Producing Open Source Software

How to Run a Success-
ful Free Software Project

2nd Edition

Karl Fogel

Producing Open Source Software: How to Run a Successful

Free Software Project: 2nd Edition

by Karl Fogel
Copyright © 2005-2023 Karl Fogel, under the CreativeCommons Attribution-ShareAlike (4.0) license.

Version: 2.3310 (24 Nov 2023)

Home site: https://producingoss.com/

https://producingoss.com/

Dedication

This book is dedicated to two dear friends without whom it would not have been possible: Karen Un-
derhill and Jim Blandy.

Table of Contents

PrE BCE .. e vii
Why Write ThiS BOOK?eeiiiii e Vii
Who Should Read ThisS BOOK?cceitiieiiiiiieeeei ettt Viii
SOUMCES ...ttt ettt ettt ettt et et et et et et e et viii
ACKNOWIEAGEIMENLS ...ttt e et et e e e e e e iX

For the first @dition (2005)ccuuuieiiiiiieeie e iX
For the second edition (2023)uuuiiiimiieieii e Xi
DISCIAIMES ...ttt XV

O [oo [§ o (oo HO PSP UPPRT 1

[TES 0] TP P TSP 4
The Rise of Proprietary Software and Free Softwareocooiiieiiiiiniciiiiiieeecin, 4
"Free" Versus "OPEN SOUICE"iiiruiiriieirie ettt eens 8

The SITUBLTION TOUGY ... eeeeeeneeeei ettt et e et e e 11

2. GEIING SEBITE ... ettt ettt e e ettt e e et ettt e e e e e eaa e een 13
Starting From What YOU HaVEcooiiiiiii et 15

ChooSe @ GO0 NEITIEuuieiiiii ettt et e et e e eeae e eees 16
Have a Clear MiSSion SEaeMENTcoeeveneiiiiieieei e 17
State That the ProjeCt IS Free ... oo 18
Features and ReqUIreMENES LIStcoeuvniiiiii e 18
DEVEIOPMENT SEAEUSvvu ettt ettt ettt e et e e e e e eeeenas 19
DOWNIOBAS ...ttt ettt e e et e e et e e e e e e eee 20
Version Control and Bug Tracker ACCESSociiiuiiieeiiiiiieeeeie e 21
Communications ChaNNELSoiiiiiiii e e 22
DevelOper GUITEIINESvuiiiiii e ettt e e e e e eees 23
DOCUMENEALION ...ttt ettt ettt ettt e e et e e et e e e e e e eeaans 23
Demos, Screenshots, Videos, and Example OULPULooeuiviiiiiiiiiieiiiieeiiieecies 26
HOSHING -ttt et 27

Choosing a License and APPIYING Tuoiiiiiiei e 28
The "D0o ANYthing" LICENSESiiiiii ettt 28
TRE GPL .ttt a e 29
How to Apply aLicense to YOUr SOftWarecccuuuveiiiiiiieeiiiie e 29

SEING The TONE ..e ettt e e e eeaas 30
AVOId Private DiSCUSSIONSuuiieitieieiii ettt e ettt e e e e eaa e eenees 31
Nip RUDENESS IN the BUocuuiiiiiii e 32
Practice Conspicuous COOE REVIEWccouvuiiiiiiiieeiiii et 34
Be Open From Day ONEcoouiiiiiiiiei et 36

Opening a Formerly CloSed PrOJECEiiiiruiieiiii ettt 38

F N 010 To 18 0 o1 o T PSPPI 40

3. TechniCal INFrastiUCIUIE it e e e e eneens 43
What @ ProjeCt NEEUSciiiii i e e 44
B SO e e 45

CaNNEA HOSLING ...ttt 46

Message FOrums / Mailing LiStSoeveuuuiiiiiiiieeii e 50
Choosing the Right Forum Management SOftWarecccuuiviveiiiiieeiiiiiieeceiieees 51

Producing Open Source Software

VEISION CONLION ..ttt et e et e e e et s e e e et s e e e et s e eeeaennaeeees 60
Version Control VOCADUIANYcouuniiiiiiiii e 61
Choosing a Version Control SYStEMoviuiiiiiieiiii e e e e eaes 65
Using the Version Control SyStemMco.uiiiiiiiiii e e e 65
Receiving and Reviewing ContribUtionSccooiiiiiiiiii e 70

2T o I = ot (= PN 72
Interaction With EMailuuiiiiiiiiii e e 75
Pre-Filtering the BUg TraCkerco.uiiiiiiiiii e 75

REAI-TIME Chal SYSIEIMS ..uuciii e e e e e e et e et e e e e e eaans 76
Chat ROOMS @nd GrOWENiiiiiiii e 77
Nick-Flagging and NOtifiCalioNSooviiiiiiiiiie e 77
(010 | 2o £ PP 79

AT CE= PP 79
WIKIS @NA SPAIM ... e e e e e e e e e e e aaaas 80
ChOOSING @ WIKI ..eiiiiii e e 80

Translation INFIaSITUCIUNEeeieie e e e e e e e 81

SoCial NEIWOIKING SEIVICES ...vuniiiiiciii e e e e e e e e e aanas 82

4. Social and Political INfrastrUCIUIEiiiiiii i 84

7= o 1 P 84

27 T Vo 1= gL BT = o] = PP 85
Who Can Be a Good Benevolent DIiCtalOr?c.uuveveruinieriiiineeeeiiineeeeiineeeeiinnes 85

ConSENSUS-DASEd DEMOCTACYcvvvueerneeeiieei e e et e et e et e e e e e et e e et e e et eeaneeateesanaasenaes 86
Version Control Means You Can REIaXvvviviiiiiiiiiiieeciee e 87
When Consensus Cannot Be Reached, VOtecoovvviiiiiiiiiiiiiiii e, 88
WHREN TO VOO ..ttt e e et e e e e e eaees 89
WO VOES? ...t e e e e et e e et e e e aaanns 90
POIS VEISUS VOLES ...ttt e e e e et e e e e eaa s 91
V4= (0= PP PPTPPRPR 92

WIHEING TT AL DOWN ..ot e e e e e e e st e e et e e aaneees 92

Joining or Creating a Non-Profit Organizationccovvviiiieiiiieiii e 94

5. Organizations and Money: Businesses, Non-Profits, and Governmentsc.coceevevvineeinnnnnns 96

The ECOnOmICS Of OPEN SOUICEuivuieiiiieii e e e e e e e e e e e e e e e e e e et e e aan e ean s 96

Goals of Corporate INVOIVEMENTuuiiiiiiciiie e e e e e aaas 98

Governments and OPEN SOUICEcvuueiiieiie et e et e e e e e e e e e st e e e e e e e e et e e e eeannas 100
Being Open Source From Day One is Especially Important for Government Projects .. 102

Hire for the LONG T ... e e e e e e e e e 102
(0= S IR {010 | P 103

Appear aS Many, NOL @S ONEc.iiiiiiiiiii e 103

Be Open About YOUr MOEIVALIONSciveiiiiiieii e ee e e e e e e e e e e e e e e eees 104

Money Can't BUy YOU LOVEouiiiiiiiiiii e 105

Lo 1011 = ot 1] oo P 107
Hiring From Within the CommUNItYcccooiiiiiiiiiii e, 107
Hiring From Outside The COMMUNILYovoiiiieiiiieiiii e e e 108
Contracting and TraNSPAIENCYevvureiiieeriieeeie e e e e e e e e e e e e et eeaa e eaaeeanns 108
Review and Acceptance of Changesovviiiiiiiiiiiii e 109
Update Your RFI, RFP and Contract LangUageccuuvevviiieiiiieiiiieciineeeieeaines 110
Open Source Quality Assurance (OSQA) ...ovvniiiiieiii e e 111

Producing Open Source Software

DON't SUIPriSE YOUN LAWYENS .. cevuiiiiiieiie e e e e e e e e e e e e e e e et e e e aees 113
Funding NOon-Programming ACHVITIESccuuiiii e e e e 114
Technical Quality Assurance (i.e., Professional Testing)ccooevvvvviiiieeiiiieiinnennnn. 114
Legal Advice and ProteClionuiiiiieiii e e e e e e e e e 116
Documentation and UsSabilityc..oeiiiiiiiiiiiii e 116
Providing Build Farms and Development SErVErScccvevieeiiiicviie e, 117
RUNNING SECUNtY AUAITS .. covuiiiiii e e e 117
Sponsoring Conferences, Hackathons, and other Developer Meetings 118
Y= G 11T P 118
Open Source and Freedom from Vendor LOCK-INccooeiiiiiiiiiieiiiccin e, 118
Remember That You Are Being Watchedccooeiiiiiiii i, 119

Don't Bash Competing Vendors Effortsccoooviiiiiiiiii e 121
"Commercial"” VS "PropriEtary”iiii e 121
Open Source and the OrganiZationcc.uiiiiiieiiie e e e e e eaes 122
Dispel Myths Within Your Organizationccocuuiieiiiieiiineciii e eeea e 122
Foster Pools of Expertisein Multiple PlaceScc.veviiiiiiii i, 125
Don't Let Publicity Events Drive Project Schedulecooooviiiiiiiiiiiiieee 126

The Key Role of Middle Managementcc.veieiiiiiiiieii e e e e e 127

T aT0T= oS o TH ot oo RPN 128
Hiring Open SOUrCE DEVEIOPELS ... cvvucii e ettt e e e e e e e e aaaas 129
Hiring fOr INFIUBNCE .. .oove e 130
Evaluating Open SOUrCE PrOJECESc.uuiiii i e e e e e e e 131
Crowdfunding and BOUNLIEScuuiiiiiiiiiie e e e e e e e e e e e e een 133
6. COMMUNICALIONS ...eevt ettt e et e e e et e et et e e e et e e eate e e e eat e e e eean e eeeatn e eeennns 135
WIHEEN CUIUE ...t e et e e et e e et e e e e et s 135
YOU Are WHat YOU WIITE ... e e e e 136
Structure and FOrMattingoviiniiiiii e e e e e 136
L0111 1 | PP 138
10 LTS PTPPP 139
RECOGNIZING RUAENESS ... ittt e e e e e e e e eaes 140

B ettt aaaa 141
Avoiding Common PItfallScouuiiiiiiii e 143
Don't Post WithOUt @ PUMPOSEuuiiiiciiicci e e e e 143
Productive vs Unproductive Threadscooevieiiiiiiiiincee e 144

The Smaller the Topic, the Longer the Debateccoveviiviiiiiiiiii e, 146
AVOIA HOIY WIS ... i e e e e 147

The "Noisy Minority" Effect ..o 148
Don't Bash Competing Open Source ProductScoocvvieiiiieiiiieciii e eceeeeieeens 149

) o0 = o] = 150
Handling DiffiCult PEOPIEiiiii e 150

(0= S IR {010 | P 151

[P2 aTo [T 0 1V 1 P 153
ConsPicUOUS USE Of ATChIVESuiiiiiiciii e e 154
Codifying Traditionc.ueiiiiiiii e 157
Choose the RIght FOTUMoou e e e 159
Cross-Link BEtWEEN FOMUMSciiiiiieeeiiii e et e e et e et e et e e et e e eenenneeaees 160
PUBTICITY ettt 161

Producing Open Source Software

Announcing Releases and Other Mg or EVENEScccvveviiieiiiiiiii e, 161
Announcing Security VUINerabilitieSoooiiiiiiii i, 162

7. Packaging, Releasing, and Daily Developmentcoooiviiiiiiiin e, 170
REEESE NUMDEIING ...veiiiii e e e e e e e e aa s 171
Release NUmMbEr COMPONENESiiiiiiii e e e e e e e e e e e e e eeen 172
SEMANLIC VEISIONING ..ovvuiiieiiii e e e e e e e e e e e e e e e et e e e e e e eaenas 173

B R S = 170 o o IS 1 - 1= o | 175
REIEASE BranCheS ... v 175
Mechanics of REI€aSE BranChescoveuviiiiiiiiieiii e 176
StabiliZING A REIEASEun i 177
Dictatorship by REI€aSE OWNEToiviiiiiicie e 178
VOtiNG ON ChanQESu i e e e e e e e e e et e e e ees 179

0 =011 P 182
FOMMEBL ... e e et r e e e e aa 182
NPT g T 0o = 1Yo T | 182
Compilation and INStallationccouiiiiiiiiii e 184
BiNary PaCkagesccuuiiiiiiiiiie e 185
Testing and REIEASINGccuuiiiiicie e e e 186
Candidale REIGESESccivviieiieie e 187
ANNOUNCING REIGBSESciicii e e 188
Maintaining Multiple REIEASE LINEScccuuiiiiiiciii e e 188
SECUNLY REIBASES . .ovui it e e et e e e e eaes 189
Releases and Daily DevEIOPMENTuiiiii e 189
Planning REIEASESciiuiiiii et e e e aen 191

