this
argument. First, the tags inevitably raise the awkward question of
how much work one must do to get one's own name listed there too.
Second, they conflate the issue of credit with that of authority:
having done work in the past does not imply ownership of the area
where the work was done, but it's difficult if not impossible to avoid
such an implication when individual names are listed at the tops of
source files. In any case, credit information can already be obtained
from the version control logs and other out-of-band mechanisms like
mailing list archives, so no information is lost by banning it from
the source files themselves.[118]
If your project decides to ban individual names from source
files, make sure not to go overboard. For instance, many
projects have a contrib/ area where small tools and
helper scripts are kept, often written by people who are otherwise not
associated with the project. It's fine for those files to contain
author names, because they are not really maintained by the project as
a whole. On the other hand, if a contributed tool starts getting
hacked on by other people in the project, eventually you may want to
move it to a less isolated location and, assuming the original author
approves, remove the author's name, so that the code looks like any
other community-maintained resource. If the author is sensitive about
this, compromise solutions are acceptable, for example:

indexclean.py: Remove old data from a Scanley index.
#
Original Author: K. Maru <kobayashi@example.com>
Now Maintained By: Scanley Project (scanley.org)
and K. Maru.

...

But it's better to avoid such compromises, if possible, and most
authors are willing to be persuaded, because they're happy that their
contribution is being made a more integral part of the project.
The important thing is to remember that there is a continuum
between the core and the periphery of any project. The main source
code files for the software are clearly part of the core, and should
be considered as maintained by the community. On the other hand,
companion tools or pieces of documentation may be the work of single
individuals, who maintain them essentially alone, even though the
works may be associated with, and even distributed with, the project.
There is no need to apply a one-size-fits-all rule to every file, as
long as the principle that community-maintained resources are not
allowed to become individual territories is upheld.

The Automation Ratio

Try not to let humans do what machines could do instead. As a
rule of thumb, automating a common task is worth at least ten times the
effort a developer would spend doing that task manually one time. For
very frequent or very complex tasks, that ratio could easily go up to
twenty or even higher.
Thinking of yourself as a "project manager", rather than just
another developer, may be a useful attitude here. Sometimes
individual developers are too wrapped up in low-level work to see the
big picture and realize that everyone is wasting a lot of effort
performing automatable tasks manually. Even those who do realize it
may not take the time to solve the problem: because each individual
performance of the task does not feel like a huge burden, no one ever
gets annoyed enough to do anything about it. What makes automation
compelling is that the small burden is multiplied by the number of
times each developer incurs it, and then that
number is multiplied by the number of developers.
Here, I am using the term "automation" broadly, to mean not only
repeated actions where one or two variables change each time, but any
sort of technical infrastructure that assists humans. The minimum
standard automation required to run a project these days was described
in Chapter 3, Technical Infrastructure, but each project
may have its own special problems too. For example, a group working
on documentation might want to have a web site displaying the most
up-to-date versions of the documents at all times. Since
documentation is often written in a markup language like XML, there
may be a compilation step, often quite intricate, involved in creating
displayable or downloadable documents. Arranging a web site where
such compilation happens automatically on every commit might take
a little time, but it is worth it.[119] The overall benefits of having
up-to-date pages available at all times are huge, even though the cost
of not having them might seem like only a small
annoyance at any single moment, to any single developer.
Taking such steps eliminates not merely wasted time, but the
griping and frustration that ensue when humans make missteps (as they
inevitably will) in trying to perform complicated procedures manually.
Multi-step, deterministic operations are exactly what computers were
invented for; save your humans for more interesting things.
(For another example of using automation to remove a bottleneck for
the entire team, see Subversion's Contribulyzer system, which
I've already described in detail in Chapter 21 of the book "Beautiful
Teams" (https://www.oreilly.com/library/view/beautiful-teams/9780596801885/).
That chapter, Teams and Tools, is available online at https://red-bean.com/kfogel/beautiful-teams/bt-chapter-21.html.)
Automated testing

Automated test runs are helpful for any software project, but
especially so for open source projects, because automated testing
(especially regression testing) allows developers to feel comfortable
changing code in areas they are unfamiliar with, and thus encourages
exploratory development. Since detecting breakage is so hard to do by
hand — one essentially has to guess where one might have broken
something, and try various experiments to prove that one
didn't — having automated ways to detect such breakage saves the
project a lot of time. It also makes people much
more relaxed about refactoring large swaths of code, and therefore
contributes to the software's long-term maintainability.
Regression Testing and Unit Testing

Regression testing means testing that
 working software stays working. Its purpose is to reduce the
 chances that code changes will break the software, particularly in
 ways the software has been broken before. Many projects have a
 regression test suite, a separate program
 that invokes the project's software with the expectation of
 particular inputs causing particular behaviors. If the test suite
 instead causes a different behavior to happen, this is known as
 a regression, meaning that someone's change
 unexpectedly broke something else.
Unit testing means testing the
 software's module boundaries using their documented APIs. Its
 purpose is both to reduce the chance that modifications will break
 existing functionality, and to prove that the intended functionality
 exists as claimed. If regression testing is retrospective ("What
 has broken in the past?"), unit testing is prospective ("What needs
 to continue working in the future?"). As with
 regression tests, many projects have a unit test
 suite.
As a software project gets bigger and more complicated, the
 chances of unexpected side effects increase steadily. Good design
 can reduce the rate at which those chances increase, but it cannot
 eliminate the problem entirely. Thus many projects encourage, and
 sometimes even require, contributors to accompany new functionality
 with corresponding new regression or unit tests.
See
 https://en.wikipedia.org/wiki/Regression_testing and
 https://en.wikipedia.org/wiki/Unit_testing for more
 information.

Automated testing is not a panacea. For one thing, it works
best for programs with batch-style interfaces. Software that is
operated primarily through graphical user interfaces is much harder to
test programmatically. Another problem is that test suites
themselves can often be quite complex, with a learning
curve and maintenance burden all their own. Reducing this complexity is
one of the most useful things you can do, even though it may take a
considerable amount of time. The easier it is to add new tests to the
suite, the more developers will do so, and the fewer bugs will survive
to release. Any effort spent making tests easier to write will be
paid back many-fold over the lifetime of the project.
Almost all projects have a "Don't break the
build!" rule, meaning: don't commit a change that makes
the software unable to compile or run. Being the person who broke the
build is usually cause for mild embarrassment and ribbing. Projects
with test suites often have a corollary rule: don't commit any change
that causes tests to fail. Such failures are easiest to spot if there
are automatic nightly or per-change runs of the entire test suite,
with the results posted publicly; that's another example of a
worthwhile automation.
Most project hosting sites offer easy ways to connect code
repositories to automating test services, so that continuous
integration[120]
can be a regular part of the development cycle. Unless you have a
reason to do something different, your project should just use one of
the standard CI systems that other projects on that hosting site use.
That way some developers will be already familiar with the CI setup
when they start participating in your project.
In general, developers are willing to take the extra time to
write tests when the test system is comprehensible and
easy to work with. Accompanying changes with tests is understood to
be the responsible thing to do, and it's also an easy opportunity for
collaboration: often two developers will divide up the work for a
bugfix, with one writing the fix itself, and the other writing the
test. The latter developer sometimes ends up with more work, and since
writing a test is already less satisfying than actually fixing the
bug, it is imperative that the test suite not make the experience more
painful than it has to be.
Some projects go even further, requiring that a new test
accompany every bugfix or new feature. Whether
this is a good idea or not depends on many factors: the nature of the
software, the makeup of the development team, and the difficulty of
writing new tests. It is normal to spend more time writing a new
regression test than on fixing the original bug. But don't let it get
to an extreme: if it takes ten minutes to diagnose and fix a bug, but
two hours to add a corresponding test, most developers will not bother
with the test. And if the project requires tests to accompany fixes,
then the developer may not bother to fix the bug in the first
place.
If the test system ever becomes a significant impediment to
development, something must be done, and quickly.
The same would be true for any routine process that turns into a
barrier or a bottleneck for contributors.

Treat Every User as a Potential Participant

Each interaction with a user is an opportunity to get a new
participant. When a user takes the time to post to one of the project's
mailing lists, or to file a bug report, she has already tagged herself
as having more potential for involvement than most users (from whom
the project will never hear at all). Follow up on that potential: if
she described a bug, thank her for the report and ask her if she wants
to try fixing it. If she wrote to say that an important question was
missing from the FAQ, or that the program's documentation was
deficient in some way, then freely acknowledge the problem (assuming
it really exists) and ask if she's interested in writing the missing
material herself. Naturally, much of the time the user will demur.
But it doesn't cost much to ask, and every time you do, it reminds the
other listeners in that forum that getting involved in the project is
something anyone can do.
Don't limit your goals to acquiring new developers and
documentation writers. For example, even training people to write
good bug reports pays off in the long run, if you don't spend
too much time per person, and if they go on
to submit more bug reports in the future — which they are more
likely to do if they got a constructive reaction to their first
report. A constructive reaction need not be a fix for the bug,
although that's always the ideal; it can also be a solicitation for
more information, or even just a confirmation that the behavior
is a bug. People want to be listened to.
Secondarily, they want their bugs fixed. You may not always be able
to give them the latter in a timely fashion, but you (or rather, the
project as a whole) can give them the former.
A corollary of this is that developers should not express anger
at people who file well-intended but vague bug reports. This is one
of my personal pet peeves; I see developers do it all the time on
various open source mailing lists, and the harm it does is palpable.
Some hapless newbie will post a useless report:
Hi, I can't get Scanley to run. Every time I start it up, it
 just errors. Is anyone else seeing this problem?

Some developer — who has seen this kind of report a
thousand times, and hasn't stopped to think that the newbie has
not — will respond like this:
What are we supposed to do with so little information?
 Sheesh. Give us at least some details, like the version of
 Scanley, your operating system, and the error.

This developer has failed to see things from the user's point of
view, and also failed to consider the effect such a reaction might
have on all the other people watching the
exchange. Naturally a user who may have no programming experience, and no
prior experience reporting bugs, will not know how to write a bug
report. What is the right way to handle such a person? Educate them!
And do it in such a way that they come back for more:
Sorry you're having trouble. We'll need more information in
 order to figure out what's happening here. Please tell us the
 version of Scanley, your operating system, and the exact text of
 the error. The very best thing you can do is send a transcript
 showing the exact commands you ran, and the output they produced.
 See http://www.scanley.org/how-to-report-a-bug.html for more.

This way of responding is far more effective at
extracting the needed information from the user, because it is written
to the user's point of view. First, it expresses sympathy:
You had a problem; we feel your pain. (This is
not necessary in every bug report response; it depends on the severity
of the problem and how upset the user seemed.) Second, instead of
belittling him for not knowing how to report a bug, it tells him how,
and in enough detail to be actually useful — for example, many
users don't realize that "show us the error" means "show us the exact
text of the error, with no omissions or abridgements." The first time
you work with such a user, you need to be specific about that.
Finally, it offers a pointer to much more detailed and complete
instructions for reporting bugs. If you have successfully engaged
with the user, he will often take the time to read that document and
do what it says. This means, of course, that you have to have the
document prepared in advance. It should give clear instructions about
what kind of information your development team wants to see in every
bug report. Ideally, it should also evolve over time in response to
the particular sorts of omissions and misreports users tend to make
for your project.
The Subversion project's bug reporting instructions, at https://subversion.apache.org/reporting-issues.html, are a fairly
standard example of the form. Notice how they include an
invitation to provide a patch to fix the bug. This is not because
such an invitation will lead to a greater patch/report
ratio — most users who are capable of fixing bugs already know
that a patch would be welcome, and don't need to be told. The
invitation's real purpose is to emphasize to all readers, especially
those new to the project or new to free software in general, that the
project runs on participation. In a sense, the project's
current developers are no more responsible for fixing the bug than is
the person who reported it. This is an important point that many new
users will not be familiar with. Once they realize it, they're more
likely to help make the fix happen, if not by contributing code then
by providing a more thorough reproduction recipe, or by offering to
test fixes that other people post. The goal is to make every user
realize that there is no innate difference
between himself and the people who work on the project — that
it's a question of how much time and effort one puts in, not a
question of who one is.
The admonition against responding angrily does not apply to rude
users. Occasionally people post bug reports or complaints that,
regardless of their informational content, show a sneering contempt at
the project for some failing. Often such people are alternately
insulting and flattering, such as the person who posted this to a
Subversion mailing list:
Why is it that after almost 6 days there still aren't any
binaries posted for the windows platform?!? It's the same story every
time and it's pretty frustrating. Why aren't these things automated
so that they could be available immediately?? When you post an "RC"
build, I think the idea is that you want users to test the build, but
yet you don't provide any way of doing so. Why even have a soak
period if you provide no means of testing??

Initial response to this rather inflammatory post was
surprisingly restrained: people pointed out that the project had a
published policy of not providing official binaries, and said, with
varying degrees of annoyance, that he ought to volunteer to produce
them himself if they were so important to him. Believe it or not, his
next post started with these lines:
First of all, let me say that I think Subversion is awesome and
I really appreciate the efforts of everyone involved. [...]

...and then he went on to berate the project
again for not providing binaries, while
still not volunteering to do anything about it. After that, about
50 people just jumped all over him, and I can't say I really
minded. Retaliatory rudeness should be avoided toward people with
whom the project has (or would like to have) a sustained interaction.
But when someone makes it clear from the start that he is going to
be a fountain of bile, there is no point making him feel welcome.
Such situations are fortunately quite rare, and they are
noticeably rarer in projects that make an effort to engage users
constructively and courteously from their very first
interaction.

Meeting In Person: Conferences, Hackfests, Code-a-Thons, Code Sprints, Retreats

In the section called “Sponsoring Conferences, Hackathons, and other Developer Meetings”, I already discussed the usefulness
of sponsoring in-person meetings between developers, including those
who are not part of your organization but who work on the same
project(s) as your own developers do. Subsidizing in-person meetups,
hackathons, and conference travel creates good will and is a
relatively cheap way to signal the permanence of your company's
strategic investment in a given project. It's also a good way for
your organization to absorb outside ideas from the competitive and
collaborative landscape, since it puts your developers in close
contact with developers from other companies.
Once you have decided to sponsor in-person contact, what form
should it take?
The important thing to remember is that the primary
output of a social event is social connections. Don't
sponsor a hackathon with just the limited goal of getting a specific
list of bugs fixed or features implemented. While it is reasonable to
expect some technical progress as the result of a hackathon, if that's
all you get, you're wasting at least some of your money. The
real output is the increased trust and richer
shared vocabulary built up between the developers from having been in
the same room talking through the same problems — and
from having relaxed over a good meal later that evening. That closer
relationship will continue to pay off long after the event is over, in
people's willingness to spend an extra hour reviewing a commit,
evaluating a design proposal, or helping someone debug an unexpected
problem. Deeper long-term collaboration is the goal; the event is
just a means of getting there.
Meetups do not only have to be for writing code. Documentation
sprints, user-testing and QA sprints, and primarily user-centric
events such as install fests are all useful. However, be careful to
distinguish clearly between purely developer-oriented events and
events with a broader demographic, because the developers who attend
will want to know what kind of mindset to be in. Designing, coding,
and debugging require a specific kind of concentration and mental
stance, and it helps developers a lot to know in advance whether the
event they're going is expected to have an atmosphere conducive to
that kind of concentration or not. Both kinds of
events are useful for developers, and it's important for them to
interact with and develop relationships with documenters, testers,
users, sales engineers, etc. They just need to know what they're
going to, so they can prepare accordingly.

[116] This question was studied in detail, with
interesting results, in a paper by Karim Lakhani and Robert G. Wolf,
entitled Why Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software
Projects. See http://flosshub.org/node/53.

[117] See http://opensourcebridge.org/sessions/1132.

[118] But see the mailing list
thread entitled "having authors names in .py files"
at https://groups.google.com/group/sage-devel/browse_thread/thread/e207ce2206f0beee
for a good counterargument, particularly the post from William Stein.
The key in that case, I think, is that many of the authors come from a
culture (the academic mathematics community) where crediting directly
at the source is the norm and is highly valued. In such
circumstances, it may be preferable to put author names into the
source files, along with precise descriptions of what each author did,
since the majority of potential contributors will expect that style of
acknowledgement.