8. Managing PartiCiPantscuuuiii e e 193
Community and MOIVALONc.uiiiiiiiiiie e e e e e e aens 194
D= 1= =[] o PN 194
Praise @nd CritiCISMiieei e e et e et e e e eae s 196
Prevent Territorialityo.eeiiiii e e 197

The AULOMELION RELOuiiiiiiii e et e e e et eeeaae e eees 200
Treat Every User as a Potential Participantc.ooveviii i 202
Meeting In Person: Conferences, Hackfests, Code-a-Thons, Code Sprints, Retreats 204
Share Management Tasks as Well as Technical TaskSccooevviieiiiiiiiiiieiiecceee e, 205
"Manager" Does NOt Mean "OWNEr™ 205
THANSITIONS L.ttt ettt e et e e et e ettt e e e e e et e e e eetnn e e e et e e e eatn e e eeatn e aaee 211
(0000010 111 = 3 UPPRTSPPP 213
ComMItters VS MaiNtAINEIScevvunieeeiiie et e et e e e et e e eaa s 214
ChooSING COMIMITEENS ...uuiiiii e e e e e e e e eaeas 214
REVOKING COMIMIT ACCESS ... ivviiiii i eeie e e e e e e e e e e e e e e e e e ean s 215
Partial COMMIT ACCESS ...ovvvuiieieiii ettt et e et e et e e et eeaera s 215
DOrmant COMMITEEISovevueieeeiii ettt e e e e e e et e e et e e e eran e 216

F N o o Y Y (= Y 217
(O3 PP 217
TS vttt ettt e e e e e e e et e e et e e et e aaaes 219
"Development Forks' versus "Hard FOrkS"c.coiviiiiiiiiiiiiieccie e 219
Figuring Out Whether You're the FOrKccociviiiiiiiiii e 220

[F= a0 [T 0T = T o 221

Producing Open Source Software

TR F= g To = U o4 222
9. Lega Matters: Licenses, Copyrights, Trademarks and Patentscccoevvvvieiiiiiiiin e, 224
1= 0.1 7] oo | P 224
Y 1= o il o) 0= =P 228
The GPL and License Compatibilityooiiiiiiiiiii e 229
(01910701 T o I W T 01 = T 230
The GNU General PUDIIC LICENSEvvuiiiiiiiiiiiii e 231
(01011118 (o QN0 | (= 0 1= o £ P 234
DoIiNG NOthING ...vuiiiic e e e e e e aen 234
Contributor LiCensSe AQrEEMENESciuueiiiieeii e eee e e e e e e e e e e eaaaeeaes 235
Proprietary REICENSING .. .cuuiiiieiiiei e e e e e e e e e e e e e e e e e et e e et e e eaneeeens 236
Problems with Proprietary REICENSINGcooviiiiiiiiiiiciiee e 237
TrAOEMANKS ... e e e e e e 238
Case study: Mozilla Firefox, the Debian Project, and lceweaselc.ocevneennnn. 238
Case study: The GNOME Logo and the Fish Pedicure Shopcccoevvviiiiineinnns 239
2 1= | TP 240
FUPNEr RESOUICES ...ttt ettt e et e e et e e et n e e et e e e e et s 242
N O o)/ o | 243
Attribution-ShareAlike 4.0 INternationalcoveeiiiiiieeiiii e 243
Using Creative Commons PUblic LICENSESoevvviiiiiiicii e 243
Creative Commons Attribution-ShareAlike 4.0 International Public License 244

vi

Preface
Why Write This Book?

At parties, people no longer give me ablank stare when | tell them | work in open source software.
"Oh, yes— like Linux?" they say. | nod eagerly in agreement. "Y es, exactly! That'swhat | do." It's
nice not to be completely fringe anymore. In the past, the next question was usually fairly predictable:
"How do you make money doing that?' To answer, I'd summarize the economics of free software: that
there are organizations in whose interest it is to have certain software exist, but that they don't need to
sell copies, they just want to make sure the software is available and maintained, as atool instead of as
arentable monopoly.

The next question is not always about money, though. The business case for open source software!
isno longer so mysterious, and even non-programmers already understand — or at least are not sur-
prised — that there are people employed at it full time. Instead, the next question is often "Oh, what's
that like?"

| didn't have a satisfactory answer ready, and the harder | tried to come up with one, the more | real-
ized how complex atopic it redly is. Running a free software project is not exactly like running a busi-
ness (imagine having to constantly negotiate the nature of your product with a group of random peo-
ple of diverse motivations and interests, most of whom you've never met!). Nor, for various reasons, is
it exactly like running atraditional non-profit organization, nor a government. It has similaritiesto all
these things, but | have slowly come to the conclusion that free software is sui generis. There are many
things with which it can be usefully compared, but none with which it can be equated. Indeed, even the
assumption that free software projects can be "run” is a stretch. A free software project can be started,
and it can be influenced by interested parties. But its assets cannot be made the property of any single
owner, and as long as there are people somewhere — anywhere — interested in continuing it, it can
never be unilaterally shut down. Everyone hasinfinite power; everyone has no power. It's an interest-
ing situation.

That iswhy | wanted to write this book in the first place, and, a decade later, wanted to update it. Free
software projects have evolved a distinct culture, an ethos in which the liberty to make the software
do anything one wantsis a central tenet. Y et the result of thisliberty is not a scattering of individuals
each going their own separate way with the code, but enthusiastic collaboration and frequent compro-
mise. Indeed, competence at cooperation itself is one of the most highly valued skillsin free software.
To manage these projectsis to engage in akind of hypertrophied cooperation, where one's ability not
only to work with others but to come up with new ways of working together can result in tangible ben-
efits to the software and the community that developsit. This book attempts to describe the techniques
by which this may be done. It is by no means complete, but it is at least a beginning.

Good free software isaworthy goal initself, and | hope that readers who come looking for ways to
achieve it will be satisfied with what they find here. But beyond that | also hope to convey something
of the sheer pleasure to be had from working with a motivated team of open source devel opers, and

The terms "open source software" and "free software" are essentially synonymous in this context; they are discussed morein the
section called “"Free" Versus "Open Source"” [8].

Vi

Preface

from interacting with users in the wonderfully direct way that open source encourages. Participating in
asuccessful free software project is a deep pleasure, and ultimately that's what keeps the whole system

going.

Who Should Read This Book?

This book is meant for managers and software developers who are considering starting an open source
project, or who have started one and are wondering what to do now. It should also be helpful for peo-
ple who just want to participate in an open source project but have never done so before.

The reader need not be a programmer, but should know basic software engineering concepts such as
APIs, source code, compilers, and patches.

Prior experience with open source software, as either a user or a developer, is hot necessary. Those
who have worked in free software projects before will probably find at |east some parts of the book
abit obvious, and may want to skip those sections. Because there's such a potentially wide range of
audience experience, I've made an effort to label sections clearly, and to say when something can be
skipped by those already familiar with the material.

sources

Much of the raw material for the first edition of this book came from five years of working with the
Subversion project (http://subversion.apache.org/). Subversion is an open source version control sys-
tem, written from scratch, which was intended to (and did for awhile) replace CV S as the de facto ver-
sion control system of choice in the open source community.2 The project was started by my employ-
er, CollabNet (http://www.collab.net/), in early 2000, and thank goodness CollabNet understood right
from the start how to run it asatruly collaborative, distributed effort. We got alot of developer buy-in
early on; today the majority of developers on the project are not CollabNet employees.

Subversion isin many ways a classic example of an open source project, and | ended up drawing on

it more heavily than | originally expected. Thiswas partly a matter of convenience: whenever | need-
ed an example of a particular phenomenon, | could usually call one up from Subversion right off the
top of my head. But it was also a matter of verification. Although | am involved in many other free
software projects to varying degrees, and talk to colleaguesinvolved in many more, one quickly real-
izes when writing for print that all assertions need to be fact-checked. | didn't want to make statements
about eventsin other projects based only on what | could read in their public discussion archives. If
someone were to try that with Subversion, | knew, she'd be right about half the time and wrong the oth-
er half. So when drawing inspiration or examples from a project with which | didn't have direct experi-
ence, | tried to first talk to an informant there, someone | could trust to explain what was really going
on.

While Subversion was my full time job from 2000-2006, I've been involved in free software for more
than twenty-five years. Other projects and organizations that have influenced this book include:

2Subversion was eventually supplanted by Git, one of several systems that implement "distributed version control”, a style of work-
ing that is better suited to collaborative development than Subversion's centralized model.

viii

http://subversion.apache.org/
http://www.collab.net/

Preface

The GNU Emacs text editor project at the Free Software Foundation.

Concurrent Versions System (CV'S), which | worked on intensely in 1994-1995 with Jim Blandy
and was involved with intermittently for afew years afterwards.

The collection of open source projects known as the Apache Software Foundation, especially the
Apache Portable Runtime (APR) and Apache HTTP Server.

The Launchpad.net project at Canonical, Ltd.

Code for Americaand O'Reilly Media, which gave me an inside view on open source civic technol-
ogy development starting in 2010, and kindly kept me in the loop after | became a full-time consul-
tant at Open Tech Strategies, LLC around 2012.

The many open source anti-surveillance and censorship-circumvention tools supported by the Open
Internet Tools Project (Openl TP.org) and by the Open Technology Institute at the New America
Foundation.

Checkbook NY C, the municipal financial transparency software released by the New Y ork City Of-
fice of the Comptroller.

The Arches Project, an open source geospatial web application for inventorying and helping protect
cultural heritage sites (e.g., historic buildings, archaeological sites, etc), created by the Getty Con-
servation Institute and World Monuments Fund.

OpenOffice.org / LibreOffice.org, the Berkeley Database from Sleepycat, and MySQL Database; |
have not been involved with these projects personally, but have observed them and, in some cases,
talked to people there.

Likewise various projects at the Mozilla Corporation, including but not limited to the Firefox web
browser.

GNU Debugger (GDB) (likewise).
The Debian Project (likewise).

The Hypothes.is Project (likewise).

Thisisfar from acomplete list. Many of the client projects | work with through our consulting practice
at Open Tech Strategies, LLC have also influenced this book, and like most open source programmers,
| keep loose tabs on a variety of different projects of interest to me, just to have a sense of the genera
state of things. | haven't named all of them here, but they are mentioned in the text where appropriate.

Acknowledgements
For the first edition (2005)

This book took four times longer to write than | thought it would, and for much of that time felt rather
like a grand piano suspended above my head wherever | went. Without help from many people, |
would not have been able to complete it while staying sane.

Preface

Andy Oram, my editor at O'Reilly, was awriter's dream. Aside from knowing the field intimately (he
suggested many of the topics), he has the rare gift of knowing what one meant to say and helping one
find the right way to say it. It has been an honor to work with him. Thanks also to Chuck Toporek for
steering this proposal to Andy right away.

Brian Fitzpatrick reviewed almost all of the material as| wrote it, which not only made the book
better, but kept me writing when | wanted to be anywhere in the world but in front of the computer.
Ben Collins-Sussman and Mike Pilato also checked up on progress, and were always happy to dis-
cuss — sometimes at length — whatever topic | was trying to cover that week. They a so noticed when
| slowed down, and gently nagged when necessary. Thanks, guys.

Biella Coleman was writing her dissertation at the same time | was writing this book. She knows what
it meansto sit down and write every day, and provided an inspiring example as well as a sympathetic
ear. She also has a fascinating anthropol ogist's-eye view of the free software movement, giving both
ideas and references that | was able use in the book. Alex Golub — another anthropologist with one
foot in the free software world, and also finishing his dissertation at the same time — was exceptional -
ly supportive early on, which helped a great deal.

Micah Anderson somehow never seemed too oppressed by his own writing gig, which was inspiring
in asick, envy-generating sort of way, but he was ever ready with friendship, conversation, and (on at
least one occasion) technical support. Thanks, Micah!

Jon Trowbridge and Sander Striker gave both encouragement and concrete help — their broad experi-
ence in free software provided material | couldn't have gotten any other way.

Thanks to Greg Stein not only for friendship and well-timed encouragement, but for showing the Sub-
version project how important regular code review isin building a programming community. Thanks

also to Brian Behlendorf, who tactfully drummed into our heads the importance of having discussions
publicly; I hope that principle is reflected throughout this book.

Thanks to Benjamin "Mako" Hill and Seth Schoen, for various conversations about free software and
its politics; to Zack Urlocker and L ouis Suarez-Potts for taking time out of their busy schedulesto be
interviewed; to Shane on the Slashcode list for allowing his post to be quoted; and to Haggen So for
his enormously helpful comparison of canned hosting sites.

Thanks to Alla Dekhtyar, Polina, and Sonyafor their unflagging and patient encouragement. I'm very
glad that | will no longer have to end (or rather, try unsuccessfully to end) our evenings early to go
home and work on "The Book."

Thanks to Jack Repenning for friendship, conversation, and a stubborn refusal to ever accept an easy
wrong analysis when a harder right one is available. | hope that some of hislong experience with both
software development and the software industry rubbed off on this book.

CollabNet was exceptionally generous in allowing me a flexible schedule to write, and didn't complain
when it went on far longer than originally planned. | don't know all the intricacies of how management
arrives at such decisions, but | suspect Sandhya Klute, and later Mahesh Murthy, had something to do
with it — my thanks to them both.

The entire Subversion development team has been an inspiration for the past five years, and much of
what isin thisbook | learned from working with them. | won't thank them all by name here, because

Preface

there are too many, but | implore any reader who runs into a Subversion committer to immediately buy
that committer the drink of their choice — | certainly plan to.

Many times | ranted to Rachel Scollon about the state of the book; she was alwayswilling to lis-
ten, and somehow managed to make the problems seem smaller than before we talked. That helped a
lot — thanks.

Thanks (again) to Noel Taylor, who must surely have wondered why | wanted to write another book
given how much | complained the last time, but whose friendship and leadership of Golosa helped
keep music and good fellowship in my life even in the busiest times. Thanks also to Matthew Dean and
Dorothea Samtleben, friends and long-suffering musical partners, who were very understanding as my
excuses for not practicing piled up. Megan Jennings was constantly supportive, and genuinely interest-
ed in the topic even though it was unfamiliar to her — a great tonic for an insecure writer. Thanks, pal!

I had four knowledgeable and diligent reviewers for this book: Y oav Shapira, Andrew Stellman, Da-
vanum Srinivas, and Ben Hyde. If | had been able to incorporate all of their excellent suggestions, this
would be a better book. Asit was, time constraints forced me to pick and choose, but the improve-
ments were still significant. Any errors that remain are entirely my own.

My parents, Frances and Henry, were wonderfully supportive as always, and as this book is less tech-
nical than the previous one, | hope they'll find it somewhat more readable.

Finally, I would like to thank the dedicatees, Karen Underhill and Jim Blandy. Karen's friendship and
understanding have meant everything to me, not only during the writing of this book but for the last
seven years. | simply would not have finished without her help. Likewise for Jim, atrue friend and a
hacker's hacker, who first taught me about free software, much as a bird might teach an airplane about

flying.
For the second edition (2023)

The acknowledgements for the second edition of this book include more people and, undoubtedly,
more unintentional omissions. If your name should be here but is not, please accept my apologies (and
let me know, because we can at least fix the online copy).

Andy Oram of O'Reilly Media once again went above and beyond the call of duty as an editor. He read
closely and made many excellent recommendations; his expertise both in expository writing in general
and in open source in particular were apparent in al his comments. | can't thank him enough, and the
book is much improved for his attention.

James Vasile has been my friend and colleague for well over a decade now, yet not aweek goesin
which | don't learn something new from him. Despite having a busy job — | know firsthand, because
we're business partners — and young children at home, he unhesitatingly volunteered to read through
the manuscript and provide feedback. Money can't buy that, and even if it could, | could never afford
James. Thanks, pal.

CeciliaDonnelly is both awonderful friend and was a supremely capable Open Source Specialist at the
Open Tech Strategies office in Chicago. It's adelight to be working with her, as our clients know too,
and her clear thinking and sharp observations have influenced many parts of this book.

Xi

Preface

Karen Sandler has been unfailingly supportive, and provided thoughtful and patient discussion about
many of the topics (and even some of the specific examples) in this book. Aswith James, | usually
learn something from Karen when we talk about free software, and when we talk about other things
too.

Bradley Kuhn's name appears several timesin the commit logs for this book, because he provided
highly expert feedback on multiple occasions, in one case practically writing the patch himself. As|
wrote in the log message for one of the commits, he is someone "whose contributions to free software
have been immeasurable and whose dedication to our shared cause is a constant inspiration”.

Karen and Bradley both work at the Software Freedom Conservancy (https://sfconservancy.org/). If
you like this book and you want to help free software, donating to the Conservancy is afinefirst step.
It's also afine second step.

Ben Reser provided a super-detailed and expert review of Chapters 6 and 7 that resulted in many im-
provements. Ben, thank you so much.

Michael Bernstein not only provided some detailed feedback during the interregnum between the first
and second editions, he also helped a lot with organizing the Kickstarter campaign that made the latter
possible. Thank you, Michael.

Danese Cooper always keeps me on my toes, and in particular brought me the message (which | was
not at first willing to hear) that innersourcing can work as a means of helping organizations learn open
source practices and eventually produce open source software themselves. Thanks for that, Danese,
and much else.

Between the two editions, | spent avery educationa stretch of time working at O'Reilly Media, Code
for America/ Civic Commons (while ensconced in the Open Plans office in New Y ork City, thanks to
their very kind offer of desk space), and the New America Foundation as Open Internet Tools Project
Fellow. Much of what | learned through that work ended up in the book, and in addition to the organi-
zations themselves | thank Tim O'Reilly, Jen Pahlka, Andrew McLaughlin, Philip Ashlock, Abhi Ne-
mani, Nick Grossman, Chris Holmes, Frank Hebbert, and Andrew Hoppin for the ideas and perspec-
tives they shared.

Sumana Harihareswara and L eonard Richardson have given frank and helpful commentary about vari-
0US open source goings-on over the years; the book is better for their input, and | am the better for their
friendship.

Eben Moglen at the Software Freedom Law Center (https://softwarefreedom.org/) taught me alot
about how to look at free software as a large-scale social and economic phenomenon, and about how
companies view free software. He also provided a private working space on a few occasions when it
really made a difference. Thank you, Eben.

| do not understand how Dr. David A. Wheeler makes time to answer my occasional questions when
heisin demand from so many other people as well, but he does, and his answers are always spot-on
and authoritative. Thanks as always, David.

Breena Xi€'sinterest in open source led swiftly to trenchant questions about it. Those questions were
helpful to me in thinking through certain topics in the book, but so was her patience on those occa

Xii

https://sfconservancy.org/
https://softwarefreedom.org/

Preface

sions when the book demanded more time than it should have (by which | mean "than | said it would").
Thank you, Breena.

Many thanks to Radhir Kothuri and the rest of the HacklIlinois 2017 crew, who provided a very timely
motivational boost when they proposed doing a print run of the new edition for their event at the Uni-
versity of Illinois at Urbana-Champaign, Illinoisin February 2017. | appreciate the vote of confidence
in the book, and hope the Hacklllinois attendees will be pleased with the results.

Camille Bégnis of http://neodoc.biz/ provided expert DocBook help in real time one day, solving a
long-standing technical problem in the online version of the book that 1'd been unable to fix for years.
Merci beaucoup, Camille.

My friend Jason A. Owen also provided timely and wonderfully thorough help with some DocBook

formatting issues and with the build process, and is the reason it is now possible to generate PDFs of
this book suitable for printing on different page sizes. Independently of that, Jason has been a valued
collaborator on many open source projects, and raises standards wherever he's involved. Thank you,

Jason.

Near the end of the preparation of the second edition, | realized that the text badly needed a complete
read-through, for typos of the sort that can't easily be caught by automated means, and for various ex-
pressiveinfeicities that | knew had crept in but couldn't detect myself. Corin Duey undertook this task
with good cheer and magnificent attention to detail, and the book is noticeably improved as a result.
Corin, thank you so much.

The hardest part of these acknowledgementsis realizing there will never be enough space to do justice
to al the knowledge people have shared in the decade and a half since the first edition came out. I've
been working in open source the whole time since then, and have had illuminating conversations with
many clients, partners, interviewees, expert consultants, and fellow travelers, some of them have occa-
sionaly sent in concrete improvements to the book, too. | can't imagine what this new edition would be
without the benefit of that collective mind, and will try to list some of those people below. I'm sure the
list isincomplete, and | apologize for that. For what it's worth, | used a program to randomize the or-
der, and accepted its first output:

Nithya Ruff, Jenn Brandel, Joseph Lorenzo Hall, Ben Wyss, Kit Plummer, Mark Atwood, Vivien De-
parday, Sebastian Benthall, Martin Michlmayr, Derek Eder, Hyrum Wright, Stefano Zacchiroli, Dan
Risacher, Stephen Walli, Simon Phipps, Francis Ghesquiere, Sanjay Patil, Tony Sebro, Matt Doar,
Deb Nicholson, Jon Phillips, David Robinson, Nathan Toone, Alolita Sharma, Jim McGowan, Flori-
an Effenberger, Brian Warner, Cathy Deng, Allison Randal, Ariel NUfiez, Jeremy Allison, Thorsten
Behrens, Deb Bryant, Zaheda Bhorat, Holly St. Clair, Jeff Ubois, Dustin Mitchell, Dan Schultz, Luis
Villa, Jon Scott, Dave Neary, Mike Milinkovich, Wolf Peuker, Paul Holland, Keith Casey, Christ-

ian Spanring, Bishwa Pandey, Scott Goodwin, Vivek Vaidya, David Eaves, Ed Sokolowski, Chris
Aniszczyk, David Hemphill, Emma Jane Hogbin Westby, Ben Sheldon, Guy Martin, Michael Downey,
Charles-H. Schulz, Vitorio Miliano, Paul Biondich, Richard Fontana, Philip Olson, Leslie Hawthorn,
Harlan Y u, Gerard Braad, Daniel Shahaf, Matthew Turk, Mike Hostetler, Waldo Jaquith, Jeffrey John-
son, Eitan Adler, Mike Linksvayer, Smiljana Antonijevic, Brian Aker, Ben Balter, Conan Reis, Dave
Crossland, Nicole Boone, Brandon Keepers, Leigh Honeywell, Tom "spot" Callaway, Andy Dearing,
Scott Clark, Tina Coleman, William A Rowe Jr., Matthew McCullough, Stuart Gill, Robert Soden,
Chris Tucker, Noel Hidalgo, Mark Galassi, Chris DiBona, Gerhard Poul, Christopher Whitaker, James

Xiii

http://neodoc.biz/

Preface

Tauber, Justin Kestelyn, Nadia Eghbal, Mel Chua, Tony Wasserman, Robert Douglass, Simone Dal-
masso, John O'Nolan, Tom Marble, Patrick Masson, Arfon Smith, Forest Gregg, and Molly de Blanc.

The 2nd edition rewrite was funded through a Kickstarter campaign. The response to that campaign
was swift and generous, and I'm immensely grateful to all the people who pledged. | hope they will
forgive me for taking almost four times longer than expected to finish the revisions. Every backer of
the campaign is acknowledged below, using the name they provided via Kickstarter. Thelistisin ei-
ther ascending or descending order by pledge size, but I'm not going to say which, because alittle mys-
tery should be retained in these matters:

Pablo, Cameron Colby Thomson, Bethany Sumner, Michael Lefevre, Maxim Novak, Adrian Smith,
Jonathan Corwin, Laurie Voss, James Williams, Chris Knadler, Zael, Kieran Mathieson, Teresa
Gonczy, Poramate Minsiri, j. faceless user, Michael, Isaac Davis aka Hedron A. Davis, James Dear-
ing, Kyle Simpson, Laura Dragan, Hilary Mason, Tom Smith, Michael Massie, Erin Marchak, Micke
Nordin, Xavier Antoviaque, Michael Dudley, Raisa, Paul Booker, Jack Moffitt, Aaron Shaw, mau-
rine stenwick, lvan Habunek, G. Carter Stokum, Barry Solow, mooware, Harish Pillay, Jim Ran-

dall, Holger S., Alan Joseph Williams, Erik Michaels-Ober, David Parker, Nick, Niko Felger, Fred
Trotter, Dorai Thodla, William Theaker, Hans Bakker, Brad, Bastien Guerry, Miles Fidelman, Grant
Landram, Michael Rogers, mostsignificantbit, Olivier Berger, Fernando Masanori Ashikaga, Nao-