[119] It's gotten easier
thanks to https://readthedocs.org/, an open source, community-supported
site used by many projects. In its own words, "Read The Docs
simplifies software documentation by automating building, versioning,
and hosting of your docs for you."

[120] The Wikipedia page https://en.wikipedia.org/wiki/Continuous_integration has a
good description of this practice and its variants.

Share Management Tasks as Well as Technical Tasks

Share the management burden as well as the technical burden of
running the project. As a project becomes more complex, an increasing
proportion of the work becomes about managing people and information flow.
There is no reason not to share that burden, and sharing it does not
necessarily require a top-down hierarchy either. In fact, what happens in
practice tends to be more of a peer-to-peer network topology than a
military-style command structure.
Sometimes management roles are formalized and sometimes they
happen spontaneously. In the Subversion project, we have a patch
manager, a translation manager, documentation managers, issue managers
(albeit unofficial), and a release manager. Some of these roles we
made a conscious decision to initiate, others just happened by
themselves. Here we'll examine these roles, and a couple of others,
in detail (except for release manager, which was already covered in
the section called “Release Manager” and the section called “Dictatorship by Release Owner”).
"Manager" Does Not Mean "Owner"

As you read the role descriptions below, notice that none of them
requires exclusive control over the domain in question. The issue
manager does not prevent other people from making changes in the
tickets database, the FAQ manager does not insist on being the only
person to edit the FAQ, and so on. These roles are all about
responsibility without monopoly. An important
part of each domain
manager's job is to notice when other people are working in that domain,
and train them to do the things the way the manager does, so that the
multiple efforts reinforce rather than conflict. Domain managers
should also document the processes by which they do their work, so
that when one leaves, someone else can pick up the slack right
away.
Sometimes there is a conflict: two or more people want the same
role. There is no one right way to handle this. You just have to
draw on your knowledge of the project and of the people involved and
suggest a resolution. In some cases it will work to just put on your
"benevolent dictator" hat and choose one of the people. But I find
that a better technique is just to ask the multiple candidates to
settle it among themselves. They usually will, and will be more
satisfied with the result than if a decision had been imposed on them
from the outside. They may even decide on a co-management
arrangement, which is fine if it works, and if it doesn't then you're
right back where you started and can try a different resolution.
Patch Manager (or Pull Request Manager)

In a free software project that receives a lot of
patches,[121]
keeping track of which patches have arrived and what has been decided
about them can be a nightmare, especially if done in a decentralized
way. Most patches arrive either as posts to the project's development
mailing list or as a pull request submitted through the version
control system, but there are a number of different routes a patch can
take after arrival.
Sometimes someone reviews the patch, finds problems, and bounces
it back to the original author for cleanup. This usually leads to an
iterative process — all visible in a public forum — in which
the original author posts revised versions of the patch until the
reviewer has nothing more to criticize. It is not always easy to tell
when this process is done: if the reviewer commits the patch, then
clearly the cycle is complete. But if she does not, it might be
because she simply didn't have time, or doesn't have commit access
herself and couldn't rope any of the other developers into doing
it.
Another frequent response to a patch is a freewheeling
discussion, not necessarily about the patch itself, but about whether
the concept behind the patch is good. For example, the patch may fix
a bug, but the project prefers to fix that bug in another way, as part
of solving a more general class of problems. Often this is not known
in advance, and it is the patch that stimulates the discovery.
Occasionally, a posted patch is met with utter silence. Usually
this is due to no developer having time at that
moment to review the patch, so each hopes that someone else
will do it. Since there's no particular limit to how long each person
waits for someone else to pick up the ball, and meanwhile other
priorities are always coming up, it's very easy for a patch to be
ignored permanently without any single person intending for that to
happen. The project might miss out on a useful patch this way, and
there are other harmful side effects as well: it is discouraging to
the author, who invested work in the patch, and it is discouraging
to others considering writing patches.
The patch manager's job is to make sure that patches don't "slip
through the cracks." This is done by following every patch through to
some sort of stable state. The patch manager watches every issue
tracker discussion, pull request, or mailing list thread that results
from a patch
posting. If it ends with a commit of the patch, he does nothing. If it
goes into a review/revise iteration, ending with a final version of
the patch but no commit, he creates or updates a ticket to point to
the final version, and to any discussion around it, so that there is a
permanent record for developers to follow up on later. In projects
that use a patch queue management system[122] or review
tools,[123] the patch manager can help encourage
consistent usage of that tool by putting patches there and watching
to make sure developers handle them there.
When a patch gets no reaction at all, the patch manager waits a
few days, then follows up asking if anyone is going to review it.
This usually gets a reaction: a developer may explain that she doesn't
think the patch should be applied, and give the reasons why, or she
may review it, in which case one of the previously described paths is
taken. If there is still no response, the patch manager may or may
not file a ticket for the patch, at his discretion, but at least the
original submitter got some reaction. The true
currency of open source projects is attention: people who can see that
they are getting attention will keep participating, even if not every
patch they submit lands.
Having a patch manager has saved the Subversion development team
a lot of time and mental energy. Without a designated person to take
responsibility, every developer would constantly have to worry "If I
don't have time to respond to this patch right now, can I count on
someone else doing it? Should I try to keep an eye on it? But if
other people are also keeping an eye on it, for the same reasons, then
we'd have needlessly duplicated effort." The patch manager removes
the second-guessing from the situation. Each developer can make the
decision that is right for her at the moment she first sees the patch.
If she wants to follow up with a review, she can do that — the
patch manager will adjust his behavior accordingly. If she wants to
ignore the patch completely, that's fine too; the patch manager will
make sure it isn't forgotten.
Because this system works only if people can depend on the patch
manager being there without fail, the role should be held formally.
In Subversion, we advertised for it on the development and users
mailing lists, got several volunteers, and took the first one who
replied. When that person had to step down (see
the section called “Transitions”), we did the same thing again.
We've never tried having multiple people share the role, because of
the communications overhead that would be required between them; but
perhaps at very high volumes of patch submission, a multiheaded patch
manager might make sense.

Translation Manager

In software projects, "translation" can refer to two somewhat
different things. It can mean translating the software's
documentation into other languages, or it can mean translating the
software itself — that is, having the program display errors and
help messages in the user's preferred language. Both are complex
tasks, but once the right infrastructure is in place, they are largely
separable from other development. Because the tasks are similar in
some ways, it may make sense, depending on your project, to have a
single translation manager handle both, or it may be better to have
two different managers. (Note also that specialized infrastructure is
available to help make the translation process more efficient; see
the section called “Translation Infrastructure” for more on
this.)
In the Subversion project, we had one translation manager handle
both. He did not actually write the translations himself, of
course — he might help out on one or two, but would need to speak
more than ten languages fluently in order to work on all of them!
Instead, he managed teams of other translators: he helped them
coordinate among each other, and he coordinated between the
translation teams and the rest of the project.
Part of the reason the translation manager is necessary is that
translators are a different demographic from developers. They
sometimes have little or no experience working in a version control
repository, or indeed with working as part of a distributed
team at all. But in other respects they are often the best kind of
participant: people with specific domain knowledge who saw a need and
chose to get involved. They are usually willing to learn, and
enthusiastic to get to work. All they need is someone to tell them
how. The translation manager makes sure that the translations happen
in a way that does not interfere unnecessarily with regular
development. He also serves as a sort of representative of the
translators as a unified body, whenever the developers must be
informed of technical changes required to support the translation
effort.
Thus, the position's most important skills are diplomatic, not
technical. For example, in Subversion we had a policy that all
translations should have at least two people working on them, because
otherwise there is no way for the text to be reviewed. When a new
person shows up offering to translate Subversion to, say, Malagasy,
the translation manager has to either hook him up with someone who
posted six months ago expressing interest in doing a Malagasy
translation, or else politely ask the person to go
find another Malagasy translator to work with as
a partner. Once enough people are available, the manager sets them up
with the proper kind of commit access, informs them of the project's
conventions (such as how to write log messages), and then keeps an eye
out to make sure they adhere to those conventions.
Conversations between the translation manager and the
developers, or between the translation manager and translation teams,
are usually held in the project's original language — that is, the
language from which all the translations are being made. For many
free software projects, this is English, but it doesn't matter what it
is as long as the project agrees on it. (English is probably best for
projects that want to attract a broad international development
community, though.)
Conversations within a particular
translation team usually happen in their shared language, however, and
one of the other tasks of the translation manager is to set up a
dedicated mailing list for each team. That way the translators can
discuss their work freely, without distracting people on the project's
main lists, most of whom would not be able to understand the
translation language.
Internationalization Versus Localization

Internationalization
 (I18N) and localization
 (L10N) both refer to the process of adapting
 a program to work in linguistic and cultural environments other than
 the one for which it was originally written. The terms are often
 treated as interchangeable, but in fact they are not quite the same
 thing. As https://en.wikipedia.org/wiki/Internationalization_and_localization
 writes:
The distinction between them is subtle but important:
 Internationalization is the adaptation of products
 for potential use virtually everywhere, while
 localization is the addition of special features for use in
 a specific locale.

For example, changing your software to losslessly handle
 Unicode (https://en.wikipedia.org/wiki/Unicode) text
 encodings is an internationalization move, since it's not about a
 particular language, but rather about accepting text from any of a
 number of languages. On the other hand, making your software print
 all error messages in Slovenian when it detects that it is running
 in a Slovenian environment is a localization move.
The translation manager's task is principally about
 localization, not internationalization.

Documentation Manager

Keeping software documentation up-to-date is a never-ending
task. Every new feature or enhancement that goes into the code has
the potential to cause a change in the documentation. Also, once the
project's documentation reaches a certain level of completeness, you
will find that a lot of the patches people send in are for the
documentation, not for the code. This is because there are many more
people competent to fix bugs in prose than in code: all users are
readers, but only a few are programmers.
Documentation patches are usually easier to review and
apply than code patches. There is little or no testing to be done,
and the quality of the change can be evaluated quickly just by examination.
Since the quantity is high, but the review burden fairly low, the
ratio of administrative overhead to productive work is greater for
documentation patches than for code patches. Furthermore, most of the
patches will probably need some sort of adjustment, in order to
maintain a consistent authorial voice in the documentation. In many
cases, patches will overlap with or affect other patches, and need to
be adjusted with respect to each other before being committed.
Given the exigencies of handling documentation patches, and the
fact that the codebase needs to be constantly monitored so the
documentation can be kept up-to-date, it makes sense to have one
person, or a small team, dedicated to the task. They can keep a
record of exactly where and how the documentation lags behind the
software, and they can have practiced procedures for handling large
quantities of patches in an integrated way.
Documentation managers also serve another important purpose:
they may be the only people in the project who regularly review the
documentation from top to bottom, and thus are in a position to notice
obsolete or redundant material, independently of any particular
change.
Of course, none of this prevents other people in the project
from applying documentation patches on the fly, especially small ones,
as time permits. And the same patch manager (see
the section called “Patch Manager (or Pull Request Manager)”) can track both code and
documentation patches, filing them wherever the development and
documentation teams want them, respectively. (If the total quantity of
patches ever exceeds one human's capacity to track, though, switching
to separate patch managers for code and documentation is probably a
good first step.) The point of a documentation team is to ensure that
there are people
who think of themselves as responsible for keeping the documentation
organized, up-to-date, and consistent with itself. In practice, this
means knowing the documentation intimately, watching the codebase,
watching the changes
others commit to the documentation, watching for
incoming documentation patches, and using all these information
sources to do whatever is necessary to keep the documentation
healthy. If the documentation is kept in a wiki, then of course the
wiki's "watch changes" feature can be very important to the
documentation managers, since (depending on the wiki's edit policy)
changes may land without going through a pre-change review process.

Issue Manager

Bug report growth is proportional to user base growth, rather
than to the number of actual defects in the software. That is, the
number of tickets in a project's bug tracker grows in
proportion — albeit usually non-linear
proportion — to the number of people
using the software.[124] Therefore, even as you
fix bugs and ship an increasingly robust, mature program, you should
still expect the number of open tickets to grow essentially without
bound. The frequency of duplicate tickets will thus also increase, as
will the frequency of incomplete or poorly described tickets.
An issue manager[125] helps cope with this situation by watching what
goes into the database, and periodically sweeping through it looking
for specific problems. Their most common action is probably to fix up
incoming tickets, either because the reporter didn't set some of the
form fields correctly, or because the ticket is a duplicate of one
already in the database. Obviously, the more familiar an issue
manager is with the project's bug database, and with the
issue-tracking software's user interface and APIs, the more
efficiently she will be able to detect and handle duplicate tickets.
This is why it is often good to have a few people specialize in the
bug database, instead of everyone trying to do it ad
hoc. Although every developer in the project needs a
certain basic level of competence in manipulating the issue tracker,
having a few specialists becomes increasingly important as the project
matures. When a project tries to spread collective responsibility for
the bug database across everyone, no single individual acquires a deep
enough expertise in the content of the database or the tracker's
features.
Issue managers can help map between tickets and individual
developers. When there are a lot of bug reports coming in, not every
developer may read the ticket notification mailing list with equal
attention. However, if someone who knows the development team is
keeping an eye on all incoming tickets, then she can discreetly direct
certain developers' attention to specific bugs when appropriate. Of
course, this has to be done with a sensitivity to everything else
going on in development, and to the recipient's desires and
temperament. Therefore, it is often best for issue managers to be
developers themselves.
Depending on how your project uses the ticket tracker, issue
managers can also shape the database to reflect the project's
priorities. For example, in Subversion we scheduled tickets into
specific future releases, so that when someone asks "When will bug X
be fixed?" we could say "Two releases from now," even if we can't give
an exact date. The releases are represented in the ticket tracker as
target milestones (something most ticket trackers support). As a
rule, every Subversion release has one major new feature and a list of
specific bug fixes. We assigned the appropriate target milestone to
all the tickets planned for that release (including the new
feature — it got a ticket too), so that people could view the bug
database through the lens of release scheduling. These targets rarely
remain static, however. As new bugs come in, priorities sometimes get
shifted around, and tickets must be moved from one milestone to
another so that each release remains manageable. This, again, is best
done by people who have an overall sense of what's in the database,
and how various tickets relate to each other.
Another thing issue managers do is notice when tickets become
obsolete. Sometimes a bug is fixed accidentally as part of an
unrelated change to the software, or sometimes the project changes its
mind about whether a certain behavior is buggy. Finding obsoleted
tickets is not easy: the only way to do it systematically is by making
a sweep over all the tickets in the database. But full sweeps become less
and less feasible over time, as the number of tickets grows.
After a certain point, the only way to keep the database sane is to use a
divide-and-conquer approach: categorize tickets immediately on arrival
and direct them to the appropriate developer's or team's attention.
The recipient then takes charge of the ticket for the rest of its
lifetime, shepherding it to resolution or oblivion as necessary. When
the database is that large, the issue manager becomes more of an
overall coordinator, spending less time looking at each ticket herself
and more time getting it into the right person's hands.

[121] Here "patch" and "pull request" are synonymous:
they just mean a proposed change to the software, supplied in the
standard format for contributing changes.

[122] Three are
TopGit (https://mackyle.github.io/topgit/),
patchwork (http://jk.ozlabs.org/projects/patchwork/), and Quilt
(https://savannah.nongnu.org/projects/quilt/), as of early 2022. I'm
sure there are others out there. Users of the Mercurial version
control system have long raved about the "Mercurial Queues" patch
management system; because this is integrated with Mercurial, it's not
directly available for Git users. However, Stacked Git ("StGit", at

https://stacked-git.github.io/)
provides similar functionality, and like Mercurial Queues is also
based on Quilt.

[123] Project hosting sites usually have a built-in
code review system, and most projects just use that. But you don't
have to. There are standalone code review systems worth checking out,
such as Gerrit (https://www.gerritcodereview.com/) and
ReviewBoard (https://www.reviewboard.org/) (and there are others out there
too).

[124] See http://www.rants.org/2010/01/10/bugs-users-and-tech-debt/ for a more
detailed discussion of this.