mi Goldenson, Brian Fitzpatrick, Eric Burns, Mark V. Albert, micah altman, Richard Valencia, Cody
Bartlett Heisinger, Nick Grossman, cgoldberg, Mike Linksvayer, Simon Phipps, Y oshinari Takaoka,
Christian Spanring, Ross M Karchner, Martin Karlsson, Kaia Dekker, N6irin Plunkett, Emma Jane,
Helior Colorado, Fred Benenson, George V. Reilly, Lydia Pintscher, Noel Hidalgo, Albert White,
Keng Susumpow, Mattias Wingstedt, Chris Cornutt, Zak Greant, Jessy Kate Schingler, James Duncan
Davidson, Chris DiBona, Daniel Latorre, Jeremiah Lee Cohick, Jannis Leidel, Chris Streeter, Leonard
Richardson, Terry Suitor, Trevor Bramble, Bertrand Delacretaz, John Sykora, Bill Kendrick, Em-
manuel Seyman, Paolo Mottadelli, Gabriel Burt, Adrian Warman, Steve Lee, Andrew Nacin, Chris
Ballance, Ben Karel, Lance Pollard, richardj, Brian Land, Jonathan Markow, Kat Walsh, Jason Oren-
dorff, Jim Garrison, Jared Smith, Sander van der Waal, Karen Sandler, Matt Lee, John Morton, Frank
Warmerdam, Michaedl R. Bernstein, John Y uda, Jack Repenning, Jonathan Sick, Naser Sharifi, Cor-
nelius Schumacher, Y ao-Ting Wu, Camille Acey, Greg Grossmeier, Zooko Wilcox-O'Hearn, Joe,
Anne Gentle, Mark Jaquith, Ted Gould, James Schumann, Falkvinge, Schuyler Erle, Gordon Fyodor
Lyon, Tony Meyer, Salvador Torres, Dustin J. Mitchell, Lindy Klein, Dave Stanton, Floyd DCosta,
Agog Labs, Adria Mercader, KIMURA Wataru, Paul Cooper, alexML, Stefan Heinz, maiki, Bjornw,
Matt Soar, Mick Thompson, mfks, Sebastian Bergmann, Michael Haggerty, Stefan Eggers, Veroni-
caVergara, Bradley Kuhn, Justin Tallant, dietrich ayala, Nat Torkington, David Jeanmonod, Randy
Metcalfe, Daniel Kahn Gillmor, George Chamales, Erik Mdller, Tim Schumacher, Koichi Kimura,
Vanessa Hurst, Daniel Shahaf, Stefan Sperling, Gunnar Hellekson, Denver Gingerich, [liana Weller,
adam820, Garance Drosehn, Philip Olson, Matt Doar, Brian Jepson, J Aaron Farr, Mike Nosal, Kevin
Hall, Eric Sinclair, Alex Rudnick, Jim Brucker, PEI-HAN LEE, Michael Novak, Anthony Ferrara,
Dan Scott, Russell Nelson, Frank Wiles, Alex Gaynor, Julian Krause, termie, Jodl McGrady, Christ-
ian Fletcher Smith, Mel Chua, William Goff, Tom Liesenfeld, Roland Tanglao, Ross Gardler, Gervase
Markham, Ingo Renner, Rochelle Lodder, Charles Adler, Dave Hylands, Daryn Nakhuda, Francois
Marier, Kendric Evans, Greg Price, Carlos Martin Nieto, Greg Stein, Glen Ivey, Jason Ray, Ben Uboais,
Landon Jones, Jason Sperber, Brian Ford, Todd Nienkerk, Keith Casey, Leigh Honeywell, Aaron
Jorbin, Christoph Hochstrasser, Miguel Ponce de Leon, Dave Neary, Eric Lawrence, Dirk Haun, Brian
Burg, Brandon Kraft, Praveen Sinha, ML Cohen, Christie Koehler, Ethan Jucovy, Lawrence S Kemp,

Xiv

Preface

Justin Sheehy, Jonathan Polirer, Ronan Barzic, Greg Dunlap, Darcy Casselman, Jeremy G Kahn, Sam
Moffatt, James Vasile, Simon Fondrie-Teitler, Mario Peshev, Alison Foxall, Jim Blandy, Brandon Sa-
trom, Viktor Ekmark, Tor Helmer, Jeff Ubois, Gabriela Rodriguez, James Tait, Michael Parker, Sta-
cy Uden, Peter Martin, Amy Stephen, James Tauber, Cameron Goodale, Jessica, Ben Sheldon, For-
est Gregg, Ken McAuliffe, Marta Rybczynska, Sean Taylor, John Genego, Meeuw, Mark MacL ennan,
Kennis Koldewyn, Igor Gali#, Henrik Dahlstrom, Jorren Schauwaert, Masahiro Takagi, Ben Collins-
Sussman, Decklin Foster, Etienne Savard, Fabio Kon, Ole-Morten Duesund, Michael Downey, Jacob
Kaplan-Moss, Nicola Jordan, lan Sullivan, Roger W Turner, Justin Erenkrantz, |saac Christoffersen,
Deborah Bryant, Christopher Manning, Luis Villa, Judicaél Courant, Leslie Hawthorn, Mark R. Hin-
kle, Danese Cooper, Michagl Tiemann, Robert M. Lefkowitz, Todd Larsen, T Foote, Ben Reser, Dave
Camp, Scott Berkun, Garrett Rooney, Dinyar Rabady, Damien Wyart, Seth Schoen, Rob Brackett,
Aisha, Winnie Fung, Donald A. Lobo, Dan Robles, Django Software Foundation, Mark Atwood, Krux
Digital, Stephen Walli, Dave Crossland, Tina, and Thorsten Behrens.

Thank you all.

Disclaimer

The thoughts and opinions expressed in this book are my own. They do not necessarily represent the
views of clients, past employers, partners, or the open source projects discussed herein. Any errors that
remain despite the efforts of the people mentioned in the acknowledgements are my own as well.

XV

Chapter 1. Introduction

Free software — open source software' — has become the backbone of modern information technol-
ogy. It runs on your phone, on your laptop and desktop computers, and in embedded microcontrollers
for household appliances, automobiles, industrial machinery and countless other devices that we too
often forget even have software. Open source is especialy prevalent on the servers that provide online
services on the Internet. Every time you send an email, visit aweb site, or call up someinformation on
your smartphone, a significant portion of the activity is handled by open source software.

Yetitisalsolargely invisible, even to many of the people who work in technology. Open source's na-
tureisto fade into the background and go unnoticed? except by those whose work touchesiit directly.
It is the oxygen of computing. We all breathe, but few of us stop to think about where the air comes
from.

If you've read this far, though, you're aready one of the people who wonders where the oxygen comes
from, and probably want to create some yourself.

This book will examine not only how to do open source right, but how to do it wrong, so you can rec-
ognize and correct problems early. My hope isthat after reading it, you will have arepertory of tech-
niques not just for avoiding common pitfalls, but for dealing with the growth and maintenance of a
successful project. Successis not a zero-sum game, and this book is not about winning or getting ahead
of the competition. Indeed, an important part of running an open source project is working smoothly
with other, related projects. In the long run, every successful project contributes to the well-being of
the overall, worldwide body of free software.

It would be tempting to say that when free software projectsfail, they do so for the same sorts of rea-
sons proprietary software projects do. Certainly, free software has no monopoly on unrealistic require-
ments, vague specifications, poor staff management, ignoring user feedback, or any of the other hob-
goblins already well known to the software industry. There is a huge body of writing on these topics,
and | will try not to duplicate it in this book. Instead, | will attempt to describe the problems peculiar
to free software. When a free software project runs aground, it is often because the participants did not
appreciate the unique problems of open source software development, even though they might be quite
well-prepared for the familiar difficulties that afflict software development generally.

One of the most common mistakes is unrealistic expectations about the benefits of open source itself.
An open license does not guarantee that hordes of active devel opers will suddenly devote their time to
your project, nor does open-sourcing atroubled project automatically cureitsills. In fact, quite the op-
posite: opening up a project can add whole new sets of complexities, and cost more in the short term
than simply keeping it in-house.®

1The terms are synonymous, as mentioned in the Preface [vii]. See the section called “"Free" Versus "Open Source"” [8] for

more.

2see "Spot The Pattern: Commoditization”, by James Vasile, at https://blog.opentechstrategi es.com/2019/10/commoditization/

3In 2018 my partner James Vasile and | worked with the Mozilla Corporation on some research that eventually became the report
Open Source Archetypes: A Framework For Purposeful Open Source (https://opentechstrategies.com/archetypes). That research and
resultant report have been very helpful to us (and, so we hear, to others) in thinking about the strategic use of open source to achieve
larger organizational purposes. If you think that might be useful to you, then take alook at the report. Since this book is not about
those kinds of strategy questions per se, | don't discuss the archetypes much here. However, they may be useful to you, in conjunc-

https://blog.opentechstrategies.com/2019/10/commoditization/
https://opentechstrategies.com/archetypes

Introduction

Opening up means arranging the code to be comprehensible to complete strangers, writing develop-
ment documentation, and setting discussion forums and other collaboration tools (thisis discussed in
more detail in Chapter 3, Technical Infrastructure [43]).

All of thisiswork, and is pure overhead at first. If any interested developers do show up, thereisthe
added burden of answering their questions for awhile before seeing any benefit from their presence.
As developer Jamie Zawinski said about the troubled early days of the Mozilla project:

Open source does work, but it is most definitely not a panacea. If there's a caution-
ary tale here, it isthat you can't take a dying project, sprinkle it with the magic pix-
ie dust of "open source," and have everything magically work out. Software is hard.
The issues aren't that simple.

(from https:.//www.jwz.or g/gruntle/nomo.html)

A related mistake isthat of skimping on presentation and packaging, figuring that these can aways be
done later, when the project iswell under way. Presentation and packaging comprise a wide range of
tasks, all revolving around the theme of clearing away distractions and cognitive barriers for newcom-
ers — reducing the amount of work they need to do to get from wherever they are to "the next step”

of engagement. The web site has to look good, the software's compilation, packaging, and installation
should be as automated as possible, etc.

Many programmers unfortunately treat this kind of work as being of secondary importance to the code
itself. There are a couple of reasons for this. First, it can feel like busywork, because its benefits are
most visible to those least familiar with the project — and vice versa: after all, the people who devel-
op the code don't really need the packaging. They already know how to install, administer, and use
the software, because they wrote it. Second, the skills required to do presentation and packaging well
are often completely different from those required to write code. People tend to focus on what they're
good at, even if it might serve the project better to spend alittle time on something that suits them less.
Chapter 2, Getting Started [13] discusses presentation and packaging in detail, and explains why

it's crucial that they be a priority from the very start of the project.

Next comes the fallacy that little or no project management is required in open source, or conversely,
that the same management practices used for in-house devel opment will work equally well on an open
source project.

Management in an open source project isn't always very visible, but in the successful projectsit's usu-
ally happening behind the scenesin some form or another. A small thought experiment suffices to
show why. An open source project consists of arandom collection of programmers — aready a noto-
riously independent-minded species— who have most likely never met each other, and who may each
have different personal goalsin working on the project. The thought experiment is simply to imagine
what would happen to such a group without management. Barring miracles, it would collapse or drift
apart very quickly. Things won't smply run themselves, much as we might wish otherwise. But the
management, though it may be quite active, is often informal and subtle. The only thing keeping an
open source development group together is their shared belief that they can do morein concert than in-
dividually. Thusthe goal of management is mostly to ensure that they continue to believe this, by set-

tion with this book, if the questions you're trying to answer are not only about how to run a successful open source project but about
why to do so in thefirst place.

https://www.jwz.org/gruntle/nomo.html

Introduction

ting standards for communications, by making sure useful developers don't get marginalized due to
personal idiosyncrasies, and in general by making the project a place devel opers want to keep coming
back to. Specific techniques for doing this are discussed throughout the rest of this book.

Finally, there is a general category of problems that may be called "failures of cultural navigation."
Twenty years ago, even ten, it would have been premature to talk about a global culture of free soft-
ware, but not anymore. A recognizable culture has slowly emerged, and while it is certainly not mono-
lithic— it is at least as prone to internal dissent and factionalism as any geographically bound cul-
ture — it does have a basically consistent core. Most successful open source projects exhibit some or
all of the characteristics of this core. They reward certain types of behaviors and punish others; they
create an atmosphere that encourages unplanned participation, sometimes at the expense of central
coordination; they have concepts of rudeness and politeness that can differ substantially from those
prevalent elsewhere. Most importantly, longtime participants have generally internalized these stan-
dards, so that they share a rough consensus about expected conduct. Unsuccessful projects usually de-
viate in significant ways from this core, albeit unintentionally, and often do not have a consensus about
what constitutes reasonable default behavior. This means that when problems arise, the situation can
quickly deteriorate, as the participants lack an already established stock of cultural reflexesto fall back
on for resolving differences.

That last category, failures of cultural navigation, includes an interesting phenomenon: certain types

of organizations are structurally less compatible with open source development than others. One of the
great surprises for me in preparing the second edition of this book was realizing that, on the whole, ex-
perience indicates that governments are less suited to participating in free software projects than for-
profit corporations are, with non-profits somewhere in between the two. There are many reasons for
this (see the section called “ Governments and Open Source” [100]), and the problems are certain-

ly surmountable, but it's worth noting that when an existing organization — particularly a hierarchical
one, and particularly a hierarchical, risk-averse, and publicity-sensitive one — starts or joins an open
source project, the organization will usually have to make some adjustments.