[125] In the
nomenclature I've been using elsewhere in this book, this position
might be called "ticket manager", but in practice no project calls it
that, and most call it "issue manager", so that's what we'll use here
too.

Transitions

From time to time, a person in a position of ongoing
responsibility (e.g., patch manager, translation manager, etc) will
become unable to perform the duties of the position. It may be
because the job turned out to be more work than he anticipated, or it
may be due to other factors: a change in employment,
a new baby, whatever.
When a person gets swamped like this, he usually doesn't
notice it right away. It happens by slow degrees, and there's no
point at which he consciously realizes that he can no longer fulfill
the duties of the role. Instead, the rest of the project just doesn't
hear much from him for a while. Then there will suddenly be a flurry
of activity, as he feels guilty for neglecting the project for so long
and sets aside a night to catch up. Then you won't hear from him for
a while longer, and then there might or might not be another flurry.
But there's rarely an unsolicited formal resignation. To resign
would mean openly acknowledging to himself that his circumstances have
changed and that his ability to fulfill a commitment has been
permanently reduced. This is something that people are often
reluctant to admit.
Therefore, it's up to you and the others in the project to
notice what's happening — or rather, not happening — and to
ask the person what's going on. The inquiry should be friendly and
100% guilt-free. Your purpose is to find out a piece
of information, not to make the person feel bad. Generally, the
inquiry should be visible to the rest of the project, but if you know
of some special reason why a private inquiry would be better, that's
fine too. The main reason to do it publicly is so that if the
person responds by saying that he won't be able to do the job
anymore, there's a context established for your
next public post: a request for a new person
to fill that role.
Sometimes, a person is unable to do the job he's taken on,
but is either unaware or unwilling to admit that fact. Of course,
anyone may have trouble at first, especially if the responsibility is
complex. However, if someone just isn't working out in the role he's
taken on, even after everyone else has given all the help and
suggestions they can, then the only solution is for him to step aside
and let someone new have a try. And if the person doesn't see this
himself, he'll need to be told. There's basically only one way to
handle this, I think, but it's a multistep process and each step is
important.
First, make sure your own perception is accurate. Privately talk to others in
the project to see if they agree that the problem is as serious as you
think it is. Even if you're already positive, this serves the purpose
of letting others know that you're considering asking the person to
step aside. Usually no one will object to that — they'll just be
happy you're taking on the awkward task, so they don't have to!
Next, privately contact the person in
question and tell him, kindly but directly, about the problems you
see. Be specific, giving as many examples as possible. Make sure to
point out how people had tried to help, but that the problems
persisted without improving. You should expect this email to take a
long time to write, but with this sort of message, if you don't back
up what you're saying, you shouldn't say it at all. Say that you
would like to find a someone new to fill the role, but also point
out that there are many other ways to contribute to the project. At
this stage, don't say that you've talked to others about it; nobody
likes to be told that people were conspiring behind his back.
There are a few different ways things can go after that. The
most likely reaction is that he'll agree with you, or at any rate not
want to argue, and be willing to step down. In that case, suggest
that he make the announcement himself, and then you can follow up with
a post seeking a replacement.
Or, he may agree that there have been problems, but ask for a
little more time (or for one more chance, in the case of discrete-task
roles like release manager). How you react to that is a judgement
call, but whatever you do, don't agree to it just because you feel
like you can't refuse such a reasonable request. That would prolong
the agony, not lessen it. There is often a very good reason to refuse
the request — namely, that there have already been plenty of chances
and that's how things got to where they are now. Here's how I put it
in a mail to someone who was filling the release manager role but was
not really suited for it:

> If you wish to replace me with some one else,
> I will gracefully pass on the role to who
> comes next. I have one request, which I
> hope is not unreasonable. I would like to
> attempt one more release in an effort to
> prove myself.

I totally understand the desire (been there
myself!), but in this case, we shouldn't do the
"one more try" thing.

This isn't the first or second release, it's the
sixth or seventh... And for all of those, I know
you've been dissatisfied with the results too
(because we've talked about it before). So we've
effectively already been down the one-more-try
route. Eventually, one of the tries has to be the
last one... I think [this past release] should be
it.

In the worst case, the person may disagree outright. Then
you have to accept that things are going to be awkward and plow ahead
anyway. Now is the time to say that you talked to other people about
it (but still don't say who until you have their permission, since
those conversations were confidential), and that you don't think it's
good for the project to continue as things are. Be insistent, but
never threatening. Keep in mind that with most roles, the transition
really happens the moment someone new starts doing the job,
not the moment the old person stops doing it.
For example, if the contention is over the role of, say, issue
manager, at any point you and other influential people in the project
can solicit for a new issue manager. It's not actually necessary that
the person who was previously doing it stop doing it, as long as he
does not sabotage (deliberately or otherwise) the efforts of the new
person.
Which leads to a tempting thought: instead of asking the person
to resign, why not just frame it as a matter of getting him some help?
Why not just have two issue managers, or patch managers, or whatever
the role is?
Although that may sound nice in theory, it is generally not a
good idea. What makes the manager roles work — what makes them
useful, in fact — is their centralization. Those things that can
be done in a decentralized fashion are usually already being done that
way. Having two people fill one managerial role introduces
communications overhead between those two people, as well as the
potential for slippery displacement of responsibility ("I thought you
brought the first aid kit!" "Me? No, I thought
you brought the first aid kit!"). Of course,
there are exceptions. Sometimes two people work extremely well
together, or the nature of the role is such that it can easily be
spread across multiple people. But these are not likely to be applicable
when you see someone flailing in a role he is not suited for. If
he'd appreciated the problem in the first place, he would have sought
such help before now. In any case, it would be disrespectful to let
someone waste time continuing to do a job no one will pay attention
to.
The most important factor in asking someone to step down is
privacy: giving him the space to make a decision without feeling like
others are watching and waiting. I once made the mistake — an
obvious mistake, in retrospect — of mailing all three parties at
once in order to ask Subversion's release manager to step aside in
favor of two others who were ready to step up. I'd already talked to
the two new
people privately, and knew that they were willing to take on the
responsibility. So I thought, naïvely and somewhat
insensitively, that I'd save some time and hassle by sending one mail
to all of them to initiate the transition. I assumed that the current
release manager was already fully aware of the problems and would see
the reasonableness of my point immediately.
I was wrong. The current release manager was very offended, and
rightly so. It's one thing to be asked to hand off the job; it's
another thing to be asked that in front of the
people you'll hand it off to. Once I got it through my head why he
was offended, I apologized. He eventually did step aside gracefully,
and continued to be involved with the project. But his
feelings were hurt, and needless to say, this was not the most
auspicious of beginnings for the new release managers either.

Committers

Defining "Committer" and "Commit Access"

For the purposes of this section,
 committer means someone
 who has commit access: the right to make
 changes to the copy of the code that will be used for the project's
 next official release.
This precise definition is important because, after all,
 anyone can set up a repository containing a copy of the project's
 code and allow themselves to commit to that repository; indeed,
 that is a standard development procedure with decentralized
 version control systems such as Git. But what matters for
 the project's purposes is who has the ability to put changes into
 the authoritative copy — that is, the
 central shared copy into which contributors' changes are merged and
 from which releases are made.
Because in older, centralized version control systems, there
 was normally only one repository anyway, the term "commit access"
 corresponded closely to who was actually using the "commit" command
 (see commit) to put
 changes into the group's shared repository. These days it
 corresponds to those who run the "push" or "pull" commands (see
 push and pull) to put changes into
 that repository. It is the same idea either way. The authoritative
 repository is a social concept, not a technical concept, and the
 mechanics of how changes get into it are not important here. Open
 source projects continue to use the term "committer" in this
 identifying sense, even though formally speaking the "commit"
 command is no longer where the gating happens.

As the only formally distinct class of people found in all open
source projects, committers deserve special attention in this book.
Committers are an unavoidable concession to discrimination in a system
which is otherwise as non-discriminatory as possible. But
"discrimination" is not meant as a pejorative here. The function
committers perform is utterly necessary, and I do not think a project
could succeed without it. Quality control requires, well, control.
There are always many people who feel qualified to make changes to a
program, and some smaller number who actually are.[126] The project cannot
rely on people's own judgement; it must maintain standards and grant
commit access only to those who meet those standards. On the other
hand, having people who can commit changes directly working
side-by-side with people who cannot sets up an obvious power dynamic.
That dynamic must be managed so that it does not harm the
project.
In the section called “Who Votes?”, we already discussed
the mechanics of choosing new committers, as a subset of choosing
maintainers generally. Here we will look at the standards by which
potential new committers should be judged, and how this process should
be presented to the larger community.
Committers vs Maintainers

If you haven't already, please read the section called “Not All Maintainers Are Coders” and take its point to
heart.
The discussion here is specifically about
committers, not about all maintainers. Because
committers are ultimately responsible for the project's code base, and
for the quality of its public software releases, the long-term health
of the project is inescapably dependent on how they approach their
work. This doesn't mean that other kinds of contributors can't also
affect the project's health; it just means that if the committers
aren't doing their job well, there is no way the project can
succeed.

Choosing Committers

A good basis for choosing committers is the Hippocratic
Principle: first, do no harm.
The most important criterion is not technical skill or even deep
familiarity with the code, but simply that a person show good
judgement. Judgement includes knowing what not to take on. Someone
might post only small patches, fixing fairly simple problems in the
code, but if his patches apply cleanly, do not contain bugs, and are
mostly in accord with the project's log message and coding
conventions, and there are enough patches to show a clear pattern,
then an existing committer should propose him for commit access. If
at least (say) three people say yes, and no one objects, then the
offer is made. True, there might be no evidence yet that the person
is able to solve complex problems in all areas of the codebase, but
that is irrelevant: he has made it clear that he is capable
of judging his own abilities, and that is the important thing.
When a new committer proposal does provoke a discussion, it is
usually not about technical ability, but rather about the person's
behavior in the project's discussion forums. Sometimes someone shows
technical skill and an ability to meet the project's formal code
contribution standards, yet is also consistently belligerent or
uncooperative in public forums. That's a serious concern; if the
person doesn't seem to shape up over time, even in response to hints,
then don't add him as a committer no matter how skilled he is. In an
open source project, social skills, or the ability to "play well in
the sandbox", are as important as raw technical ability. Because
everything is under version control, the penalty for adding a
committer you shouldn't have added is not so much the problems it
could cause in the code (review would spot those quickly anyway), but
that it might eventually force the project to revoke the person's
commit access — an action that is never pleasant and
can sometimes fragment the whole community.
Some projects insist that a potential committer first demonstrate a
certain level of technical expertise and persistence by submitting
some number of nontrivial patches — that is, not only
do these projects want to know that the person will do no harm, they also
want to know that he is likely to do good across the codebase. This
isn't always a bad policy, but be careful that it doesn't start to
turn committership into a matter of membership in an exclusive club.
The question to keep in everyone's mind should be "What will bring the
best results for the code?" not "Will we devalue the social status
associated with committership by admitting this person?"
The point of
commit access is not to reinforce people's self-worth; it's to allow
good changes to enter the code with a minimum of fuss. If you have
100 committers, 12 of whom make large changes on a regular basis, and
the other 88 of whom just fix typos and small bugs a few times a year,
that's still better than having only the 12.

Revoking Commit Access

The first thing to be said about revoking commit access is: try
not to be in that situation in the first place. Depending on whose
access is being revoked, and why, the discussions around such an
action can be very divisive. Even when not divisive, they will be a
time-consuming distraction from productive work.
However, if you must do it, the discussion should be had
privately among the same people who would be in a position to vote for
granting that person whatever flavor of commit
access they currently have. The person himself should not be
included. This contradicts the usual injunction against secrecy, but
in this case it's necessary. First, no one would be able to speak
freely otherwise. Second, if the motion fails, you don't necessarily
want the person to know it was ever considered, because that could
open up questions ("Who was on my side? Who was against me?") that
lead to the worst sort of factionalism. In certain rare
circumstances, the group may want someone to know that revocation of
commit access is or was being considered, as a warning, but this
openness should be a decision the group makes. No one should ever, on
her own initiative, reveal information from a discussion and ballot
that others assumed were secret.
Once someone's access is revoked, that fact is unavoidably
public (see
the section called “Avoid Mystery”), so try to be as tactful as you can in
how it is presented to the outside world.

Partial Commit Access

Some projects offer gradations of commit access. For example,
there might be contributors whose commit access gives them free rein
in the documentation, but who do not commit to the code itself.
Common areas for partial commit access include documentation,
translations, binding code to other programming languages,
specification files for packaging (e.g., Debian
dpkg configuration files, etc), and other
places where a mistake will not result in a problem for the core
project.
Since commit access is sometimes not only about committing, but
about being part of an electorate (see the section called “Who Votes?”), a question may naturally
arise: what can the partial committers vote on?
There is no one right answer; it depends on what sorts of
partial commit domains your project has. In the Subversion project
things are fairly simple: a partial committer can vote on matters
confined exclusively to that committer's domain, and not on anything
else. Importantly, the project does have a mechanism for casting
advisory votes (essentially, the committer writes "+0" or
"+1 (non-binding)" instead of just "+1" on the ballot). There's
no reason to silence people just because their vote isn't formally
binding.
Full committers can vote on anything, just as they can commit
anywhere, and only full committers vote on adding new committers of
any kind. In practice, though, the ability to add new partial
committers is usually delegated: any full committer can "sponsor" a
new partial committer, and partial committers in a domain can often
essentially choose new committers for that same domain (this is
especially helpful in making translation work run smoothly).
Your project may need a slightly different arrangement,
depending on the nature of the work, but the same general principles
apply to all projects. Each committer should be able to vote on
matters that fall within the scope of her commit access, and not on
matters outside that, and votes on procedural questions should default
to the full committers, unless there's some reason (as decided by the
full committers) to widen the electorate. Remember that voting should
be quite rare anyway (see the section called “When To Vote”), except for
technical votes such as the change voting described in the section called “Voting on Changes”.
Regarding enforcement of partial commit access: it's often
best not to have the version control system
enforce partial commit domains, even if it is capable of doing so.
See the section called “Authorization” for the
reasons why.

Dormant Committers

Some projects automatically remove people's commit access if
they go a certain amount of time (say, a year) without committing
anything. I think this is usually unhelpful and even
counterproductive, for two reasons.
First, it may tempt some people into committing acceptable but
unnecessary changes, just to prevent their commit access from
expiring. Second, it doesn't really serve any purpose. If the
main criterion for granting commit access is good judgement, then why
assume someone's judgement would deteriorate just because she's been away
from the project for a while? Even if she completely vanishes for
years, not looking at the code or following development discussions,
when she reappears she'll know how out of touch
she is, and act accordingly. You trusted her judgement before, so
why not trust it always? If high school diplomas do not expire, then
commit access certainly shouldn't.
Sometimes a committer may ask to be removed, or to be explicitly
marked as dormant in the list of committers (see
the section called “Avoid Mystery” for more about that list). In these cases, the project
should accede to the person's wishes, of course.

Avoid Mystery

Although the discussions around adding any particular new
committer must be confidential, the rules and procedures themselves
need not be secret. In fact, it's best to publish them, so people
realize that the committers are not some mysterious Star Chamber,
closed off to mere mortals, but that anyone can join simply by posting
good patches and knowing how to handle herself in the community.
In the Subversion project, we put this information right in the
developer guidelines document, since the people most likely to be
interested in how commit access is granted are those thinking of
contributing code to the project.
In addition to publishing the procedures, publish the actual
list of committers. It often goes in a file
called MAINTAINERS or
COMMITTERS or something like that, in the top
level of the project's source code tree. It should list all the full
committers first, followed by the various partial commit domains and
the members of each domain. Each person should be listed by name and
identifying handle(s).
Since the distinction between full commit and partial commit
access is obvious and well defined, it is proper for the list to make
that distinction too. Beyond that, the list should not try to
indicate the informal distinctions that inevitably arise in a project,
such as who is particularly influential and how. It is a public
record, not an acknowledgements file. List committers either in
alphabetical order, or in the order in which they arrived.