The extra effort required to run a project as open source instead of closed is not great, but the effort is
most noticeable right at the beginning. What's less noticeable at the beginning are the benefits, which
are considerable and which become clearer as the project progresses. There is the deep personal satis-
faction it gives devel opers, of course: the pleasure of doing one's work in the open, able to appreciate
and be appreciated by one's peers. It is nho accident that many open source developers continue to stay
active on the same projects — as part of their job — even after changing employers. But there are al-
so significant organizational benefits: the open source projects your organization participatesin are a
membrane through which your managers and devel opers are regularly exposed to people and ideas out-
side your organizational hierarchy. It's like having the benefits of attending a conference, but while still
getting daily work done and without incurring travel expen:aes.4 In a successful open source project,
these benefits, once they start arriving, greatly outweigh the costs.

This book isapractical guide, not an anthropological study or a history. However, aworking knowl-
edge of the origins of today's free software culture is an essential foundation for any practical advice.
A person who understands the culture can travel far and wide in the open source world, encountering
many local variations in custom and dialect, yet still be able to participate comfortably and effectively

40f course, it's till agood ideafor them to attend real conferences once in awhile too; see the section called “Meeting In Person:
Conferences, Hackfests, Code-a-Thons, Code Sprints, Retreats’ [204].

Introduction

everywhere. In contrast, a person who does not understand the culture will find the process of organiz-
ing or participating in a project difficult and full of surprises. Since the number of people developing
free software continues to grow, there are many people in that latter category — thisislargely acul-
ture of recent immigrants, and will continue to be so for some time. If you think you might be one of
them, the next section provides background for discussions you'll encounter later, both in this book and
on the Internet. (On the other hand, if you've been working with open source for awhile, you may al-
ready know alot of its history, so fed freeto skip the next section.)

History

Software sharing has been around as long as software itself. In the early days of computers, manufac-
turers felt that competitive advantages were to be had mainly in hardware innovation, and therefore
didn't pay much attention to software as a business asset. Many of the customers for these early ma-
chines were scientists or technicians, who were able to modify and extend the software shipped with
the machine themselves. Customers sometimes distributed their patches back not only to the manufac-
turer, but to other owners of similar machines. The manufacturers often tolerated and even encouraged
this: in their eyes, improvements to the software, from whatever source, just made the hardware more
attractive to other potential customers.

Although this early period resembled today's free software culture in many ways, it differed in two cru-
cial respects. First, there was as yet little standardization of hardware — it was atime of flourishing in-
novation in computer design, but the diversity of computing architectures meant that everything was
incompatible with everything else. Software written for one machine would generally not work on an-
other; programmers tended to acquire expertise in a particular architecture or family of architectures
(whereas today they would be more likely to acquire expertise in a programming language or family of
languages, confident that their expertise will be transferable to whatever computing hardware they hap-
pen to find themselves working with). Because a person's expertise tended to be specific to one kind of
computer, their accumulation of expertise had the effect of making that particular architecture comput-
er more attractive to them and their colleagues. It was therefore in the manufacturer's interests for ma-
chine-specific code and knowledge to spread as widely as possible.

Second, there was no widespread Internet. Though there were fewer legal restrictions on sharing than
there are today, the technical restrictions were greater: the means of getting data from place to place
were inconvenient and cumbersome, relatively speaking. There were some small, local networks, good
for sharing information among employees at the same [ab or company. But there remained barriersto
overcome if one wanted to share with the world. These barriers were overcome in many cases. Some-
times different groups made contact with each other independently, sending disks or tapes through land
mail, and sometimes the manufacturers themselves served as central clearing houses for patches. It al-
s0 helped that many of the early computer devel opers worked at universities, where publishing one's
knowledge was expected. But the physical realities of data transmission meant there was always an im-
pedance to sharing, an impedance proportional to the distance (real or organizational) that the software
had to travel. Widespread, frictionless sharing, as we know it today, was not possible.

The Rise of Proprietary Software and Free Software

Astheindustry matured, several interrelated changes occurred simultaneously. The wild diversity of
hardware designs gradually gave way to afew clear winners — winners through superior technology,

Introduction

superior marketing, or some combination of the two. At the same time, and not entirely coincidental-
ly, the development of so-called "high level" programming languages meant that one could write a pro-
gram once, in one language, and have it automatically translated ("compiled") to run on different kinds
of computers. The implications of thiswere not lost on the hardware manufacturers: a customer could
now undertake a major software engineering effort without necessarily locking themselves into one
particular computer architecture. When this was combined with the gradual narrowing of performance
differences between various computers, as the less efficient designs were weeded out, a manufactur-

er that treated its hardware as its only asset could |ook forward to a future of declining profit margins.
Raw computing power was becoming a fungible good, while software was becoming the differentiator.
Selling software, or at least treating it as an integral part of hardware sales, began to look like a good

strategy.

This meant that manufacturers had to start enforcing the copyrights on their code more strictly. If users
simply continued to share and modify code freely among themselves, they might independently reim-
plement some of the improvements now being sold as "added value" by the supplier. Worse, shared
code could get into the hands of competitors. Theirony isthat all this was happening around the time
the Internet was getting off the ground. So just when truly unobstructed software sharing was finally
becoming technically possible, changes in the computer business made it economically undesirable, at
least from the point of view of any single company. The suppliers clamped down, either denying users
access to the code that ran their machines, or insisting on non-disclosure agreements that made effec-
tive sharing impossible.

Conscious Resistance

Astheworld of unrestricted code swapping slowly faded away, a counterreaction crystallized in the
mind of at least one programmer. Richard Stallman worked in the Artificial Intelligence Lab at the
Massachusetts I nstitute of Technology in the 1970s and early '80s, during what turned out to be a gold-
en age and a golden location for code sharing. The Al Lab had a strong "hacker ethic",> and people
were not only encouraged but expected to share whatever improvements they made to the system. As
Stallman wrote later:

We did not call our software "free software", because that term did not yet exist; but
that iswhat it was. Whenever people from another university or a company wanted
to port and use a program, we gladly let them. If you saw someone using an unfa-
miliar and interesting program, you could always ask to see the source code, so that
you could read it, change it, or cannibalize parts of it to make a new program.

(from https://www.gnu.or g/gnu/thegnupr oj ect.html)

This Edenic community collapsed around Stallman shortly after 1980, when the changes that had been
happening in the rest of the industry finally caught up with the Al Lab. A startup company hired away
many of the Lab's programmers to work on an operating system similar to what they had been working
on at the Lab, only now under an exclusive license. At the same time, the Al Lab acquired new equip-
ment that came with a proprietary operating system.

Stallman saw the larger pattern in what was happening:

Sstallman uses the word "hacker" in the sense of "someone who loves to program and enjoys being clever about it," not the some-
what newer meaning of "someone who breaks into computers.”

https://www.gnu.org/gnu/thegnuproject.html

Introduction

The modern computers of the era, such as the VAX or the 68020, had their own oper-
ating systems, but none of them wer e free software: you had to sign a nondisclosure
agreement even to get an executable copy.

This meant that the first step in using a computer was to promise not to help your
neighbor. A cooperating community was forbidden. The rule made by the owners of
proprietary software was, "If you share with your neighbor, you are a pirate. If you
want any changes, beg us to make them."

By some quirk of personality, he decided to resist the trend. Instead of continuing to work at the now-
decimated Al Lab, or taking ajob writing code at one of the new companies, where the results of his
work would be kept locked in abox, he resigned from the Lab and started the GNU Project and the
Free Software Foundation (FSF). The goal of GN U® was to devel op acompletely free and open com-
puter operating system and body of application software, in which users would never be prevented
from hacking or from sharing their modifications. He was, in essence, setting out to recreate what had
been destroyed at the Al Lab, but on aworld-wide scale and without the vulnerabilities that had made
the Al Lab's culture susceptible to disintegration.

In addition to working on the new operating system, Stallman devised a copyright license whose terms
guaranteed that his code would be perpetually free. The GNU General Public License (GPL) isaclever
piece of legal judo: it says that the code may be copied and modified without restriction, and that both
copies and derivative works (i.e., modified versions) must, if they are distributed at all, be distributed
under the same license as the original, with no additional restrictions.

In effect, the GPL uses copyright law to achieve an effect opposite to that of traditional copyright: in-
stead of limiting the software's distribution, it prevents anyone, even the author, from limiting distrib-
ution. For Stallman, this was better than simply putting his code into the public domain. If it werein
the public domain, any particular copy of it could be incorporated into a proprietary program (as also
sometimes happens to code under non-reciprocal ! open source copyright licenses). While such incor-
poration wouldn't in any way diminish the origina code's continued availability, it would have meant
that Stallman's efforts could benefit the enemy — proprietary software. The GPL can be thought of as
aform of protectionism for free software, because it prevents non-free software from taking full advan-
tage of GPLed code. The GPL and its relationship to other free software licenses are discussed in detail
in Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks and Patents [224].

With the help of many programmers, some of whom shared Stallman's ideology and some of whom
simply wanted to see alot of free code available, the GNU Project began releasing free replacements
for many of the most critical components of an operating system. Because of the now-widespread stan-
dardization in computer hardware and software, it was possible to use the GNU replacements on oth-
erwise non-free systems, and many people did. The GNU text editor (Emacs) and C compiler (GCC)
were particularly successful, gaining large and loyal followings not on ideological grounds, but simply
on their technical merits. By about 1990, GNU had produced most of a free operating system, except
for the kernel — the part that the machine actually boots up and is responsible for managing memory,
disk, and other system resources.

61t stands for "GNU's Not Unix", and the "GNU" in that expansion stands for an infinitely long footnote.
"See the section called “Terminology” [224] for more about "non-reciprocal” licensing versus GPL-style "reciprocal or "copy-
left" licensing. The opensource.org FAQ is also a good resource on this — see https://opensource.org/fagtcopyl eft.

https://opensource.org/faq#copyleft

Introduction

Unfortunately, the GNU project had chosen akernel design that turned out to be harder to implement
than expected. The ensuing delay prevented the Free Software Foundation from making the first re-
lease of an entirely free operating system. The final piece was put into place instead by Linus Torvalds,
a Finnish computer science student who, with the help of developers around the world, had complet-
ed afree kernel using amore conservative design. He named it Linux, and when it was combined with
the existing GNU programs and other free software (especially the X Windows System), the result was
acompletely free operating system. For the first time, you could boot up your computer and do work
without using any proprietary software.®

Much of the software on this new operating system was not produced by the GNU project. In fact,
GNU wasn't even the only group working on producing a free operating system (for example, the code
that eventually became NetBSD and FreeBSD was already under development by thistime). The im-
portance of the Free Software Foundation was not only in the code they wrote, but in their political
rhetoric. By talking about free software as a cause instead of a convenience, they made it difficult for
programmers not to have a political consciousness about it. Even those who disagreed with the FSF
had to engage the issue, if only to stake out a different position. The FSF's effectiveness as propagan-
distslay in tying their code to a message, by means of the GPL and other texts. Astheir code spread
widely, that message spread as well.

Accidental Resistance

There were many other things going on in the nascent free software scene, however, and not all were
as explicitly ideological as Stallman's GNU Project. One of the most important was the Berkeley Soft-
ware Distribution (BSD), agradua re-implementation of the Unix operating system — which up un-
til the late 1970's had been aloosely proprietary research project at AT& T — by programmers at the
University of Californiaat Berkeley. The BSD group did not make any overt political statements about
the need for programmers to band together and share with one another, but they practiced the idea with
flair and enthusiasm, by coordinating a massive distributed devel opment effort in which the Unix com-
mand-line utilities and code libraries, and eventually the operating system kernel itself, were rewritten
from scratch mostly by volunteers. The BSD project became an early example of non-ideological free
software development, and also served as atraining ground for many developers who would go on to
remain active in the open source world.

Another crucible of cooperative development was the X Window System, a free, network-transparent
graphical computing environment, developed at MIT in the mid-1980's in partnership with hardware
vendors who had a common interest in being able to offer their customers awindowing system. Far
from opposing proprietary software, the X license deliberately allowed proprietary extensions on top
of the free core — each member of the consortium wanted the chance to enhance the default X distrib-
ution, and thereby gain a competitive advantage over the other members. X Windows® itself was free
software, but mainly as away to level the playing field between competing business interests and to in-
crease standardization, not out of some desire to end the dominance of proprietary software.

Y et another example, predating the GNU project by afew years, was TeX, Donald Knuth's free, pub-
lishing-quality typesetting system. He released it under terms that allowed anyone to modify and dis-

8Technically, Linux was not the first. A free operating system for |BM-compatible computers, called 386BSD, had come out short-
ly before Linux. However, it was alot harder to get 386BSD up and running. Linux made such a splash not only because it was free,
but because it actually had a high chance of successfully booting your computer after you installed it.