[126] Even
an experienced developer is often not immediately qualified to make
changes in a project when still new to that project. One of the signs
of an experienced developer, in fact, is when they themselves
recognize that and make sure to get the help they need to learn their
way around.

Credit

Credit is the primary currency of the free software world.
Whatever people may say about their motivations for participating in a
project, I don't know many developers who would be happy doing all
their work anonymously, or under someone else's name. There are
tangible reasons for this: one's reputation in a project roughly
governs how much influence one has, and participation in an open
source project can also indirectly have monetary value, because many
employers now look for it on résumés (see the section called “Hiring Open Source Developers”). There are also intangible reasons, perhaps even
more powerful: people simply want to be appreciated, and instinctively
look for signs that their work was recognized by others. The promise
of credit is therefore one of best motivators the project has. When
small contributions are acknowledged, people come back to do
more.
One of the most important features of collaborative development
software (see Chapter 3, Technical Infrastructure) is that
it keeps accurate records of who did what, when. Wherever possible,
use these existing mechanisms to make sure that credit is distributed
accurately, and be specific about the nature of the contribution.
Don't just write "Thanks to J. Random <jrandom@example.com>" if
instead you can write "Thanks to J. Random <jrandom@example.com>
for the bug report and reproduction recipe" in a log message.
In Subversion, we set up an informal but consistent policy of
crediting the reporter of a bug in either the ticket filed, if there
is one, or else in the log message of the commit that fixes the bug.
A quick survey of Subversion commit logs shows that a little over 10%
of commits[127] give
credit to someone by name and email address, usually a person who
reported, analyzed, or perhaps even patched the bug fixed in that
commit. Note that this person is different from the developer who
actually made the commit — that developer's name is
already recorded automatically by the version control system. As of
mid-2005, when I last did this calculation, slightly over two-thirds
of people who later became committers themselves were credited in this
way in the commit logs, usually multiple times, before becoming a
committer. This does not, of course, prove that being credited was a
factor in their continued involvement, but it surely can't hurt to set
up an atmosphere in which people know they can count on their
contributions being publicly acknowledged.[128]
It is important to distinguish between routine acknowledgement
and special thanks. When discussing a particular piece of code, or
some other contribution someone made, it is fine to acknowledge their
work. For example, saying "Daniel's recent changes to the delta code
mean we can now implement feature X" simultaneously helps people
identify which changes you're talking about and acknowledges Daniel's
work. On the other hand, posting solely to thank Daniel for the delta
code changes serves no immediate practical purpose. It doesn't add
any information, since the version control system and other mechanisms
have already recorded the fact that he made the changes. Thanking
everyone for everything would be distracting and ultimately
information-free, since thanks are effective largely by how much they
stand out from the default, background level of favorable comment
going on all the time. This does not mean, of course, that you should
never thank people. Just make sure to do it in ways that tend not to
lead to credit inflation. Following these guidelines will
help:
	The more ephemeral the forum, the more free you
 should feel to express thanks there. For example,
 thanking someone for their bugfix in passing during an chat room
 conversation is fine, as is an aside in an email devoted
 mainly to other topics. But don't post a new email solely
 to thank someone, unless it's for a truly unusual feat, or
 if it's just one followup in a topic-specific thread
 already focused on the thing that person did.
Likewise, don't clutter the project's web pages with
 expressions of gratitude. Once you start that, it'll
 never be clear when or where to stop. And
 never put thanks into comments in the
 code; that would only be a distraction from the primary
 purpose of comments, which is to help the reader
 understand the code.

	The less involved someone is in the project, the
 more appropriate it is to thank her for something she
 did. This may sound counterintuitive, but it fits with
 the attitude that expressing thanks is something you do
 when someone contributes even more than you thought she
 would. Thus, to constantly thank regular contributors for
 doing what they normally do would be to express a lower
 expectation of them than they have of themselves. If
 anything, you want to aim for the opposite effect!
There are occasional exceptions to this rule. It's
 acceptable to thank someone for fulfilling her expected
 role when that role involves temporary, intense efforts
 from time to time. The canonical example is the release
 manager, who goes into high gear around the time of each
 release, but otherwise lies dormant (dormant as a release
 manager, in any case — she may also be an active
 developer, but that's a different matter).

	As with criticism and crediting, gratitude should
 be specific. Don't thank people just for being great,
 even if they are. Thank them for something they did that
 was out of the ordinary, and for bonus points, say
 exactly why what they did was so great.

In general, there is always a tension between making sure that
people's individual contributions are recognized, and making sure the
project is a group effort rather than a collection of individual
glories. Just remain aware of this tension and try to err on the
side of group, and things won't get out of hand.

[127] 10.57%, to be precise. 5955 out of 56331

commits (from 29 Feb 2000 through 20 Feb 2022) made use of the
crediting convention.

[128] Eventually
this crediting system became a bit more formalized, as described in
https://subversion.apache.org/docs/community-guide/conventions.html#crediting,
thus improving the project's ability to find and encourage long-term
participants, via a system known as the Contribulyzer. See the section called “The Automation Ratio” for more about this
example.

Forks

"Development Forks" versus "Hard Forks"

At its most basic, a fork is when one
copy of a project diverges from another copy: think "fork in the
road".
What that divergence actually means for the project depends on the
intentions behind the fork. There are two types of forks:
development forks and hard
forks. The distinction between them is important.
Development forks are very common; in fact, they are the normal way
development is done in most projects today. A developer creates her
own public copy of the project's authoritative repository, makes some
changes, then submits the changes back to the project directly from
the forked copy.[129] Development
forks are done on a routine basis as part of the regular contribution
cycle, and have no negative
effect on the social cohesiveness of the project. They are really
just an extension of the concept of development branches.
Hard forks (also sometimes called social
forks) are much less common, and are much more significant
when they happen. A hard fork is when a group of developers disagrees
with the direction of the project and decides to create a
divergent version more in line with their own vision. Of course, one
of the technical actions required for this is to create their own
copy of the project's repository, and perhaps of its bug database and
other assets as well. This new copy of the project represents
a potentially permanent divergence, and developers on both sides of
the fork are aware of this; thus, it is a completely different beast
from a cooperative development fork.
A hard fork is almost always accompanied by long discussions
and rationales, in which developers try to persuade each other of the
merits of one or the other side of the fork, or of the merits of
ending the fork and reunifying. Since hard forks have implications
for a project's stability and ability to continue attracting
developers, knowing how to constructively initiate or react to a
hard fork of your project is useful — useful even if
a fork never happens, since understanding what leads to hard forks, and
signaling clearly how you will behave in such an event, can sometimes
prevent the fork from happening in the first place.
The rest of this section is about hard forks, not development forks.
To save space, I will just use the word "fork" instead of "hard
fork".

Figuring Out Whether You're the Fork

In the section called “Forkability”, we saw how
the potential to fork has important effects on
how projects are governed. But what happens when a fork actually
occurs? How should you handle it, and what effects can you expect it
to have? Conversely, when should you initiate a
fork?
The answers depend on the reasons for the fork. Some forks are
due to amicable but irreconcilable disagreements about the direction
of the project; perhaps more are due to both technical disagreements
and interpersonal conflicts. Of course, it's not always possible to
tell the difference between the two, as technical arguments may
involve personal elements as well. What all forks have in common is
that one group of developers (or sometimes even just one developer)
has decided that the costs of working with some or all of the others
now outweigh the benefits.
Once a project forks, there is no definitive answer to the
question of which fork is the "true" or "original" project. People
will colloquially talk of fork F coming out of project P, as though P
is continuing unchanged down some natural path while F diverges into
new territory, but this is, in effect, a declaration of how that
particular observer feels about it. Since "the project" is ultimately
a social concept in the first place, when a large enough percentage of
observers agree that one side or the other is the project or is the
fork, that belief starts to become true. It is not the case that
there is an objective truth from the outset, one that we are merely
imperfectly able to perceive at first. Rather, the perceptions
are the objective truth, since ultimately a
project — or a fork — is an entity
that exists only in people's minds anyway.
If those initiating the fork feel that they are
sprouting a new branch off the main project, the perception question
is resolved immediately and easily. Everyone, both developers and
users, will treat the fork as a new project, with a new name (perhaps
based on the old name, but easily distinguishable from it), a separate
web site, and a separate philosophy or goal. Things get messier,
however, when both sides feel they are the legitimate guardians of the
original project and therefore have the right to continue using the
original name. If there is some organization with trademark rights to
the name (see the section called “Trademarks”), or legal control over the domain
or web pages, that usually
resolves the issue by fiat: that organization will decide who is the
original project and who is the fork, because it holds all the cards in a
public relations showdown. Naturally, things rarely get that far: since
everyone already knows what the power dynamics are, they will avoid
fighting a battle whose outcome is known in advance, and will just
jump straight to the end result instead.
Fortunately, in most cases there is little doubt as to which is
the project and which is the fork, because a fork is, in essence, a vote
of confidence. If more than half of the developers are in favor of
whatever course the fork proposes to take, usually there is no need to
fork — the project can simply go that way itself, unless it is run
as a dictatorship with a particularly stubborn dictator. On the other
hand, if fewer than half of the developers are in favor, the fork is a
clearly minority rebellion, and both courtesy and common sense
indicate that it should think of itself as the divergent branch rather
than the main line.
When a fork occurs, there can be a question of what happens to
non-copyable assets: not just trademarks, but perhaps money in the
bank, hardware, that full-color conference banner sitting in a storage
locker somewhere, etc. Sometimes those questions are resolved
independently of the project's decision-making procedures because
those assets already had formal owners, and in each case the owner
will decide what happens to the asset. But in cases where the actual
ownership is in dispute, or the asset belongs in some way to the
project as a whole, there is no magic answer. If someone decides to
make a fuss, the dispute might wind up in a court of law. In this
respect, open source projects are not different from any other
endeavor involving multiple people: when agreement cannot be reached
but no one is willing to give in, the last resort is the legal system.
It is extremely rare, however, for things to go that far in a free
software project (I can't think of any examples, actually), because
usually there is no participant for whom going to court is a better
option than just giving up their side of the argument
anyway.[130]

Handling a Fork

If someone threatens a fork in your project, keep calm and
remember your long-term goals. The mere
existence of a fork isn't what hurts a project;
rather, it's the loss of developers and users. Your real aim,
therefore, is not to squelch the fork, but to minimize these harmful
effects. You may be mad, you may feel that the fork was unjust and
uncalled for, but expressing that publicly can only alienate undecided
developers. Instead, don't force people to make exclusive choices,
and be as cooperative as is practicable with the fork.
Don't remove someone's commit access in your project just because she
decided to work on the fork. Her work on the fork doesn't mean that
she has suddenly lost her competence to work on the original
project; committers before should remain committers afterward. Beyond
that, you should express your desire to remain as compatible as
possible with the fork, and say that you hope developers will port
changes between the two whenever appropriate. If you have
administrative access to the project's servers, publicly offer the
forkers infrastructure help at startup time. For example, offer them
a complete export of the bug database if there's no other way for them
to get it. Ask them if there's anything else
they need, and provide it if you can. Bend over backward to show
that you are not standing in the way, and that you want the fork to
succeed or fail on its own merits and nothing else.
The reason to do all this — and do it publicly — is not
to actually help the fork, but to persuade developers that your side
is a safe bet, by appearing as non-vindictive as possible. In war it
sometimes makes sense (strategic sense, if not human sense) to force
people to choose sides, but in free software it almost never does. In
fact, after a fork some developers often openly work on both projects,
doing their best to keep the two compatible. These developers help
keep the lines of communication open after the fork. They allow your
project to benefit from interesting new features in the fork (yes, the
fork may have things you want), and also increase the chances of a
merger down the road.
Sometimes a fork becomes so successful that, even though it was
regarded even by its own instigators as a fork at the outset, it
becomes the version everybody prefers, and eventually supplants the
original by popular demand. A famous instance of this was the
GCC/EGCS fork. The GNU Compiler Collection
(GCC, formerly the GNU C
Compiler) is the most popular open source native-code
compiler, and also one of the
most portable compilers in the world. Due to disagreements between GCC's
official maintainers and Cygnus Software,[131] one
of GCC's most active developer groups, Cygnus created a fork of GCC
called EGCS. The fork was deliberately
non-adversarial: the EGCS developers did not, at any point, try to
portray their version of GCC as a new official version. Instead, they
concentrated on making EGCS as good as possible, incorporating patches
at a faster rate than the official GCC maintainers. EGCS grew in
popularity, and eventually some major operating system distributors
decided to package EGCS as their default compiler instead of GCC. At
this point, it became clear to the GCC maintainers that holding on to
the "GCC" name while everyone switched to the EGCS fork would burden
everyone with a needless name change, yet do nothing to prevent the
switchover. So GCC adopted the EGCS codebase, and there is once again
a single GCC, but greatly improved because of the fork.
This example shows why you cannot always regard a fork as an
unadulteratedly bad thing. A fork may be painful and unwelcome at the
time, but you cannot necessarily know whether it will succeed.
Therefore, you and the rest of the project should keep an eye on it,
and be prepared not only to absorb features and code where possible,
but in the most extreme case to even join the fork if it gains the
bulk of the project's mindshare. Of course, you will often be able to
predict a fork's likelihood of success by seeing who joins it. If the
fork is started by the project's biggest complainer and is joined by a
handful of disgruntled developers who weren't behaving constructively
anyway, they've essentially solved a problem for you by forking, and
you probably don't need to worry about the fork taking momentum away
from the original project. But if you see influential and respected
developers supporting the fork, you should ask yourself why. Perhaps
the project was being overly restrictive, and the best solution is to
adopt into the mainline project some or all of the changes
contemplated by the fork — in essence, to avoid the fork by
becoming it.

Initiating a Fork

All the advice below assumes that you are forking as a last
resort. Exhaust all other possibilities before starting a fork.
Forking almost always means losing developers, with only an uncertain
promise of gaining new ones later. It also means starting out with
competition for users' attention: everyone who's about to install the
software has to ask themselves: "Hmm, do I want that one or the other
one?" Whichever one you are, the situation is messy, because a
question has been introduced that wasn't there before. Some people
maintain that forks are healthy for the software ecosystem as a whole,
by a standard natural selection argument: the fittest will survive,
which means that, in the end, everyone gets better software. This may
be true from the ecosystem's point of view, but it's not true from the
point of view of any individual project. Most forks do not succeed,
and most projects are not happy to be forked.
A corollary is that you should not use the threat of a fork as
an extremist debating technique — "Do things my way or I'll fork
the project!" — because everyone is aware that a fork that fails
to attract developers away from the original project is unlikely to
survive long. All observers — not just developers, but users and
operating system packagers too — will make their own judgement about
which side to choose. You should therefore appear extremely reluctant
to fork, so that if you finally do it, you can credibly claim it was
the only route left.
Do not neglect to take all factors into
account in evaluating the potential success of your fork. For
example, if many of the developers on a project have the same
employer, then even if they are disgruntled and privately in favor of
a fork, they are unlikely to say so out loud if they know that their
employer is against it. Many free software programmers like to think
that having a free license on the code means no one company can
dominate development. It is true that the license is, in an ultimate
sense, a guarantor of freedom: if others want badly enough to
fork the project, and have the resources to do so, they can. But in
practice, some projects' development teams are mostly funded by one
entity, and there is no point pretending that the entity's support
doesn't matter. If it is opposed to the fork, its developers are
unlikely to take part, even if they secretly want to.
If, after careful consideration, you still conclude that you
must fork, line up support
privately first, then announce the fork in a non-hostile tone. Even
if you are angry at, or disappointed with, the current maintainers,
don't say that in the message. Just dispassionately state what led
you to the decision to fork, and that you mean no ill will toward the
project from which you're forking. Assuming that you do consider it a
fork (as opposed to an emergency preservation of the original
project), emphasize that you're forking the code and not the name, and
choose a name that does not conflict with the project's name. You can
use a name related to the original name, as long as it will not cause
identity confusion. Of course it's fine to
explain prominently on the fork's home page that it descends from the
original program, and even that it hopes to supplant it. Just don't
make users' lives harder by forcing them to untangle an identity
dispute.
Finally, you can get things started on the right foot by
automatically granting all committers of the
original project commit
access to the fork, including even those who openly disagreed with the
need for a fork. Even if they never use the access, your message is
clear: there are disagreements here, but no enemies, and you welcome
code contributions from any competent source.

[129] This is the "pull request" workflow
first popularized by GitHub.com (see the section called “Pull Requests / Merge Requests”). GitHub's decision to
use the term "fork" instead of "clone" to refer to the personal copies
in which development is done is largely responsible for the newer
"development fork" sense of "fork".

[130] See also the concept of BATNA: https://en.wikipedia.org/wiki/Best_alternative_to_a_negotiated_agreement.

[131] Now part of
RedHat, which later became part of IBM, which I suppose will
eventually be part of Amazon, along with everything else, so I might
as well prepare this footnote ahead of time.

Chapter 9. Legal Matters: Licenses, Copyrights, Trademarks and Patents

Legal questions have assumed a somewhat more prominent role in
free software projects over the last decade or so. It is still the
case that the most important things about your project are its the
quality of its code, its features, and the health of its developer
community. However, although all open source licenses share the same
basic guarantees of freedom, their terms are not exactly the same in
all details. The particular license your project uses can affect
which entities decide to get involved in it and how. You will
therefore need a basic understanding of free software licensing, both
to ensure that the project's license is compatible with its goals, and
to be able to discuss licensing decisions with others.
Please note that I am not a lawyer, and that nothing in this
book should be construed as formal legal advice. For that, you'll
need to hire a lawyer or be one.[132]

Terminology

In any discussion of open source licensing, the first thing that
becomes apparent is that there seem to be many different words for the
same thing: free software,
open source,
FOSS, F/OSS, and
FLOSS. Let's start by sorting those
out, along with a few other terms.
	free software
	Software that can be freely shared and modified,
 including in source code form. The term was first
 coined by Richard Stallman, who codified it in the GNU
 General Public License (GPL), and who founded the Free
 Software Foundation (https://www.fsf.org/) to promote the concept.
Although "free software" covers the
 same set of software[133]
 as "open source", the FSF,
 among others, prefers the former term because it
 emphasizes the idea of freedom, and the concept of
 freely redistributable software as primarily a social
 movement rather than a technical one. The FSF
 acknowledges that the term is ambiguous — it could
 mean "free" as in "zero-cost", instead of "free" as in
 "freedom" — but feels that it's still the best term,
 all things considered, and that the other possibilities
 in English have their own ambiguities. (Throughout this
 book, "free" is used in the "freedom" sense, not the
 "zero-cost" sense.)

	open source software
	Free software under another name. The
 different name is sometimes used to indicate a philosophical
 difference, however. In fact, the term "open source"
 was coined, by the group that founded the Open Source
 Initiative (https://www.opensource.org/),
 as alternative labeling for "free software". Their
 goal at the time was largely to make such software a
 more palatable choice for
 corporations, by presenting it as a development
 methodology rather than as a political
 movement.[134]
While any license that is free is also open
 source, and vice versa (with a few minor exceptions that
 have no practical consequences),
 people tend to pick one term and stick with it. In
 general, those who prefer "free software" are more
 likely to have a philosophical or moral stance on the
 issue, while those who prefer "open source" either don't
 view it as a matter of freedom, or are not interested in
 advertising the fact that they do. See
 the section called “"Free" Versus "Open Source"” for a more
 detailed history of this terminological schism.
The Free Software Foundation has an
 excellent — utterly unobjective, but nuanced and
 quite fair — exegesis of the two terms, at https://www.fsf.org/licensing/essays/free-software-for-freedom.html.
 The Open Source Initiative's take on it can be found at
 https://opensource.org/faq#free-software.

	FOSS,
 F/OSS,
 FLOSS
	Where there are two of anything, there will soon
 be three, and that is exactly what is happening with
 terms for free software. Many people have started
 using "FOSS" (or, more rarely, "F/OSS"), standing
 for "Free / Open Source Software". Another variant
 gaining momentum is "FLOSS", which
 stands for "Free / Libre Open Source Software"
 (libre is familiar from
 many Romance languages and does not suffer from the ambiguities
 of "free"; see
 https://en.wikipedia.org/wiki/FLOSS for more).
All these terms mean the same thing:
 software that can be modified and redistributed by
 everyone, sometimes — but not always — with the
 requirement that derivative works be freely
 redistributable under the same terms.

	DFSG-compliant
	Compliant with the Debian Free Software Guidelines
 (https://www.debian.org/social_contract#guidelines).
 This is a widely-used test for whether a given license
 is truly open source
 (free, libre, etc). The
 Debian Project's mission is to maintain an entirely free
 operating system, such that someone installing it need
 never doubt that she has the right to modify and
 redistribute any or all of the system. The Debian Free
 Software Guidelines are the requirements that a software
 package's license must meet in order to be included in
 Debian. Because the Debian Project spent a good deal of
 time thinking about how to construct such a test, the
 guidelines they came up with have proven very robust
 (see https://www.debian.org/social_contract#guidelines),
 and as far as I'm aware, no serious objection to them has
 been raised either by the Free Software Foundation or
 the Open Source Initiative. If you know that a given
 license is DFSG-compliant, you know that it guarantees
 all the important freedoms (such as forkability even
 against the original author's wishes) required to
 sustain the dynamics of an open source project. Since
 2004, the Debian Project has maintained a list of known
 DFSG-compliant licenses at https://wiki.debian.org/DFSGLicenses. All of the licenses
 discussed in this chapter are DFSG-compliant.

	OSI-approved
	Approved by the Open Source Initiative. This is
 another widely-used test of whether a license permits
 all the necessary freedoms. The OSI's definition of
 open source software is based on the Debian Free
 Software Guidelines, and any license that meets one
 definition almost always meets the other. There have
 been a few exceptions over the years, but only involving
 niche licenses and none of any relevance
 here.[135]
 The OSI maintains a list of all
 licenses it has ever approved, at
 https://www.opensource.org/licenses/, so
 that being "OSI-approved" is an unambiguous state: a
 license either is or isn't on the list.
The Free Software Foundation also maintains a list
 of licenses at https://www.fsf.org/licensing/licenses/license-list.html.
 The FSF categorizes licenses not only by whether they
 are free, but whether they are compatible with the GNU
 General Public License. GPL compatibility is an
 important topic, covered in
 the section called “The GPL and License Compatibility”.

	proprietary,
 closed-source
	The opposite of "free" or "open source." It means
 software distributed under traditional, royalty-based
 licensing terms, where users pay per copy, or under any
 other terms sufficiently restrictive to prevent open
 source dynamics from operating. Even software
 distributed at no charge can still be proprietary, if
 its license does not permit free redistribution and
 modification.
Generally "proprietary" and "closed-source" are
 synonyms. However, "closed-source" additionally implies
 that the source code cannot even be seen. Since the
 source code cannot be seen with most proprietary
 software, this is normally a distinction without a
 difference. However, occasionally someone releases
 proprietary software under a license that allows others
 to view the source code. Confusingly, they sometimes
 call this "open source" or "nearly open source," etc,
 but that's misleading. The
 visibility of the source code is
 not the issue; the important question is what you're
 allowed to do with it: if you can't copy, modify, and
 redistribute, then it's not open source. Thus, the
 difference between proprietary and closed-source is
 mostly irrelevant; generally, the two can be treated
 as synonyms.
Sometimes commercial is
 used as a synonym for "proprietary," but this is
 carelessness: the two are not the same. Free software
 is always commercial software. After all, free software
 can be sold, as long as the buyers are not restricted
 from giving away copies themselves. It can be
 commercialized in other ways as well, for example by
 selling support, services, and certification. There are
 billion-dollar companies built on free software
 today, so it is clearly neither inherently
 anti-commercial nor anti-corporate. It is merely
 anti-proprietary, or if you prefer anti-monopoly,
 and this is the key way in which it differs from
 per-copy license models.

	public domain
	Having no copyright holder, meaning that there is
 no one who has the right to restrict copying of the
 work. Being in the public domain is not the same as
 having no author. Everything has an author, and even if a
 work's author or authors choose to put it in the public
 domain, that doesn't change the fact that they wrote
 it.
When a work is in the public domain, material from
 it can be incorporated into a copyrighted work, and the
 derivative is thus under the same overall copyright as
 the original copyrighted work. But this does not affect
 the availability of the original public domain work.
 Thus, releasing something into the public domain is
 technically one way to make it "free," according to the
 guidelines of most free software certifying
 organizations (see https://opensource.org/faq#public-domain for more).
 However, there are usually good reasons to use a license
 instead of just releasing into the public domain: even
 with free software, certain terms and conditions can be
 useful, not only to the copyright holder but to
 recipients as well, as the next section makes clear.

	reciprocal, copyleft
	A license that not only grants the freedoms under
 discussion here but furthermore requires that those
 freedoms apply to any derivative works.
The canonical example of a copyleft license is
 still the GNU General Public License, which stipulates
 that any derivative works must also be licensed under
 the GPL; see the section called “The GPL and License Compatibility” for
 more.

	non-reciprocal, non-copyleft or permissive
	A license that grants the freedoms under
 discussion here but that does not
 have a clause requiring that they apply to distributed
 derivative works as well.
Two early and well-known examples of non-reciprocal
 licenses are the BSD and MIT licenses, but the more
 recent Apache Software License version 2
 (https://www.apache.org/licenses/LICENSE-2.0) is
 also very popular — increasingly so — and
 somewhat better adapted to the legal landscape of modern
 open source software development.

"Free Software" and "Open Source" Are the Same Licenses

Occasionally people will make the mistake of thinking that
copyleft licenses (like the GPL) comprise "free software", while the
non-reciprocal licenses comprise "open source". This is wrong, but it
comes up just often enough to be worth mentioning here. Both free
software and open source include both the
copyleft and non-copyleft licenses — this is something
that all the license-certifying organizations, including the FSF, the
OSI, and the Debian Project, have always agreed on. If you see
someone, particularly a journalist, making this mistake, please
politely correct them, perhaps by pointing them to this note (
https://producingoss.com/en/legal.html#free-open-same).
The last thing we need is yet more terminological confusion in the
free and open source software movement.

[132] For a deeper
understanding of how copyright law relates to free software, see
https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html, published by the Software Freedom Law
Center.

[133] Technically, there
 are certain uncommon situations in which software can be
 distributed in a way that meets only one of the Free
 Software Definition and the Open Source Definition.
 These are very rare edge cases, however; they do not
 affect anything in this chapter, so I won't go into
 detail about them here. To learn more about them, one
 place to start is a conversation Alexandre Oliva
 and I had in 2020, at https://identi.ca/lxoliva/comment/FzE-8xdyS1au9z22QKA-TA,
 in which he gives some examples.

[134] Disclosure: Long after these
 events, I served as a member of the Board of Directors
 of the Open Source Initiative for three years, from
 2011-2014. The ideological gap between the OSI and the
 FSF was much smaller by then than it was when the OSI
 was founded, in my opinion, and the two
 organizations have increasingly found common ground on
 which to cooperate. I remain a happy member of both,
 and urge you to join them too: https://opensource.org/join and https://fsf.org/join.

[135] There is one relatively new
 license, the Cryptographic Autonomy License, version 1.0
 (https://opensource.org/licenses/CAL-1.0, approved by
 the OSI in 2020), that has unusual provisions regarding
 data portability and that has caused some disagreement
 over whether it truly meets the Open Source Definition.
 Two good overviews of CAL-1.0 are Heather Meeker's at
 https://heathermeeker.com/2020/02/15/cryptographic-autonomy-license-approved-by-osi/
 and Jonathan Corbet's in Linux Weekly News at
 https://lwn.net/Articles/797065/.

Aspects of Licenses

Although there are many different free software licenses
available, in the important respects they all say the same things:
that anyone can see and use the code, that anyone can modify the code,
that anyone can redistribute it both in original and modified form,
and that the copyright holders and authors provide no warranties
whatsoever (avoiding liability is especially important given that
downstream recipients might run modified versions without even knowing
it). The differences between licenses boil down to a few
oft-recurring issues:
	compatibility with proprietary licenses
	The non-reciprocal (non-copyleft) free licenses allow the covered code to be
 used in proprietary programs. This does not affect the
 licensing terms of the proprietary program: it is still
 as proprietary as ever, it just happens to contain some
 code from a non-proprietary source. The Apache License,
 X Consortium License, BSD-style license, and the
 MIT-style license are all examples of
 proprietary-compatible licenses.

	compatibility with other types of free licenses
	Most of the commonly-used non-reciprocal free licenses
 are compatible with each other, meaning that code under
 one license can be combined with code under another, and
 the result distributed under either license without
 violating the terms of the other. Some of them are also
 compatible with some of the copyleft licenses, meaning
 that a work comprised of code under the non-reciprocal
 license and code under the copyleft license can be
 distributed as a combined work under the copyleft
 license (since that's the license that places more
 conditions), with the original code in each case
 remaining under its original license. Typically these
 compatibility issues come up between some non-reciprocal
 license and the GNU General Public
 License.[136]
 This topic is discussed in more detail in
 the section called “The GPL and License Compatibility”.

	attribution requirements
	Some free licenses stipulate that any use of the
 covered code be accompanied by a notice, whose placement
 and display is usually specified, giving credit to the
 authors or copyright holders of the code. These
 licenses are often still proprietary-compatible: they do
 not necessarily demand that the derivative work be free,
 itself, merely that credit be given for its free parts.

	protection of trademark
	This is a type of attribution requirement.
 Trademark-protecting licenses specify that the name of
 the original software (or its copyright holders, or
 their institution, etc) may not be
 used to identify derivative works, at least not without
 prior written permission. This restriction can be
 implemented purely via trademark law anyway, whether or
 not it is also stipulated in the copyright license, so
 such clauses are somewhat legally
 redundant — in effect, they amplify a
 trademark infringement into a copyright infringement as
 well.
Although attribution requirements insist that a certain
 name be used, while trademark protections insist that it
 not be used, they are both expressions of the same
 concept: that the original code's reputation be
 preserved, and not tarnished by associations beyond its
 control.

	patent snapback
	Certain licenses (e.g., the GNU General Public
 License version 3, the Apache License version 2, the
 Mozilla Public License 2.0, and a few others) contain
 language designed
 to prevent people from using patent law to take away the
 rights granted under copyright law by the
 licenses. They require contributors to grant patent
 licenses along with their contribution, covering any
 patents licenseable by the contributor that would be
 infringed by their contribution (or by the incorporation
 of their contribution into the work as a whole). Then
 they go further: if someone using software under the
 license initiates patent litigation against another party,
 claiming that the covered work infringes, the initiator
 automatically loses all the
 patent grants otherwise provided for that work by the
 license, and in the case of the GPL-3.0 loses their right
 to distribute under the license altogether.

Most of these stipulations are not mutually exclusive, and some
licenses include several. The common thread among them is that they
place certain easily satisfiable demands on the recipient in exchange
for the recipient's right to use the code under the freedoms granted
by the license.

[136] Or its variant, the GNU Affero
 GPL (see the section called “The GNU Affero GPL: A Version of the GNU GPL for Server-Side Code”).

The GPL and License Compatibility

The sharpest dividing line in licensing is that between
proprietary-incompatible and proprietary-compatible licenses, that is,
between the copyleft licenses and everything else.
The canonical
example of a copyleft license is the GNU General Public License (along
with its newer descendant, the Affero GNU General Public
License or AGPL, introduced later in this chapter in the section called “The GNU Affero GPL: A Version of the GNU GPL for Server-Side Code”), and one of the most important
considerations in choosing the GPL (or AGPL) is the extent to which it
is compatible with other licenses. For brevity, I'll refer just to
the GPL below, but most of this section applies to the AGPL as
well.
Because the primary goal of the GPL's authors is the promotion
of free software, they deliberately crafted the license to prevent
proprietary programs from being distributed with GPLed code in them.
Specifically, among the GPL's requirements (see https://www.fsf.org/licensing/licenses/gpl.html for its full text) are
these two:
	Any derivative work — that is, any work
 containing a nontrivial amount of GPLed code — must
 itself be distributed under the GPL.