SThey prefer it to be called the "X Window System", but in practice, people usualy call it "X Windows".

Introduction

tribute the code, but not to call the result "TeX" unless it passed a very strict set of compatibility tests
(thisis an example of the "trademark-protecting” class of free licenses, discussed more in Chapter 9,
Legal Matters: Licenses, Copyrights, Trademarks and Patents [224]). Knuth wasn't taking a stand
one way or the other on the question of free-versus-proprietary software; he just needed a better type-
setting system in order to complete his real goal — a book on computer programming — and saw no
reason not to release his system to the world when done.

Without listing every project and every license, it's safe to say that by the late 1980's, there was alot
of free software available under awide variety of licenses. The diversity of licenses reflected a cor-
responding diversity of motivations. Even some of the programmers who chose the GNU GPL were
much less ideologically driven than the GNU project itself was. Although they enjoyed working on
free software, many developers did not consider proprietary software a socia evil. There were people
who felt amoral impulse to rid the world of "software hoarding” (Stallman's term for non-free soft-
ware), but others were motivated more by technical excitement, or by the pleasure of working with
like-minded collaborators, or even by a simple human desire for glory. Y et by and large these disparate
motivations did not interact in destructive ways. This may be because software, unlike other creative
forms like prose or the visual arts, must pass semi-objective tests in order to be considered successful:
it must run, and be reasonably free of bugs. This givesal participantsin a project akind of automat-
ic common ground, areason and a framework for working together without worrying too much about
qualifications or motivations beyond the technical.

Developers had another reason to stick together as well: it turned out that the free software world was
producing some very high-quality code. In some cases, it was demonstrably technically superior to the
nearest non-free alternative; in others, it was at least comparable, and of course it always cost less to
acquire — and you didn't have to worry about the manufacturer going out of business. While only a
few people might have been motivated to run free software on strictly philosophical grounds, a great
many people were happy to run it because it did a better job. And of those who used it, some percent-
age were always willing to donate their time and skills to help maintain and improve the software.

This tendency to produce good code was certainly not universal, but it was happening with increasing
frequency in free software projects around the world. Businesses that depended heavily on software
gradually began to take notice. Many of them discovered that they were already using free software
in day-to-day operations, and simply hadn't known it (upper management isn't ways aware of every-
thing the developers and the IT department do). Corporations began to take a more active and public
role in free software projects, contributing time and equipment, and sometimes even directly funding
the development of free programs. Such investments could, in the best scenarios, repay themselves
many times over. The sponsor only pays a small number of expert programmers to devote themselves
to the project full time, but reaps the benefits of everyone's contributions, including work from pro-
grammers being paid by other corporations and from volunteers who have their own disparate motiva
tions.

"Free" Versus "Open Source"

As the corporate world gave more and more attention to free software, programmers were faced with
new issues of public presentation. One was the word "free" itself. On first hearing the term "free soft-
ware" many people mistakenly think it means just "zero-cost software.”" It's true that all free software

Introduction

is zero-cost,'® but not all zero-cost software is free asin "freedom” — that is, the freedom to share and
modify for any purpose. For example, during the battle of the browsers in the 1990s, both Netscape
and Microsoft gave away their competing web browsers at no charge, in a scramble to gain market
share. Neither browser was free in the "free software" sense. Y ou couldn't get the source code, and
even if you could, you didn't have the right to modify or redistribute it.! The only thing you could do
was download an executable and run it. The browsers were no more free than shrink-wrapped software
bought in a store; they merely had alower price.

This confusion over the word "free" is due entirely to an unfortunate ambiguity in the English lan-
guage. Most other tongues distinguish low prices from liberty (the distinction between gratis and li-
breisimmediately clear to speakers of Romance languages, for example). But English's position as the
de facto bridge language of the Internet means that a problem with English is, to some degree, a prob-
lem for everyone. The misunderstanding around the word "free" was so prevalent that free software
programmers eventually evolved a standard formulain response: "It's free as in freedom — think free
speech, not free beer.” Still, having to explain it over and over istiring. Many programmers felt, with
some justification, that the ambiguous word "free" was hampering the public's understanding of this
software.

But the problem went deeper than that. The word "free" carried with it an inescapable moral conno-
tation: if freedom was an end in itself, it didn't matter whether free software also happened to be bet-
ter, or more profitable for certain businesses in certain circumstances. Those were merely pleasant side
effects of amotive that was, at its root, neither technical nor mercantile, but moral. Furthermore, the
"free asin freedom" position forced a glaring inconsistency on corporations who wanted to support
particular free software in some areas of their business but continue marketing proprietary software in
others.

These dilemmas came to a community that was already poised for an identity crisis. The programmers
who actually write free software have never been of one mind about the overall god, if any, of the free
software movement. Even saying that opinions run from one extreme to the other would be misleading,
in that it would falsely imply alinear range where there isinstead a multidimensional scattering. How-
ever, two broad categories of belief can be distinguished, if we are willing to ignore subtleties for the
moment. One group takes Stallman's view, that the freedom to share and modify is the most important
thing, and that therefore if you stop talking about freedom, you've left out the core issue. Others feel
that the software's quality itself is the most important argument in its favor, and are uncomfortable with
proclaiming proprietary software inherently bad. Some, but not all, free software programmers believe
that the author (or employer, in the case of paid work) should have the right to control the terms of dis-
tribution, and that no moral judgement need be attached to the choice of particular terms. Others don't
believe this.

For along time, these differences did not need to be carefully examined or articulated, but free soft-

ware's burgeoning success in the business world made the issue unavoidable. In 1998, the term open-
source was coined by Christine Peterson as an alternative to "free", during meetings of a coalition
that eventually became the Open Source Initiative (OSI).12 The OSl's position was not only that "free

©one may charge afee for giving out copies of free software, but since one cannot stop the recipients from offering it at no charge
afterwards, the priceis effectively driven to zero immediately.

11The source code to Netscape Navigator was eventually released under an open source license, in 1998, and became the foundation
for the Mozilla Firefox web browser. See https://www.mozilla.org/.

1203I's web home is https://www.opensource.org.

https://www.mozilla.org/
https://www.opensource.org/

Introduction

software" was potentially confusing, but that the word "free" was just one symptom of a general prob-
lem: that the movement needed a marketing program to pitch it to the corporate world, and that talk of
morals and the socia benefits of sharing would never fly in corporate boardrooms. In their own words
at thetime:

The Open Source Initiative is a marketing program for free software. It's a pitch for
"free software” on solid pragmatic grounds rather than ideological tub-thumping.
The winning substance has not changed, the losing attitude and symbolism have. ...

The case that needs to be made to most techies isn't about the concept of open
source, but the name. Why not call it, as we traditionally have, free software?

One direct reason is that the term "free software" is easily misunderstood in ways
that lead to conflict. ...

But the real reason for the re-labeling is a marketing one. We're trying to pitch our
concept to the corporate world now. We have a winning product, but our position-
ing, in the past, has been awful. The term "free software" has been misunderstood
by business persons, who mistake the desire to share with anti-commercialism, or
worse, theft.

Mainstream corporate CEOs and CTOs will never buy "free software.” But if we
take the very same tradition, the same people, and the same free-software licenses
and change the label to "open source" —that, they'll buy.

Some hackers find this hard to believe, but that's because they're techies who think
in concrete, substantial terms and don't under stand how important image is when
you're selling something.

In marketing, appearanceis reality. The appearance that we're willing to climb
down off the barricades and work with the corporate world counts for as much as
the reality of our behavior, our convictions, and our software.

(from https://www.opensource.org/. Or rather, formerly from that site — the OSI
has apparently taken down the pages since then, although they can still be seen at
https://web.archive.org/web/20021204155057/http://www.opensource.org/advo-
cacy/fag.php and https://web.archive.org/web/20021204155022/http://www.open-
source.org/advocacy/case for_hackers.php#marketing [sic].)

Thetips of many icebergs of controversy arevisiblein that text. It refersto "our convictions"', but
smartly avoids spelling out exactly what those convictions are. For some, it might be the conviction
that code developed according to an open process will be better code; for others, it might be the con-
viction that all information should be shared. There's the use of the word "theft" to refer (presumably)
toillegal copying — a usage that many object to, on the grounds that it's not theft if the original pos-
sessor still has the item afterwards. There's the tantalizing hint that the free software movement might
be mistakenly accused of anti-commercialism, but the question of whether such an accusation would
have any basisin fact isleft carefully unexamined.

None of which isto say that the OSl's rhetoric is inconsistent or misleading. It wasn't. Rather, it was
an example of exactly what the OSI claimed had been missing from the free software movement: good

10

https://www.opensource.org/
https://web.archive.org/web/20021204155057/http://www.opensource.org/advocacy/faq.php
https://web.archive.org/web/20021204155057/http://www.opensource.org/advocacy/faq.php
https://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing
https://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing

Introduction

marketing, where "good" means "viable in the business world." The Open Source Initiative gave alot
of people exactly what they had been looking for — avocabulary for talking about free software as a
development methodology and business strategy, instead of as amoral crusade.

The appearance of the Open Source I nitiative changed the landscape of free software. It formalized
adichotomy that had long been unnamed, and in doing so forced the movement to acknowledge that

it had internal politics as well as external. The effect today isthat both sides have had to find com-
mon ground, since most projects include programmers from both camps, as well as participants who
don't fit any clear category. This doesn't mean people never talk about moral motivations — lapsesin
the traditional "hacker ethic" are sometimes called out, for example. But it is rare for a free software /
open source devel oper to openly question the basic motivations of othersin a project. The contribution
trumps the contributor. If someone writes good code, you don't ask them whether they do it for moral
reasons, or because their employer paid them to, or because they're building up their résumé, or what-
ever. Y ou evaluate the contribution on technical grounds, and respond on technical grounds. Even ex-
plicitly political organizations like the Debian project, whose goal is to offer a 100% free (that is, "free
asin freedom") computing environment, are fairly relaxed about integrating with third-party non-free
code and cooperating with programmers who don't share exactly the same goal s 13

The Situation Today

When running a free software project, you won't need to talk about such weighty philosophical matters
on adaily basis. Programmers will not insist that everyone else in the project agree with their views

on all things (those who do insist on this quickly find themselves unable to work in any project). But
you do need to be aware that the question of "free" versus "open source" exists, partly to avoid saying
things that might be inimical to some of the participants, and partly because understanding devel opers
motivationsis key to managing a project well.

Free software is a culture by choice. To operate successfully in it, you have to understand why peo-
ple chooseto beinitin thefirst place. Coercive techniques don't work. If people are unhappy in one
project, they will just wander off to another one. Free software is remarkable even among intentional
communities for its lightness of investment. Many of the people involved have never actually met the
other participants face-to-face. The normal conduits by which humans bond with each other and form
lasting groups are narrowed down to atiny channel: the written word, carried over electronic wires.
Because of this, it can take along time for a cohesive and dedicated group to form. Conversely, it's
quite easy for a project to lose a potential participant in the first five minutes of acquaintanceship. If a
project doesn't make a good first impression, a newcomer may wait along time before giving it a sec-
ond chance.

This potential transience of relationships is perhaps the single most daunting task facing a new project.
What will persuade all these people to stick together long enough to produce something useful? The
answer to that question is complex enough to occupy the rest of this book, but if it had to be expressed
in one sentence, it would bethis:

People should feel that their connection to a project, and influence over it, is directly
proportional to their contributions.

135ee al'so the section called “ Terminology” [224], which discusses how "free software” and "open source” are almost entirely
synonymous when used to describe licensing and distribution terms.

11

Introduction

No class of developers, or potential developers, should ever feel discounted or discriminated against
for non-technical reasons.** Clearly, projects with corporate sponsorship and/or salaried developers
need to be especially careful in thisregard, as Chapter 5, Organizations and Money: Businesses, Non-
Profits, and Governments [96] discussesin detail. Of course, this doesn't mean that if there's no
corporate sponsorship then you have nothing to worry about. Money is merely one of many factors that
can affect the success of a project. There are also questions of what programming languages to choose,
what license, what devel opment process, precisely what kind of infrastructure to set up, how to pub-
licize the project's inception effectively, and much more. Starting a project out on the right foot is the
topic of the next chapter.

4There can be cases where you discriminate against certain devel opers due to behavior which, though not related to their technical
contributions, has the potential to harm the project. That's reasonable: their behavior is relevant because in the long run it will have a
negative effect on the project. The varieties of human culture being what they are, | can give no single, succinct rule to cover all such
cases, except to say that you should try to be welcoming to all potentia contributors and, if you must discriminate, do so only on the
basis of actual behavior in the project, not on the basis of a contributor's group affiliation or group identity.