	No additional restrictions may be placed on the
 redistribution of either the original work or a derivative
 work. (The exact language is: "You may not impose any
 further restrictions on the exercise of the rights granted
 or affirmed under this License.")

Through these two conditions, the GPL makes freedom
contagious. Once a program is copyrighted under the GPL, its terms of
redistribution are
reciprocal[137] — they are passed
on to anything else the code gets incorporated into, making it
effectively impossible to use GPLed code in closed-source programs.
However, these same clauses also make the GPL incompatible with
certain other free licenses. The usual way this happens is that the
other license imposes a requirement — for example, a credit clause
requiring the original authors to be mentioned in some way — that
is incompatible with the GPL's "You may not impose any further
restrictions..." language. From the point of view of the Free
Software Foundation, these second-order consequences are desirable, or
at least not regrettable. The GPL not only keeps your software free,
but effectively makes your software an agent in pushing
other software to enforce freedom as well, by
encouraging them to use the GPL.
The question of whether or not this is a good way to
promote free software is one of the most persistent holy wars on the
Internet (see the section called “Avoid Holy Wars”), and we won't
investigate it here. What's important for our purposes is that
GPL compatibility is something to consider when choosing a license. The
GPL is a popular open source license, and some important open source
packages are licensed under it. If you want your code to be able to be
mixed freely with GPLed code, then you should pick a GPL-compatible
license. Most of the GPL-compatible open source licenses are also
proprietary-compatible: that is, code under such a license can be used
in a GPLed program, and it can be used in a proprietary program. Of
course, the results of these mixings would not be
compatible with each other, since one would be under the GPL and the
other would be under a closed-source license. But that concern
applies only to the derivative works, not to the code you distribute
in the first place.
Fortunately, the Free Software Foundation maintains a list
showing which licenses are compatible with the GPL and which are not,
at https://www.gnu.org/licenses/license-list.html. All
of the licenses discussed in this chapter are present on that list, on
one side or the other.

[137] Some people use the
term viral to describe the GPL's
contagiousness; they do not always mean this pejoratively, but I still
prefer "reciprocal" because it's more descriptive and less connotative
of disease.

Choosing a License

When choosing a license to apply to your project, use an
existing license instead of making up a new one. And don't just use
any existing license — use one of the widely-used,
well-recognized existing licenses.
Such licenses are familiar to many people already. If you use
one of them, people won't feel they have to read the legalese in order
to use your code, because they'll have already read that
license a long time ago. Thus, you reduce or remove one possible
barrier to entry for your project. These licenses are also of a high quality:
they are the products of much thought and experience; indeed most
of them are revisions of previous versions of themselves, and the
modern versions represent a great deal of accumulated legal and
technical wisdom. Unless your project has truly unusual needs, it is
unlikely you could do better even with a team of lawyers at your
disposal.
Below is a list of licenses that in my opinion meet these
criteria; in parentheses is the standard formal
abbreviation[138] for each license. If you have
nothing else to guide you and you want a copyleft license, then choose
either the GPL-3.0 or the AGPL-3.0 — the difference
between them will be discussed below — and if you want
a non-copyleft license, choose the MIT license. I've put those
licenses in boldface to reflect
this.
This list is not in order of preference, but rather in roughly
descending order from strong copyleft at the top to completely
non-copyleft at the bottom:
	GNU General Public License version 3 (GPL-3.0)
	GNU Affero General Public License version 3 (AGPL-3.0)
	Mozilla Public License 2.0 (MPL-2.0)
	GNU Library or "Lesser" General Public License version 3 (LGPL-3.0)
	Eclipse Public License 1.0 (EPL-1.0)
	Apache License 2.0 (Apache-2.0)
	MIT license (MIT)
	BSD 2-Clause ("Simplified" or "FreeBSD") license (BSD-2-Clause)

The exact provisions of each license differ in various interesting
ways (except for MIT and BSD, which differ only in uninteresting
ways and are basically interchangeable). There isn't space here to
explore all the possible ramifications of each license for your
project, but many good discussions of that sort are easily findable
on the Internet; in particular the Wikipedia pages for these licenses
tend to give good overviews.
Note that there are some arguments for choosing the Apache
License 2.0 as a default non-copyleft license, and they are nearly as
compelling as those for choosing MIT. In the end, I come down in
favor of MIT because it is extremely short, and both widely used and
widely recognized. While the
Apache License 2.0 has the advantage of containing some explicit
defenses against misuse of software patents, which might be important
to your organization depending on the kind of project you're
launching, the MIT license is fully compatible with all versions of
the GNU General Public License, meaning that you can distributed,
under any version of the GPL, mixed-provenance works that contain
MIT-licensed code. The GPL-compatibility situation for the Apache
License, on the other hand, is more complicated — by
some interpretations, it is compatible with GPL version 3 only.
Therefore, to avoid giving your downstream redistributors the headache
of having to read sentences like the preceding ones, I recommend
the MIT license as the default non-copyleft license for anyone who
doesn't have a reason to choose otherwise.
The mechanics of applying a license to your project are
discussed in the section called “How to Apply a License to Your Software”.
The GNU General Public License

If you prefer that your project's code not be used in
proprietary programs, or if you at least don't care whether or not it
can be used in proprietary programs, the GNU General Public License,
version 3, is a good choice.
When writing a code library that is meant mainly to be used as
part of other programs, consider carefully whether the restrictions
imposed by the GPL are in line with your project's goals. In some
cases — for example, when you're trying to unseat a
competing, proprietary library that offers the same
functionality[139] — it
may make more strategic sense to license your code in such a way that
it can be mixed into proprietary programs, even though you would
otherwise not wish this. The Free Software Foundation even fashioned
an alternative to the GPL for such circumstances: the GNU
Lesser GPL[140] The LGPL has weaker reciprocity requirements
than the GPL, and can be mixed more easily with non-free code. The
FSF's page about the LGPL, https://www.gnu.org/licenses/lgpl.html, has a good discussion
of when to use it.
The "or any later version" Option: Future-Proofing the GPL

The GPL has a well-known optional recommendation that you
release software under the current version of the GPL while giving
downstream recipients the option to redistribute it under any
later (i.e., future) version of the license. The way to offer
this option is to put language like this in the license headers (see
the section called “How to Apply a License to Your Software”) of the actual source
files:
This program is free software: you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later
version.

(Emphasis added.)
Whether you want to offer this option depends largely on how
likely you think the Free Software Foundation is to make GPL revisions
that you would approve of. I think the FSF has done a good job of
that so far, and I generally do include that option when I use the
GPL. That way I don't have to be responsible for updating my software's
licenses forever — which is good, since I won't
be around forever. Others can do it, either just to keep the software
license up-to-date with legal developments, or to solve some future
license compatibility problem that couldn't have been anticipated now
(for example, see the compatibility discussion in the section called “The GNU Affero GPL: A Version of the GNU GPL for Server-Side Code” below).
Not everyone feels the same way, however; most notably, the
Linux kernel is famously licensed under the GNU GPL version 2
without the "or any later version" clause, and
influential kernel copyright holders, especially Linus Torvalds, have
expressed clearly that they do not intend to move its license to
version 3.0.
This book cannot answer the question of whether you should
include the option or not. You now know that you have the choice
and that different people come to different conclusions about
it.

The GNU Affero GPL: A Version of the GNU GPL for Server-Side Code

In 2007, the Free Software Foundation released a variant of the
GPL called the GNU Affero GPL. Its purpose was to bring
copyleft-style sharing provisions to the increasing amount of code
being run as hosted services — that is, software that
runs "in the cloud" on remote servers owned by someone other than the
user. This is software that users interact with only
over the network and that therefore is not directly distributed to its
users as executable or source code in the normal course of usage.
Many such services use GPLed
software, often with extensive modifications, yet could avoid
publishing their changes because they weren't actually distributing
code.
The AGPL's solution to this was to take the GPL (version 3) and add a
"Remote Network Interaction" clause, stating "...if you
modify the Program, your modified version must prominently offer all
users interacting with it remotely through a computer network ... an
opportunity to receive the Corresponding Source of your version ... at
no charge, through some standard or customary means of facilitating
copying of software." This expanded the GPL's enforcement
powers into the new world of remote application service providers. The Free
Software Foundation recommends that the GNU AGPL 3.0 be used for any
software that will commonly be run over a network.
Note that the AGPL-3.0 is not directly compatible with GPL-2.0,
though it is compatible with GPL-3.0. Since most software licensed
under GPL-2.0 includes the "or any later version" clause anyway, that
software can just be shifted to GPL-3.0 if and when you need to mix it
with AGPL-3.0 code. However, if you need to mix with programs
licensed strictly under the GPL-2.0 (that is, programs licensed
without the "or any later version" clause), the AGPL3.0 wouldn't be
compatible with that.
Although the history of the AGPL-3.0 is a bit complicated, the
license itself is simple: it's just the GPL-3.0 with one extra clause
about network interaction. The Wikipedia article on the AGPL is
excellent: https://en.wikipedia.org/wiki/Affero_General_Public_License

The Copyright Holder Is Special, Even In Copyleft Licenses

One common misunderstanding is that licensing your software
under the GPL or AGPL requires you to provide source code to anyone
who requests it under the terms of the license. But that's not quite
how it works. If you are the sole copyright
holder in a piece of software, then you are not bound by the copyright
terms you chose, because (essentially) you can't be forced to sue
yourself for copyright infringement. You can enforce the terms on
others, but it's up to you to decide whether and when those terms
apply to you. After all, because you had the software originally, you
never "distributed" it to yourself and thus are not bound by the
redistribution requirements of the license.
Of course, this only applies to situations where you own the
whole copyright. If you include others' GPL- or AGPL-licensed code in
your project and then distribute the result, you are no longer the sole
copyright holder, and so you are as bound by the original terms as
anyone else who uses and redistributes that code, either unmodified or
as part of a derivative work.

Is the GPL Free or Not Free?

One consequence of choosing the GPL (or AGPL) is the small
possibility of finding
yourself or your project embroiled in a dispute about whether or not
the GPL is truly "free", given that it places some restrictions on
how you redistribute the code — namely, the restriction that the
code cannot be distributed under any other license. For some people,
the existence of this restriction means the GPL is therefore "less
free" than non-reciprocal licenses. Where this
argument usually goes, of course, is that since "more free" must be
better than "less free" (after all, who's not in favor of freedom?),
it follows that those licenses are better than the GPL.
This debate is another popular holy war (see
the section called “Avoid Holy Wars”). Avoid participating
in it, at least in project forums. Don't attempt to prove that the
GPL is less free, as free, or more free than other licenses. Instead,
emphasize the specific reasons your project chose the GPL. If the
recognizability of license was a reason, say that. If the enforcement
of free licensing on derivative works was also a reason, say that too,
but refuse to be drawn into discussion about whether this makes the
code more or less "free". Freedom is a complex topic, and there is
little point talking about it if terminology is going to be used as a
stalking horse for substance.
Since this is a book and not a mailing list thread, however, I
will admit that I've never understood the "GPL is not free" argument.
The only restriction the GPL imposes is that it prevents people from
imposing further restrictions. To say that this
results in less freedom has always seemed perverse to me. If the
retention of monopoly is somehow a freedom to be protected, then the
word "freedom" is no longer meaningful.

[138] The Software Package Data Exchange (SPDX)
project maintains a canonical list of licenses abbreviations, along
with whether the given license is OSI-approved, FSF-approved, or both,
at https://spdx.org/licenses/.

[139] Once again, the report Open
Source Archetypes: A Framework For Purposeful Open Source
(https://opentechstrategies.com/archetypes), mentioned in Chapter 1, Introduction, may be worth consulting if you want a
strategic view of potential purposes for an open source project and
how purpose affects structure.

[140] Originally named the
GNU Library GPL, and later renamed by the
FSF.

Contributor Agreements

There are three ways to handle copyright ownership for free code
and documentation that were contributed to by many people. The first
is to ignore the issue of copyright entirely (I don't recommend this).
The second is to collect a contributor license
agreement (CLA) from each person
who works on the project, explicitly granting the project the right to
use that person's contributions. This is usually enough for most
projects, and the nice thing is that in some jurisdictions, CLAs can
be sent in electronically. The third way is to get actual
copyright assignment (CA
from contributors, so that the project (i.e., some legal entity,
usually a nonprofit) is the copyright owner for everything. This way
is the most burdensome for contributors, and some contributors simply
refuse to do it; only a few projects still ask for assignment, and I don't
recommend that any project require it these days.[141]
Note that even under centralized copyright ownership, the
code[142] remains free, because
open source licenses do not give the copyright holder the right to
retroactively proprietize all copies of the code. So even if the
project, as a legal entity, were to suddenly turn around and start
distributing all the code under a restrictive license, that wouldn't
necessarily cause a problem for the public community. The other
developers could start a fork based on the latest free copy of the code
and continue as if nothing had happened.
Doing Nothing

Some projects never collect CLAs or CAs from
their contributors. Instead, they accept code whenever it seems
reasonably clear that the contributor intended it to be incorporated
into the project.
This can seem to work for a long time, as long as the project
has no enemies. But I don't recommend it. Someone may eventually
decide to sue for copyright infringement, alleging that they are the
true owner of the code in question and that they never agreed to its
being distributed by the project under an open source license. For
example, the SCO Group did something like this to the Linux project (see
https://en.wikipedia.org/wiki/SCO-Linux_controversies
for details). When this happens, the project will have no
documentation showing that the contributor formally granted the right
to use the code, which could make some legal defenses more
difficult.

Contributor License Agreements

CLAs probably offer the best tradeoff between safety and
convenience. A CLA is typically an electronic form that a developer
fills out and sends in to the project, or even a web-based checkbox
that the developer checks before completing their first contribution
to the project. In many jurisdictions, such email
submission or an online form is enough, though you should consult with
a lawyer to see what method would be best for your project.
Some projects use two slightly different CLAs, one for
individuals, and one for corporate contributors. But in both types,
the core language is the same: the contributor grants the
project a "...perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare
derivative works of, publicly display, publicly perform, sublicense,
and distribute [the] Contributions and such derivative
works." Again, you should have a lawyer approve any CLA,
but if you get all those adjectives into it, you're off to a good start.
When you request CLAs from contributors, make sure to emphasize
that you are not asking for actual copyright
assignment. In fact, many CLAs start out by reminding the reader of
this, for example like so:
This is a license agreement only; it does not transfer
copyright ownership and does not change your rights to use your own
Contributions for any other purpose.

Developer Certificate of Origin (DCO): An Easier Style of CLA

More and more projects are now using a particularly convenient
style of simple CLA known as a Developer Certificate of
Origin (DCO).
A DCO is essentially an attestation that the contributor intends
to contribute the enclosed code under the project's license, and that
the contributor has the right to do so. The contributor indicates her
understanding of the DCO once, early on, for example by emailing its
text from her usual contribution address to a special archive at the
project.[143]
Thereafter, the contributor includes a "Signed-Off-By:" line in her
patches or commits, using the same identity, to indicate that the
corresponding contribution is certified under the DCO. This gives the
project the legal cover it needs, while giving contributors a
low-bureaucracy process for submitting their contributions. The DCO
relies on the project's native open source license for any trademark
or patent provisions, which in most cases is fine.
The simplification that makes DCOs work so well is that they set
the inbound license of the contribution to be the same as the outbound
license of the project. This avoids the sticky issues that a more
complex CLA can create, whereby the recipient of the CLA might reserve
the right to relicense the project (and thus all the past
contributions) under some different license in the future, possibly
even a proprietary license. DCOs are probably the minimum amount of
CLA a free software project should adopt, but for some circumstances a
more complex CLA may still be the better course.

[141] Also,
actual copyright transferal is subject to national law, and licenses
designed for the United States may encounter problems elsewhere (e.g.,
in Germany, where it's apparently not possible to fully transfer
copyright).

[142] I'll use "code" to refer to both code and
documentation from now on.

[143] The DCO text is provided by the project, but
you don't have to write your own from scratch; see https://developercertificate.org/ for example.

Proprietary Relicensing

Some companies offer open source code with a
proprietary relicensing
scheme,[144] in which an open source version of the
software is available under the usual open source terms, while a
proprietary version is available for a fee.
Why would anyone want a proprietary version, when an open source
version is already out there? There are two separate answers,
reflecting the two different kinds of proprietary relicensing.
The first kind is about selling
exceptions to copyleft requirements, and is typically used
with code libraries rather than with standalone applications. The way
it works is that the library's owner (i.e., copyright holder), seeing
that some of the library's users want to incorporate it into their own
proprietary applications, sells them a promise to
not enforce the redistribution requirements of
the open source version's license. This only works when the open
source code is under a copyleft-style license, of
course — in practice it is usually the GPL or
AGPL.
With this promise in hand, the downstream users can use the
library in their proprietary product without worry that they might be
forced to share the source code to their full product under the copyleft
license. One well-known example of "selling exceptions" is the MySQL
database engine, which is distributed under the GPL version 2, but
with a proprietary license offering available for many years, first
from the Swedish company MySQL AB, and later from Oracle, Inc, which
purchased MySQL AB in 2008.
The second kind of proprietary relicensing, sometimes called the
freemium or open core
model, uses an open source version to
drive sales of a presumably fancier proprietary version (see
the section called “"Commercial" vs "Proprietary"” for a discussion of some
marketing pitfalls to avoid in this situation). Usually the
company offering the proprietary version is also the primary
maintainer of the open source version, in the sense of supplying most
of the developer attention (this is usually inevitable, for reasons
we'll get to in a moment). Furthermore, although in theory the
company could offer paid support for both the
open source and proprietary versions,[145]
in practice they almost
always offer it only for the proprietary version, because then they
can charge two fees: a subscription fee for the software itself and a
fee for the support services, with only the latter having any marginal
cost to the supplier.
You might be wondering: how can the copyright holder offer the
software under a proprietary license if the terms of the GNU GPL
stipulate that the code must be available under less restrictive
terms? The answer is that the GPL's terms are something the copyright
holder imposes on everyone else; the owner is therefore free to decide
not to apply those terms to itself. In other
words, one always has the right to not sue one's self for copyright
infringement. This right is not tied to the GPL or any other open
source license; it is simply in the nature of copyright law.
Problems with Proprietary Relicensing

Proprietary relicensing, of both varieties, tends to suffer from
several problems.
First, it discourages the normal dynamics of open source
projects, because any code contributors from outside the company are
now effectively contributing to two distinct entities: the free
version of the code and the proprietary version. While the
contributor will be comfortable helping the free version, since that's
the norm in open source projects, she may feel less enthusiastic about
her contributions being useable in a monopolized proprietary product.
That is, unlike a straight non-copyleft license by which anyone has
the right to use the code as part of a proprietary work, here only
one party has that right, and other participants
in the project are thus being asked to contribute to an asymmetric
result.
This awkwardness is reflected and in some ways amplified by
the fact that in a proprietary relicensing scheme, the copyright owner
must collect some kind of formal agreement from each contributor (see
the section called “Contributor Agreements” earlier in this chapter), in
order to have the right to redistribute that contributor's code under
a proprietary license. Because such an agreement needs to give the
collecting entity special, one-sided rights that a typical open source
contributor agreement doesn't include, the process of collecting
agreements starkly confronts contributors with the imbalance of the
situation, and some of them may decline to sign. (Remember, they
don't need to sign a contribution agreement in order to distribute
their own changes along with the original code; rather, the
company needs the agreement in order to
redistribute the contributor's changes under a proprietary
license. Asymmetry cuts both ways.)
Historically, many companies that have started out offering a
seemingly clear proprietary relicensing option — use
our product under open source terms, or buy a proprietary license so
you can use it under proprietary terms — have eventually
graduated to something closer to a "shakedown" model instead, in which
anyone who makes commercially significant use of the code ends up
being pressured to purchase a proprietary license as a way of
protecting their commercial revenue stream from harassment. The
precise legal bases on which this pressure rests differ from case to
case, but the overall pattern of behavior has been remarkably
consistent.
Naturally, neither the companies initiating these shakedowns nor
the parties who are its targets (most of whom eventually capitulate)
have anything to gain from going on the record about it, so I can only
tell you that I have heard of it informally and off-the-record from
multiple sources, at different projects and different companies.
One reason I generally advise companies who are serious about open
source development to stay away from proprietary relicensing is that,
if history is a reliable guide, the temptation to undermine the open
source license will be overwhelming to the point of being impossible
to resist.
Finally, there is a deep motivational problem for open source
projects that operate in the shadow of a proprietarily relicensed
version: the sense that most of the salaried development attention is
going to the proprietary version anyway, and that therefore spending
time contributing to the open source version is a fool's
game — that one is just helping a commercial entity
free up its own developers to work on features that the open source
community will never see. This fear is reasonable on its face, but it
also becomes a self-fulfilling prophecy: as more outside developers
stay away, the company sees less reason to invest in the open source
codebase, because they're not getting a community multiplier effect
anyway. Their disengagement in turn discourages outside developers,
and so on.
What seems to happen in practice is that companies that offer
proprietarily relicensed software do not get truly active development
communities with external participants. They get occasional
small-scale bug fixes and cleanup patches from the outside, but end up
doing most of the hard work themselves. Since this book
is about running free software projects, I will just say that in my
experience, proprietary relicensing schemes inevitably have a negative
effect on the level of community engagement and the level of technical
quality on the open source side. If you conclude that for business
reasons you want to try it anyway, then I hope this section will at
least help you mitigate some of those effects.[146]

[144] This is sometimes also called dual
licensing, but that term is ambiguous, as it has
historically also referred to releasing open source software under two
or more open source licenses simultaneously. I am grateful to Bradley
Kuhn for pointing out this ambiguity and suggesting the more accurate
term.

[145] In both cases usually hosted
as Software-as-a-Service (SaaS), just to be clear.

[146] Sometimes the
terms-of-service agreements for online software distribution
services — the Apple App Store, for
example — effectively force you to use proprietary
relicensing if you want to distribute copylefted software. I won't go
into detail here, but if you're distributing GPL-licensed or other
copylefted code from a place that restricts users from redistributing
what they download, you may be in this situation. For more
information, see Steven J. Vaughan-Nichols' article No GPL
Apps for Apple's App Store (https://www.zdnet.com/article/no-gpl-apps-for-apples-app-store/),
Richard Gaywood's followup article The GPL, the App Store,
and you (https://www.engadget.com/2011/01/09/the-gpl-the-app-store-and-you/),
and Pieter Colpaert's explanation of how the iRail and BeTrains projects used pro
forma dual-licensing to get around the problem,
About Apple store, GPL’s, VLC and BeTrains
(https://bonsansnom.wordpress.com/2011/01/08/about-apple-store-gpls-vlc-and-betrains/).
Thanks to reader Nathan Toone for pointing out this problem.

Trademarks

Trademark law as applied to open source projects does not differ
significantly from trademark law as applied elsewhere. This sometimes
surprises people: they think that if the code can be copied freely,
then that can't possibly be consistent with some entity controlling a
trademark on the project's name or logo. It is consistent, however,
and below I'll explain why, and give some examples.
First, understand what trademarks are about: they are about
truth in labeling and, to some degree, about endorsement. A trademarked
name or symbol is a way for an entity — the entity who
owns or controls that trademark — to signal, in an
easily recognizable way, that they approve of a particular product.
Often they are signaling their approval because they are the source of
the product, and purchases of that product provide a revenue stream
for them. But that is not the only circumstance under which someone
might want to enforce accurate attribution. For example,
certification marks are trademarked names or symbols that an entity
applies to someone else's product, in order to
signal that the product meets the certifying entity's
standards.
Importantly, trademarks do not restrict copying,
modification, or redistribution. I cannot emphasize this
enough: trademark is unrelated to copyright, and does not govern the
same actions that copyright governs. Trademark is about what you may
publicly call things, not about what you may do with those things nor
with whom you may share them.
One famous example of trademark enforcement in free and open
source software demonstrates these distinctions clearly.
Case study: Mozilla Firefox, the Debian Project, and Iceweasel

The Mozilla Foundation owns the trademarked name "Firefox",
which it uses to refer to its popular free software web browser of the
same name. The Debian Project, which maintains a long-running and
also quite popular GNU/Linux distribution, wanted to package Firefox
for users of Debian GNU/Linux.
So far, so good: Debian does not need Mozilla's permission to
package Firefox, since Firefox is free software. However,
Debian does need Mozilla's permission to call the
packaged browser "Firefox" and to use the widely-recognized Firefox
logo (you've probably seen it: a long reddish fox curling its body and
tail around a blue globe) as the icon for the program, because those
are trademarks owned by Mozilla.
Normally, Mozilla would have happily given its permission.
After all, having Firefox distributed in Debian is good for Mozilla's
mission of promoting openness on the Web. However, various technical
and policy effects of the Debian packaging process left Debian unable
to fully comply with Mozilla's trademark usage requirements, and as a
result, Mozilla informed Debian that their Firefox package could not
use the Firefox name or branding. No doubt Mozilla did so with some
reluctance, as it is not ideal for them to have their software used
without clear attribution. However, they could have given Debian a
trademark license and yet chose not to; presumably, this is because
Debian was doing something with the code that Mozilla did not want
affecting their own reputation.[147]
This decision by Mozilla did not mean that Debian had to remove
Firefox from their package list, of course. Debian simply changed
the name to "Iceweasel" and used a different logo. The underlying
code is still the Mozilla Firefox code, except for the minor bits
Debian had to change to integrate the different name and
logo — changes they were perfectly free to make, of
course, because of the code's open source license.

It is even consistent to license your project's logo artwork
files under a fully free license while still retaining a trademark on
the logo, as the following story of the GNOME logo and the fish
pedicure shop (I'm not making this up) illustrates.
Case study: The GNOME Logo and the Fish Pedicure Shop

The GNOME project (https://gnome.org/), which
produces one of the major free software desktop environments, is
represented legally by the GNOME Foundation (https://www.gnome.org/foundation/),
which owns and enforces trademarks on behalf of the project. Their
best-known trademark is the GNOME logo: a curved, stylized foot with
four toes floating close above it.[148]
One day, Karen Sandler, then the Executive Director of the GNOME
Foundation, heard from a GNOME contributor that a mobile fish-pedicure
van (fish pedicure is a technique in which one places one's feet in
water so that small fish can nibble away dead skin) was using a
modified version of the GNOME logo. The central foot part of the
image had been slightly modified to look like a fish, and a fifth toe
had been added above, so that the overall logo looked even more like a
human foot but cleverly made reference to fish as well. You can see
it, along with discussion of other trademark issues GNOME has dealt
with, in the Linux Weekly News article where this story is told in
full: https://lwn.net/Articles/491639/.
Although GNOME does actively enforce its trademarks, Sandler did
not see any infringement in this case: the fish-pedicure business is
so distant from what the GNOME Project does that there was no
possibility of confusion in the mind of the public or dilution (if
you'll pardon the expression) of the mark. Furthermore, because the
copyright license on GNOME's images is an open
source license, the fish pedicure company was free to make their
modifications to the graphic and display the results. There was no
trademark violation, because there was no infringement within GNOME's
domain of activity, and there was no copyright violation, because
GNOME's materials are released under free licenses.

The point of these examples is to merely show that there is no
inherent contradiction in registering and maintaining trademarks
related to open source projects. This does not mean that a trademark
owner should do whatever they want with the marks, ignoring what other
participants in the project have to say. Trademarks are like any
other centrally-controlled non-forkable resource: if you use them in a way that
harms a significant portion of the project's community, then expect
complaints and pushback in return; if you use them in a way that
supports the goals of the project, then most participants will be glad
and will consider that use to be itself a form of contribution.

[147] In fact, that was
indeed the reason, though we do not need to go into the details here
of exactly what changes Debian made to the Firefox code that Mozilla
disagreed with strongly enough to want to dissociate their name from
the result. The entire saga is recounted in more detail at https://en.wikipedia.org/wiki/Mozilla_software_rebranded_by_Debian.
Coincidentally, I'm writing these words on a Debian GNU/Linux system,
where Iceweasel, now fortunately able to be called Firefox again, has
long been my default browser — I just used it to check
that URL.

[148] You can see examples
at https://www.gnome.org/foundation/legal-and-trademarks/.

Patents

Software patents have long been a lightning rod issue in
free software, because they pose the only real threat against which
the free software community cannot defend itself. Copyright and
trademark problems can always be gotten around. If part of your code
looks like it may infringe on someone else's copyright, you can just
rewrite that part while continuing to use the same underlying
algorithm. If it turns out someone has a trademark on your
project's name, at the very worst you can just rename the project.
Although changing names would be a temporary inconvenience, it
wouldn't matter in the long run, since the code itself would still do
what it always did.
But a patent is a blanket injunction against implementing a
certain idea. It doesn't matter who writes the code, nor even what
programming language is used. Once someone has accused a free
software project of infringing a patent, the project must either stop
implementing that particular feature, or expose the project
and its users to expensive and
time-consuming lawsuits. Since the instigators of such lawsuits are
usually corporations with deep pockets — that's who has the
resources and inclination to acquire patents in the first
place — most free software projects cannot afford either to defend
themselves nor to indemnify their users, and must capitulate
immediately even if they think it
highly likely that the patent would be unenforceable in court. To
avoid getting into such a situation in the first place, free software
projects have sometimes had to code defensively, avoiding patented
algorithms in advance even when they are the best or only available
solution to a programming problem.
Surveys and anecdotal evidence show that the vast
majority of not only open source programmers but
of all programmers think that software patents
should be abolished entirely.[149] Open source programmers tend to feel
particularly strongly about it, and may refuse to work on projects
that are too closely associated with the collection or enforcement of
software patents. If your organization collects software patents,
then make it clear, in a public and legally enforceable way, that the patents
would never be enforced when the infringement comes from open source
code, and that the patents are
only to be used as a defense in case some other party initiates an
infringement suit against your organization. This is not only the
right thing to do, it's also good open source public relations.[150]
Unfortunately, collecting patents purely for defensive purposes
is rational. The current patent system, at least in the United
States, is by its nature an arms race: if your competitors have
acquired a lot of patents, then your best defense is to acquire a lot
of patents yourself, so that if you're ever hit with a patent
infringement suit you can respond with a similar threat — then the
two parties usually sit down and work out a cross-licensing deal so
that neither of them has to pay anything, except to their patent
lawyers of course.
The harm done to free software by software patents is more
insidious than just direct threats to code development, however.
Software patents encourage an atmosphere of secrecy among firmware
designers, who justifiably worry that by publishing details of their
interfaces they will be making it easier for competitors to find ways
to slap them with patent infringement suits. This is not just a
theoretical danger; it has apparently been happening for a long time
in the video card industry, for example. Many video card
manufacturers are reluctant to release the detailed programming
specifications needed to produce high-performance open source drivers
for their cards, thus making it impossible for free operating systems
to support those cards to their full potential. Why would the
manufacturers withold these specs? It doesn't make sense for them to
work against software support; after all,
compatibility with more operating systems can only mean more card
sales. But it turns out that, behind the design room door, these
shops are all violating one another's patents, sometimes knowingly and
sometimes accidentally. The patents are so unpredictable and so
potentially broad that no card manufacturer can ever be certain it's
safe, even after doing a patent search. Thus, manufacturers dare not
publish their full interface specifications, since that would make it
much easier for competitors to figure out whether any patents are
being infringed. (Of course, the nature of this situation is such
that you will not find a written admission from a primary source that
it is going on; I learned it through a personal communication.)
Modern free software licenses generally have clauses to combat,
or at least mitigate, the dangers arising from software patents.
Usually these clauses work by automatically revoking the overall open
source license for any party who makes a patent infringement claim
based on either the work as a whole[151]
or on the claimant's contributions to the project. But
though it is useful, both legally and politically, to build patent
defenses into free software licenses in this way, in the end these
protections are not enough to dispel the chilling effect that the
threat of patent lawsuits has on free software. Only changes in the
substance or interpretation of international patent law will do
that.
Recent developments, such as the 2014 decision by the
U.S. Supreme Court against the patentability of abstract ideas, in
Alice Corp. v. CLS Bank (https://en.wikipedia.org/wiki/Alice_Corp._v._CLS_Bank_International),
have made the future of software patents unpredictable. But there is
so much money to be extracted via infringement claims, in particular
by "patent trolls" (https://en.wikipedia.org/wiki/Patent_troll) but in general by any entity with a large patent
portfolio and a lack of other revenue sources, that I am not
optimistic this fight will be over any time soon. If you want to
learn more about the problem, there are good links in
the Wikipedia article https://en.wikipedia.org/wiki/Software_patent. I've also written
some blog posts summarizing the arguments against software patents,
collected at https://www.rants.org/patent-posts/. As of this writing it's been
about ten years since the main posts there were published, but all the
reasons why software patents are a bad idea are just as true now as
they were then.
Since 2005, the Open Invention Network (https://openinventionnetwork.com/) has been providing a "patent
non-aggression community" for open source software. OIN members agree
to provide royalty-free cross-licensing for a broad set of patents
that read on widely-used open source software. Oversimplifying a bit,
joining OIN is essentially a way to say "Our company doesn't want to
enforce software patents on anyone else, at least not ones that affect
open source software, and we don't want anyone enforcing them on us
either." Membership is free and anyone may join. My company is a
member, and I encourage you to consider OIN membership for your
organization (if any) as well.