12

Chapter 2. Getting Started

Starting a free software project is atwofold task. The software needs to acquire users, and to acquire
developers. These two needs are not necessarily in conflict, but the interaction between them adds
some complexity to a project'sinitial presentation. Some information is useful for both audiences,
someis useful only for one or the other. Both kinds of information should subscribe to the principle
of scaled presentation: the degree of detail presented at each stage should correspond to the amount
of time and effort put in by the reader at that stage. More effort should always result in more reward.
When effort and reward do not correlate reliably, people lose faith and stop investing effort.

The corollary to thisis that appearances matter. Programmers, in particular, often don't like to believe
this. Their love of substance over form is almost a point of professiona pride. It's no accident that so
many programmers exhibit an antipathy for marketing and public relations work, nor that professional
graphic designers are often horrified at the designs programmers come up with on their own.

Thisisapity, because there are situations where form is substance, and project presentation is one of
them. For example, the very first thing a visitor learns about a project is what its home page looks like.
Thisinformation is absorbed before any of the actual content on the site is comprehended — before
any of the text has been read or links clicked on. However unjust it may be, people cannot stop them-
selves from forming an immediate first impression. The site's appearance signals what kind of care was
taken in organizing the project's presentation. Humans have extremely sensitive antennae for detect-
ing the investment of care. Most of us can tell in one quick glance whether a home page was thrown
together quickly or was given serious thought. Thisisthe first piece of information your project puts
out, and the impression it creates will carry over to the rest of the project by association.

Thus, while much of this chapter talks about the content your project should start out with, remember
that its ook and feel matter too. Because the project web site has to work for two different types of vis-
itors — users and devel opers — special attention must be paid to clarity and directedness. Although
thisis not the place for a general treatise on web design, one principle is important enough to deserve
mention, particularly when the site serves multiple (if overlapping) audiences: people should have a
rough ideawhere alink goes before clicking on it. For example, it should be obvious from looking at
the links to user documentation that they lead to user documentation, and not to, say, developer docu-
mentation. Running a project is partly about supplying information, but it's also about supplying com-
fort. The mere presence of certain standard offerings, in expected places, reassures users and develop-
erswho are deciding whether they want to get involved. It says that this project hasits act together, has
anticipated the questions people will ask, and has made an effort to answer them in away that requires
minimal exertion on the part of the asker. By giving off this aura of preparedness, the project sends out
amessage: "Y our time will not be wasted if you get involved," which is exactly what people need to
hear.

13

Getting Started

What We Mean by Users and Developers

The terms user and devel oper here refer to someone's relationship to the open source software
project in question, not to her identity in the world at large.

For example, if the open source project is a Javascript library intended for use in web devel-
opment, and someone is using the library as part of her work building web sites, then sheisa
"user" of the library (even though professionally her title might be "software developer"). But

if she starts contributing bugfixes and enhancements back upstream — that is, back into the
project — then, to the extent that she becomes involved in the project's maintenance, sheisalso
a"developer" of the project.

It's common for developersin an open source projects to be users as well, but it's not always the
case. Especially with large projects started by organizations to meet enterprise-scale software
needs, the developers may not always be direct users of the software, although they are usually
somehow connected with the team that deploys that software within their organization.

In projects meant primarily for programmers, the boundary between user and developer is very
porous: every user is a potential developer. But even in projects meant for non-technical people,
some percentage of the users are still potential developers. Open source projects should be run in
such away as to make that transition available to anyone who's interested.

If you use a"canned hosting" site (see the section called “ Canned Hosting” [46]), one advantage

of that choiceisthat those sites have a default layout that is similar from project to project and is pretty
well-suited to presenting a project to the world. That layout can be customized, within certain bound-
aries, but the default design prompts you to include the information visitors are most likely to be look-
ing for.

But First, Look Around

Before starting an open source project, there is one important caveat:

Always look around to seeif there's an existing project that does what you want. The chances are pret-
ty good that whatever problem you want solved now, someone el se wanted solved before you. If they
did solveit, and released their code under a free license, then there's no reason for you to reinvent the
wheel today. There are exceptions, of course: if you want to start a project as an educational experi-
ence, pre-existing code won't help; or maybe the project you have in mind is so specialized that you
know there is zero chance anyone else has done it. But generally, there's no point not looking, and the
payoff can be huge.!

Even if you don't find exactly what you were looking for, you might find something so close that it
makes more sense to join that project and add functionality to it than to start from scratch yourself. See
the section called “ Evaluating Open Source Projects’ [131] for adiscussion of how to evaluate an
existing open source project quickly.

1f the usual Internet search engines don't turn up anything, another good place to ook is the Free Software Foundation's directory of
free software at https://directory.fsf.org/, which the FSF actively maintains.

14

https://directory.fsf.org/

Getting Started

Starting From What You Have

Y ou've looked around, found that nothing out there really fits your needs, and decided to start a new
project.

What now?

The hardest part about launching a free software project is transforming a private vision into a public
one. Y ou or your organization may know perfectly well what you want, but expressing that goal com-
prehensibly to the world is afair amount of work. It is essential, however, that you take the time to do
it. You and the other founders must decide what the project isreally about — that is, decide its limita-
tions, what it won't do as well aswhat it will — and write up amission statement.? This part isusualy
not too hard, though it can sometimes reveal unspoken assumptions and even disagreements about the
nature of the project, which isfine: better to resolve those now than later. The next step isto package
up the project for public consumption, and thisis, basically, pure drudgery.

What makesit so laboriousisthat it consists mainly of organizing and documenting things everyone
already knows — "everyone", that is, who's been involved in the project so far. Thus, for the people
doing the work, there is no immediate benefit. They do not need a README file giving an overview

of the project, nor a design document. They do not need an organized code tree conforming to the in-
formal but widespread standards of software source distributions. Whatever way the source codeis
arranged is fine for them, because they're already accustomed to it anyway, and if the code runs at al,
they know how to useit. It doesn't even matter, for them, if the fundamental architectural assumptions
of the project remain undocumented; they're already familiar with those too.

Newcomers, on the other hand, need al these things. Fortunately, they don't need them all at once. It's
not necessary for you to provide every possible resource before taking a project public. In a perfect
world, perhaps, every new open source project would start out life with a thorough design document,
a complete user manual (with special markings for features planned but not yet implemented), beauti-
fully and portably packaged code capable of running on any computing platform, and so on. In redlity,
taking care of all these loose ends would be prohibitively time-consuming, and anyway, it's work that
one can reasonably hope others will help with once the project is under way.

What is necessary, however, isto put enough investment into presentation that newcomers can get past
theinitial obstacle of unfamiliarity. Think of it asthe first step in a bootstrapping process, to bring the
project to akind of minimum activation energy. I've heard this threshold called the hacktivation ener-
gy: the amount of energy a newcomer must put in before she starts getting something back. The low-
er aproject's hacktivation energy, the better. Y our first task is bring the hacktivation energy down to a
level that encourages people to get involved.

Each of the following subsections describes one aspect of starting a new project. They are presented
roughly in the order that a new visitor would encounter them, though of course the order in which you
actualy implement them might be different. Y ou can treat them as a checklist. When starting a project,
just go down the list and make sure you've got each item covered, or at least that you're comfortable
with the potential consequencesif you've left one out.

2See the section called “Have a Clear Mission Statement” [17].

15

Getting Started

Ch

oose a Good Name

Put yourself in the shoes of someone who's just heard about your project, perhaps by having stumbled
across it while searching for software to solve some problem. The first thing they'll encounter isthe
project's name.

A

good name will not automatically make your project successful, and a bad name will not doom it.3

However, a bad name can slow down adoption of the project, either because people don't take it seri-
oudly, or because they simply have trouble remembering it.

A

good name:

Gives some idea what the project does, or at least isrelated in an obvious way, such that if one
knows the name and knows what the project does, the name will come quickly to mind thereafter.

Is easy to remember. Here, there is no getting around the fact that English has become the default
language of the Internet: "easy to remember" usually means "easy for someone who can read Eng-
lish to remember."

Does not depend on native or high-level fluency in English, nor on a particular regional pronunci-
ation. Names that are puns, for example, do not always travel well. If the pun is particularly com-
pelling and memorable, it may still be worth it; just keep in mind that not everyone who sees the
name will hear it in their head in the same way.

Is not the same as some other project's name, and does not infringe on any trademarks. Thisisjust
good manners, as well as good legal sense. Y ou don't want to create identity confusion. It's hard
enough to keep track of everything that's available on the Net already, without different things hav-
ing the same name.

The resources mentioned earlier in the section called “But First, Look Around” [14] are useful
in discovering whether another project already has the name you're thinking of. For the U.S,, trade-
mark searches are available at http://www.uspto.gov/.

If possible, is available asadomain nameinthe. com . net ,and . or g top-level domains. You
should pick one, probably . or g, to advertise asthe official home site for the project; the other two
should forward there and are simply to prevent third parties from creating identity confusion around
the project's name. Even if you intend to host the project at some other site (see the section called
“Hosting” [27]), you can still register project-specific domains and forward them to the hosting
site. It helps users alot to have asimple URL to remember.*

If possible, is available as a username on https://twitter.com/ and other microblog sites. See the sec-
tion called “Own the Name in the Important Namespaces® [17] for more on this and its relation-
ship to the domain name.

Swell,

areally bad name probably could do that, but we start from the assumption that no one here is actively trying to make their

project fail.
*The importance of top-level domain names seems to be declining. A number of projects now have just their nameinthe. i o TLD,
for example, and don't bother with . com . net , or . or g. | can't predict what the brand psychology of domain names will be in the

future,

S0 just use your judgement, and if you can get the namein all the important TLDs, do so.

16

http://www.uspto.gov/
https://twitter.com/

Getting Started

Own the Name in the Important Namespaces

For large projects, it is agood idea to own the project's name in as many of the relevant namespaces
on the Internet as you can. By namespaces, | mean not just the global Domain Name System, but also
online services in which the account name (username) is the publicly visible handle by which people
refer to the project. If you have the same name in all the places where people would look for you, you
make it easier for people to sustain amild interest in the project until they're ready to become more in-
volved.

For example, the Gnome free desktop project has the https://gnome.org/ domain name,” the https://
twitter.com/gnome Twitter handle, the https://github.com/gnome username at GitH ub.com,® and on
the Libera.chat IRC network (see the section called “Real-Time Chat Systems® [76]) they have the
channel #gnone, athough they also maintain their own IRC servers (where they control the channel
namespace, of course).

All this makes the Gnome project splendidly easy to find: it's usually right where a potential contribu-
tor would expect it to be. Of course, Gnome is alarge and complex project with thousands of contrib-
utors and many subdivisions; the advantage to Gnome of being easy to find is greater than it would be
for a newer project, since by now there are so many waysto get involved in Gnome. But it will certain-
ly never harmyour project to own its name in as many of the relevant namespaces asit can, and it can
sometimes help. So when you start a project, think about what its online handle should be and register
that handle with the online services you think you're likely to care about. The ones mentioned above
are probably agood initial list, but you may know others that are relevant for the particular subject area
of your project.

Have a Clear Mission Statement

Once they've found the project's home site, the next thing people will look for is aquick description or
mission statement, so they can decide (within 30 seconds) whether or not they're interested in learning
more. This should be prominently placed on the front page, preferably right under the project's name.

The description should be concrete, limiting, and above al, short. Here's an example of agood one,
from https://hadoop.apache.org/:

The Apache™ Hadoop® project devel ops open-source software for reliable, scal-
able, distributed computing.

The Apache Hadoop software library is a framework that allows for the distributed
processing of large data sets across clusters of computers using simple program-
ming models. It is designed to scale up from single servers to thousands of machines,
each offering local computation and storage. Rather than rely on hardware to deliv-
er high-availability, the library itself is designed to detect and handle failures at the

5T hey didn't manage to get gnome.com or gnome.net, but that's okay — if you only have one, and it's .org, it'sfine. That's usualy the
first one people look for when they're seeking the open source project of that name. If they couldn't get "gnome.org" itself, atypical
solution would be to get "gnomeproject.org” instead, and many projects solve the problem that way.

SWhile the authoritative copy of Gnome's source code is at https://git.gnome.org/, they maintain a mirror at GitHub, since so many
developers are already familiar with GitHub.

17

https://gnome.org/
https://twitter.com/gnome
https://twitter.com/gnome
https://github.com/gnome
https://hadoop.apache.org/
https://git.gnome.org/

Getting Started

application layer, so delivering a highly-available service on top of a cluster of com-
puters, each of which may be prone to failures.

In just four sentences, they've hit all the high points, largely by drawing on the reader's prior knowl-
edge. That's an important point: it's okay to assume a minimally informed reader with a baseline level
of technical preparedness. A reader who doesn't know what "clusters* and "high-availability” mean in
this context probably can't make much use of Hadoop anyway, so there's no point writing for a reader
who knows any less than that. The phrase "designed to detect and handle failures at the application lay-
er" will stand out to engineers who have experience with large-scale computing clusters — when they
see those words, they'll know that the people behind Hadoop understand that world, and the first-time
visitor will thus be likely to give Hadoop further consideration.