[149] See
https://groups.csail.mit.edu/mac/projects/lpf/Whatsnew/survey.html
for one such survey.

[150] For example, RedHat pledged that open source projects are
safe from its patents, see
https://www.redhat.com/en/about/patent-promise.

[151] Remember that a
patent may cover — or "read on", in patent
jargon — code that the patent
owner did not themselves write. It is thus not necessary for a party
to have contributed code to an open source project in order to claim patent
infringement by that project.

Further Resources

This chapter has only been an introduction to free software
licensing, trademark, and patent issues. Although I hope it contains
enough information to get you started on your own open source project,
any serious investigation of legal issues will quickly exhaust what
this book can provide. Here are some other resources:
	https://opensource.org/licenses
The OSI license introduction page is a
 well-maintained source of information about widely used
 open source licenses, and offers answers to frequently
 asked questions. It's a good place to start if you have a
 general idea of what open source licenses do, but now need
 more information, for example to choose a license for your
 project.

	Open (Source) for Business: A Practical
 Guide to Open Source Software Licensing by
 Heather Meeker. Published April 2015. https://www.amazon.com/Open-Source-Business-Practical-Licensing/dp/1511617772
Although organized around licensing and open source
 legal concepts, this is a general guide to open source and
 business, and the author has a lot of experience in the
 field.

	 Intellectual Property and Open Source:
 A Practical Guide to Protecting Code by Van
 Lindberg. Published by O'Reilly Media, first edition
 July 2008, ISBN: 978-0-596-51796-0
This is a full-length book on open source licensing,
 trademarks, patents, contracting, and more. It goes into
 much deeper detail than I could in this chapter.
 https://www.oreilly.com/library/view/intellectual-property-and/9780596517960/
 for details.

	Make Your Open Source Software
 GPL-Compatible. Or Else. by Dr. David
 A. Wheeler, at
 https://dwheeler.com/essays/gpl-compatible.html.
This is a detailed and well-written article on why
 it is important to use a GPL-compatible license even if
 you don't use the GPL itself. The article also touches on
 many other licensing questions, and has a high density of
 excellent links.

Appendix A. Copyright

This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License. To view a copy of
this license, visit https://creativecommons.org/licenses/by-sa/4.0/.
A summary of the license is given below, followed by the full legal
text. If you wish to distribute some or all of this work under
different terms, please contact the author, Karl Fogel
<kfogel@red-bean.com>.

You are free:

	to Share — to copy, distribute and transmit the work
	to Remix — to adapt the work

Under the following conditions:

	
 Attribution. You must attribute the work in the manner specified
 by the author or licensor (but not in any way that suggests that
 they endorse you or your use of the work).

	
 Share Alike. If you alter, transform, or build upon this work,
 you may distribute the resulting work only under the same,
 similar or a compatible license.

	
 For any reuse or distribution, you must make clear to others the
 license terms of this work. The best way to do this is with a
 link to this web page.

	
 Any of the above conditions can be waived if you get permission
 from the copyright holder.

	
 Nothing in this license impairs or restricts the author's moral
 rights.

Attribution-ShareAlike 4.0 International

Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.

 Considerations for licensors:
 Our public licenses are
 intended for use by those authorized to give the public
 permission to use material in ways otherwise restricted by
 copyright and certain other rights. Our licenses are
 irrevocable. Licensors should read and understand the terms
 and conditions of the license they choose before applying it.
 Licensors should also secure all rights necessary before
 applying our licenses so that the public can reuse the
 material as expected. Licensors should clearly mark any
 material not subject to the license. This includes other CC-
 licensed material, or material used under an exception or
 limitation to copyright. More considerations for licensors:
 https://wiki.creativecommons.org/wiki/Considerations_for_licensors_and_licensees#Considerations_for_licensors

 Considerations for the public: By using one of our public
 licenses, a licensor grants the public permission to use the
 licensed material under specified terms and conditions. If
 the licensor's permission is not necessary for any reason--for
 example, because of any applicable exception or limitation to
 copyright--then that use is not regulated by the license. Our
 licenses grant only permissions under copyright and certain
 other rights that a licensor has authority to grant. Use of
 the licensed material may still be restricted for other
 reasons, including because others have copyright or other
 rights in the material. A licensor may make special requests,
 such as asking that all changes be marked or described.
 Although not required by our licenses, you are encouraged to
 respect those requests where reasonable. More_considerations
 for the public:
 https://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensees

Creative Commons Attribution-ShareAlike 4.0 International Public
License

By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution-ShareAlike 4.0 International Public License ("Public
License"). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your
acceptance of these terms and conditions, and the Licensor grants You
such rights in consideration of benefits the Licensor receives from
making the Licensed Material available under these terms and
conditions.

Section 1 -- Definitions.

	
 Adapted Material means material subject to Copyright and Similar
 Rights that is derived from or based upon the Licensed Material
 and in which the Licensed Material is translated, altered,
 arranged, transformed, or otherwise modified in a manner requiring
 permission under the Copyright and Similar Rights held by the
 Licensor. For purposes of this Public License, where the Licensed
 Material is a musical work, performance, or sound recording,
 Adapted Material is always produced where the Licensed Material is
 synched in timed relation with a moving image.

	
 Adapter's License means the license You apply to Your Copyright
 and Similar Rights in Your contributions to Adapted Material in
 accordance with the terms and conditions of this Public License.

	
 BY-SA Compatible License means a license listed at
 creativecommons.org/compatiblelicenses, approved by Creative
 Commons as essentially the equivalent of this Public License.

	
 Copyright and Similar Rights means copyright and/or similar rights
 closely related to copyright including, without limitation,
 performance, broadcast, sound recording, and Sui Generis Database
 Rights, without regard to how the rights are labeled or
 categorized. For purposes of this Public License, the rights
 specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.

	
 Effective Technological Measures means those measures that, in the
 absence of proper authority, may not be circumvented under laws
 fulfilling obligations under Article 11 of the WIPO Copyright
 Treaty adopted on December 20, 1996, and/or similar international
 agreements.

	
 Exceptions and Limitations means fair use, fair dealing, and/or
 any other exception or limitation to Copyright and Similar Rights
 that applies to Your use of the Licensed Material.

	
 License Elements means the license attributes listed in the name
 of a Creative Commons Public License. The License Elements of this
 Public License are Attribution and ShareAlike.

	
 Licensed Material means the artistic or literary work, database,
 or other material to which the Licensor applied this Public
 License.

	
 Licensed Rights means the rights granted to You subject to the
 terms and conditions of this Public License, which are limited to
 all Copyright and Similar Rights that apply to Your use of the
 Licensed Material and that the Licensor has authority to license.

	
 Licensor means the individual(s) or entity(ies) granting rights
 under this Public License.

	
 Share means to provide material to the public by any means or
 process that requires permission under the Licensed Rights, such
 as reproduction, public display, public performance, distribution,
 dissemination, communication, or importation, and to make material
 available to the public including in ways that members of the
 public may access the material from a place and at a time
 individually chosen by them.

	
 Sui Generis Database Rights means rights other than copyright
 resulting from Directive 96/9/EC of the European Parliament and of
 the Council of 11 March 1996 on the legal protection of databases,
 as amended and/or succeeded, as well as other essentially
 equivalent rights anywhere in the world.

	
 You means the individual or entity exercising the Licensed Rights
 under this Public License. Your has a corresponding meaning.

Section 2 -- Scope.

	
 License grant.

	
 Subject to the terms and conditions of this Public License,
 the Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to
 exercise the Licensed Rights in the Licensed Material to:

	
 reproduce and Share the Licensed Material, in whole or
 in part; and

	
 produce, reproduce, and Share Adapted Material.

	
 Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public
 License does not apply, and You do not need to comply with
 its terms and conditions.

	
 Term. The term of this Public License is specified in Section
 6(a).

	
 Media and formats; technical modifications allowed. The
 Licensor authorizes You to exercise the Licensed Rights in
 all media and formats whether now known or hereafter created,
 and to make technical modifications necessary to do so. The
 Licensor waives and/or agrees not to assert any right or
 authority to forbid You from making technical modifications
 necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective
 Technological Measures. For purposes of this Public License,
 simply making modifications authorized by this Section 2(a)
 (4) never produces Adapted Material.

	
 Downstream recipients.

	
 Offer from the Licensor -- Licensed Material. Every
 recipient of the Licensed Material automatically
 receives an offer from the Licensor to exercise the
 Licensed Rights under the terms and conditions of this
 Public License.

	
 Additional offer from the Licensor -- Adapted Material.
 Every recipient of Adapted Material from You
 automatically receives an offer from the Licensor to
 exercise the Licensed Rights in the Adapted Material
 under the conditions of the Adapter's License You apply.

	
 No downstream restrictions. You may not offer or impose
 any additional or different terms or conditions on, or
 apply any Effective Technological Measures to, the
 Licensed Material if doing so restricts exercise of the
 Licensed Rights by any recipient of the Licensed
 Material.

	
 No endorsement. Nothing in this Public License constitutes or
 may be construed as permission to assert or imply that You
 are, or that Your use of the Licensed Material is, connected
 with, or sponsored, endorsed, or granted official status by,
 the Licensor or others designated to receive attribution as
 provided in Section 3(a)(1)(A)(i).

	
 Other rights.

	
 Moral rights, such as the right of integrity, are not
 licensed under this Public License, nor are publicity,
 privacy, and/or other similar personality rights; however, to
 the extent possible, the Licensor waives and/or agrees not to
 assert any such rights held by the Licensor to the limited
 extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.

	
 Patent and trademark rights are not licensed under this
 Public License.

	
 To the extent possible, the Licensor waives any right to
 collect royalties from You for the exercise of the Licensed
 Rights, whether directly or through a collecting society
 under any voluntary or waivable statutory or compulsory
 licensing scheme. In all other cases the Licensor expressly
 reserves any right to collect such royalties.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the
following conditions.

	
 Attribution.

	
 If You Share the Licensed Material (including in modified
 form), You must:

	
 retain the following if it is supplied by the Licensor
 with the Licensed Material:

	
 identification of the creator(s) of the Licensed
 Material and any others designated to receive
 attribution, in any reasonable manner requested by
 the Licensor (including by pseudonym if
 designated);

	
 a copyright notice;

	
 a notice that refers to this Public License;

	
 a notice that refers to the disclaimer of
 warranties;

	
 a URI or hyperlink to the Licensed Material to the
 extent reasonably practicable;

	
 indicate if You modified the Licensed Material and
 retain an indication of any previous modifications; and

	
 indicate the Licensed Material is licensed under this
 Public License, and include the text of, or the URI or
 hyperlink to, this Public License.

	
 You may satisfy the conditions in Section 3(a)(1) in any
 reasonable manner based on the medium, means, and context in
 which You Share the Licensed Material. For example, it may be
 reasonable to satisfy the conditions by providing a URI or
 hyperlink to a resource that includes the required
 information.

	
 If requested by the Licensor, You must remove any of the
 information required by Section 3(a)(1)(A) to the extent
 reasonably practicable.

	
 ShareAlike.

 In addition to the conditions in Section 3(a), if You Share
 Adapted Material You produce, the following conditions also apply.

	
 The Adapter's License You apply must be a Creative Commons
 license with the same License Elements, this version or
 later, or a BY-SA Compatible License.

	
 You must include the text of, or the URI or hyperlink to, the
 Adapter's License You apply. You may satisfy this condition
 in any reasonable manner based on the medium, means, and
 context in which You Share Adapted Material.

	
 You may not offer or impose any additional or different terms
 or conditions on, or apply any Effective Technological
 Measures to, Adapted Material that restrict exercise of the
 rights granted under the Adapter's License You apply.

Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:

	
 for the avoidance of doubt, Section 2(a)(1) grants You the right
 to extract, reuse, reproduce, and Share all or a substantial
 portion of the contents of the database;

	
 if You include all or a substantial portion of the database
 contents in a database in which You have Sui Generis Database
 Rights, then the database in which You have Sui Generis Database
 Rights (but not its individual contents) is Adapted Material,
 including for purposes of Section 3(b); and

	
 You must comply with the conditions in Section 3(a) if You Share
 all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

	
 UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
 EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
 AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
 ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
 IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
 WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
 PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
 ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
 KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
 ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

	
 TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
 TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
 NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
 INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
 COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
 USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
 DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
 IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

	
 The disclaimer of warranties and limitation of liability provided
 above shall be interpreted in a manner that, to the extent
 possible, most closely approximates an absolute disclaimer and
 waiver of all liability.

Section 6 -- Term and Termination.

	
 This Public License applies for the term of the Copyright and
 Similar Rights licensed here. However, if You fail to comply with
 this Public License, then Your rights under this Public License
 terminate automatically.

	
 Where Your right to use the Licensed Material has terminated under
 Section 6(a), it reinstates:

	
 automatically as of the date the violation is cured, provided
 it is cured within 30 days of Your discovery of the
 violation; or

	
 upon express reinstatement by the Licensor.

 For the avoidance of doubt, this Section 6(b) does not affect any
 right the Licensor may have to seek remedies for Your violations
 of this Public License.

	
 For the avoidance of doubt, the Licensor may also offer the
 Licensed Material under separate terms or conditions or stop
 distributing the Licensed Material at any time; however, doing so
 will not terminate this Public License.

	
 Sections 1, 5, 6, 7, and 8 survive termination of this Public
 License.

Section 7 -- Other Terms and Conditions.

	
 The Licensor shall not be bound by any additional or different
 terms or conditions communicated by You unless expressly agreed.

	
 Any arrangements, understandings, or agreements regarding the
 Licensed Material not stated herein are separate from and
 independent of the terms and conditions of this Public License.

Section 8 -- Interpretation.

	
 For the avoidance of doubt, this Public License does not, and
 shall not be interpreted to, reduce, limit, restrict, or impose
 conditions on any use of the Licensed Material that could lawfully
 be made without permission under this Public License.

	
 To the extent possible, if any provision of this Public License is
 deemed unenforceable, it shall be automatically reformed to the
 minimum extent necessary to make it enforceable. If the provision
 cannot be reformed, it shall be severed from this Public License
 without affecting the enforceability of the remaining terms and
 conditions.

	
 No term or condition of this Public License will be waived and no
 failure to comply consented to unless expressly agreed to by the
 Licensor.

	
 Nothing in this Public License constitutes or may be interpreted
 as a limitation upon, or waiver of, any privileges and immunities
 that apply to the Licensor or You, including from the legal
 processes of any jurisdiction or authority.

Creative Commons is not a party to its public
licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those instances
will be considered the “Licensor.” The text of the Creative Commons
public licenses is dedicated to the public domain under the CC0 Public
Domain Dedication. Except for the limited purpose of indicating that
material is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements,
understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the
public licenses.

 Creative Commons may be contacted at
 https://creativecommons.org/.