Those who remain interested after reading the mission statement will next want to see more details,
perhaps some user or developer documentation, and eventually will want to download something. But
before any of that, they'll need to be sure it's open source.

State That the Project is Free

The front page must make it unambiguously clear that the project is open source. This may seem ob-
vious, but you would be surprised how many projects forget to do it. | have seen free software project
web sites where the front page not only did not say which particular free license the software was dis-
tributed under, but did not even state outright that the software was free at all. Sometimes the crucial
bit of information was relegated to the Downloads page, or the Developers page, or some other place
that required one more mouse click to get to. In extreme cases, the license was not given anywhere on
the web site at all — the only way to find it was to download the software and look at alicensefilein-
side.

Please don't make this mistake. Such an omission can lose many potential devel opers and users. State
up front, in or near the mission statement, that the project is "free software" or "open source software",
and give the exact license. A quick guide to choosing alicenseis given in the section called “Choos-
ing aLicense and Applying It” [28], and licensing issues are discussed in detail in Chapter 9, Le-

gal Matters: Licenses, Copyrights, Trademarks and Patents [224].

By this point, our hypothetical visitor has determined — probably in a minute or less — that she'sin-
terested in spending, say, at least five more minutes investigating this project. The next sections de-
scribe what she should encounter in those five minutes.

Features and Requirements List

There should be a brief list of the features the software supports (if something isn't completed yet,

you can still list it, but put "planned” or "in progress' next to it), and the kind of computing environ-
ment required to run the software. Think of the features/requirementslist as what you would giveto
someone asking for a quick summary of the software. It is often just alogical expansion of the mission
statement. For example, the mission statement might say:

Scanley is an open source full-text indexer and search engine with a rich API, for
use by programmers in providing search services for large collections of text files.

18

Getting Started

The features and requirements list would give the details, clarifying the mission statement's scope:
Features:
» Searchesplain text, HTML, JSON, XML, and other formats

» Word or phrase searching

(planned) Fuzzy matching

(planned) Incremental index updates

(planned) Indexing of remote web sites

Requirements:

» Python 3.9 or higher

» Enough disk space to hold the indexes (approximately 2x original data size)

With thisinformation, readers can quickly get afeel for whether this software might be what they're
looking for, and they can consider getting involved as developers too.

Development Status

Visitors usually want to know how a project is doing. For new projects, they want to know the gap be-
tween the project's promise and current reality. For mature projects, they want to know how actively it
is maintained, how often it puts out new releases, how responsive it isto bug reports, etc.

There are a couple of different ways to provide answers to these questions. Oneis to have a devel-
opment status page, listing the project's near-term goals and what kinds of expertise are expected
from participating developers at the current stage. The page can also give a history of past releases,
with feature lists, so visitors can get an idea of how the project defines "progress’, and how quickly it
makes progress according to that definition. Some projects structure their devel opment status page as
aroadmap that includes the future: past events are shown on the dates they actually happened, future
ones on the approximate dates the project hopes they will happen.

The other way — not mutually exclusive with the first, and in fact probably best done in combina-
tion with it — isto have various automatically-maintained counters and indicators embedded in the
project's front page and/or its developer landing page, showing various pieces of information that,

in the aggregate, give a sense of the project's development status and progress. For example, an An-
nouncements or News panel showing recent news items, a Twitter or other microblog stream showing
notices that match the project's designated hashtags, atimeline of recent releases, a panel showing re-
cent activity in the bug tracker (bugs filed, bugs responded to), another showing mailing list or discus-
sion forum activity, etc. Each such indicator should be a gateway to further information of its type: for
example, clicking on the "recent bugs" panel should take one to the full bug tracker, or at least to an
expanded view into bug tracker activity.

19

Getting Started

Readlly, there are two slightly different meanings of "development status" being conflated here. One
isthe formal sense: where does the project stand in relation to its stated goals, and how fast isit mak-
ing progress. The other islessformal but just as useful: how active isthis project? s stuff going on?
Are there people here, getting things done? Often that latter notion is what a visitor is most interested
in. Whether or not a project met its most recent milestone is often not as interesting as the more funda-
mental question of whether it has an active community of developers around it.

These two notions of development status are, of course, related, and a well-presented project shows
both kinds. The information can be divided between the project's front page (show enough there to
give an overview of both types of development status) and a more devel oper-oriented page.

Development Status Should Always Reflect Reality

Don't be afraid of looking unready, and never give in to the temptation to inflate or hype the develop-
ment status. Everyone knows that software evolves by stages; there's no shamein saying "Thisis apha
software with known bugs. It runs, and works at least some of the time, but use at your own risk." Such
language won't scare away the kinds of developers you need at that stage. One of the worst things a
project can do is attract users before the software is ready for them. A reputation for instability or bug-
ginessisvery hard to shake, once acquired. Conservatism pays off in the long run; it's always better for
the software to be more stable than the user expected rather than less, and pleasant surprises produce
the best kind of word-of-mouth.

Alpha and Beta

The term alpha usually means afirst rel ease, with which users can get real work done and which
has all the intended functionality, but which also has known bugs. The main purpose of apha
software is to generate feedback, so the devel opers know what to work on. Alphareleases are
generally free to change APIs and functionality.

The next stage, beta, means the software's APIs are finalized and its serious known bugs fixed,
but it has not yet been tested enough to certify for production release. The purpose of beta soft-
ware isto either become the official release, assuming no bugs are found, or provide detailed
feedback to the developers so they can reach the official release quickly. In a series of betare-
leases, APIs and functionality should not change except when absolutely necessary.

Downloads

The software should be downloadable as source code in standard formats. When a project isfirst get-
ting started, binary (executable) packages are not necessary, unless the software has such complicated
build requirements or dependencies that merely getting it to run would be alot of work for most peo-
ple. (But if thisis the case, the project is going to have a hard time attracting devel opers anyway!)

The distribution mechanism should be as convenient, standard, and low-overhead as possible. If you
were trying to eradicate a disease, you wouldn't distribute the medicine in such away that it requires a
non-standard syringe size to administer. Likewise, software should conform to standard build and in-

20

Getting Started

stallation methods; the more it deviates from the standards, the more potential users and developers
will give up and go away confused.

That sounds obvious, but many projects don't bother to standardize their installation procedures un-

til very late in the game, telling themselves they can do it any time: "We'll sort all that stuff out when
the codeis closer to being ready.” What they don't realize is that by putting off the boring work of
finishing the build and installation procedures, they are actually making the code take longer to get
ready — because they discourage devel opers who might otherwise have contributed to the code, if on-
ly they could build and test it. Most insidiously, the project won't even know it's losing all those devel-
opers, because the process is an accumulation of non-events: someone visits aweb site, downloads the
software, tries to build it, fails, gives up and goes away. Who will ever know it happened, except the
person themselves? No one working on the project will realize that someone's interest and good will
have been silently squandered.

Boring work with a high payoff should always be done early, and significantly lowering the project's
barrier to entry through good packaging brings a very high payoff.

When you release a downloadable package, give it a unique version number, so that people can com-
pare any two releases and know which supersedes the other. That way they can report bugs against a
particular release (which helps respondents to figure out if the bug is already fixed or not). A detailed
discussion of version numbering can be found in the section called “ Release Numbering” [171], and
the details of standardizing build and installation procedures are covered in the section called “ Packag-
ing” [182].

Version Control and Bug Tracker Access

Downloading source packages is fine for those who just want to install and use the software, but it's
not enough for those who want to debug or add new features. Nightly source snapshots can help, but
they're till not fine-grained enough for a thriving development community. People need real-time ac-
cess to the latest sources, and away to submit changes based on those sources.

The solution isto use aversion control system — specifically, an online, publicly-accessible version
controlled repository, from which anyone can check out the project's materials and subsequently get
updates. A version control repository is a sign — to both users and devel opers — that this project is
making an effort to give people what they need to participate. As of thiswriting, many open source
projects use https://github.com/, which offers unlimited free public version control hosting for open
source projects. While GitHub is not the only choice, nor even the only good choice, it's a reasonable
one for most proj ects’. Version control infrastructure is discussed in detail in the section called “Ver-
sion Control” [60].

The same goes for the project's bug tracker. The importance of a bug tracking system lies not only in
its day-to-day usefulness to developers, but in what it signifies for project observers. For many people,
an accessible bug database is one of the strongest signs that a project should be taken seriously — and
the higher the number of bugs in the database, the better the project looks. That might seem counter-

“Although GitHub is based on Git, a popular open source version control system, the code that runs GitHub's web services is not it-
self open source. Whether this matters for your project is a complex question, and is addressed in more depth in the section called
“Canned Hosting” [46]

21

https://github.com/

Getting Started

intuitive, but remember that the number of bug reports filed really depends mostly on two things: the
number of people using the software and the convenience with which those people can report bugs.
Any software of sufficient size and complexity has an essentially arbitrary number of bugs waiting to
be discovered. The real question is, how well will the project do at receiving, recording, and prioritiz-
ing those bugs? A project with alarge and well-maintained bug database ("well-maintained" meaning
bugs are responded to promptly, duplicate bugs are unified, etc) therefore makes a much better impres-
sion than a project with no bug database or with a nearly empty database.

Of course, if your project isjust getting started, then the bug database will contain very few bugs, and
there's not much you can do about that. But if the status page emphasizes the project's youth, and if
people looking at the bug database can see that most filings have taken place recently, they can extrap-
olate from that the project till has a healthy rate of filings, and they will not be unduly alarmed by the
low absolute number of bugs recorded.®

Note that bug trackers are often used to track not only software defects, but also enhancement requests,
documentation changes, pending tasks, and more. The details of running a bug tracker are covered in
the section called “Bug Tracker” [72], so | won't go into them here. The important thing from a
presentation point of view is mainly to have a bug tracker and to use it — and to make surethat it is

easy to find.

Communications Channels

Visitors usually want to know how to reach the human beings involved with the project. Provide the
addresses of mailing lists, chat rooms, and any other forums where others involved with the software
can be reached.® Make it clear that you and the other maintainers of the project are subscribed to these
mailing lists, so people see there's away to give feedback that will reach the developers. Y our presence
on the lists does not imply a commitment to answer all questions or implement all feature requests. In
the long run, probably only afraction of userswill use the forums anyway, but the others will be com-
forted to know that they could if they ever needed to.

In the early stages of a project, there's usually no need to have separate user and developer forums. It's
much better to have everyone involved with the software talking together, in one "room." Among ear-
ly adopters, the distinction between developer and user is often fuzzy; to the extent that the distinc-
tion can be made, the ratio of developersto usersis usually much higher in the early days of the project
than later on. While you can't assume that every early adopter is a programmer who wants to hack on
the software, you can assume that they are at |least interested in following development discussions and
in getting a sense of the project's direction.

Asthis chapter is only about getting a project started, it's enough merely to say that these communi-
cations forums need to exist. Later, in the section called “Handling Growth” [153], we'll examine
where and how to set up such forums, the ways in which they might need moderation or other manage-
ment, and how, when the time comes, to separate user forums from devel oper forums without creating
an unbridgeable gulf.

8For amore thorough argument that bug reports should be treated as good news, see http://www.rants.org/2010/01/10/bugs-users-
and-tech-debt/, which is about how the accumulation of bug reports does not represent technical debt (in the sense of https://
en.wikipedia.org/wiki/Technical _debt) but rather user engagement.

9See Chapter 3, Technical Infrastructure [43].

22

http://www.rants.org/2010/01/10/bugs-users-and-tech-debt/
http://www.rants.org/2010/01/10/bugs-users-and-tech-debt/
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt

Getting Started

Developer Guidelines

If someone is considering contributing to the project, she'll look for devel oper guidelines. Devel oper
guidelines are not so much technical as social: they explain how the devel opers interact with each other
and with the users, and ultimately how things get done.

Thistopic iscovered in detail in the section called “Writing It All Down” [92], but the basic ele-
ments of developer guidelines are:

* pointersto forums for interaction with other developers
« instructions on how to report bugs and submit patches

» some indication of how development is usually done and how decisions are made — isthe project a
benevolent dictatorship, ademocracy, or something else

No pejorative senseisintended by "dictatorship”, by the way. It's perfectly okay to run atyranny
where one particular developer has veto power over all changes. Many successful projects work this
way. The important thing is that the project come right out and say so. A tyranny pretending to be
ademocracy will turn people off; atyranny that saysit's atyranny will do fine aslong asthe tyrant
is competent and trusted. (See the section called “ Forkability” [84] for why dictatorship in open
source projects doesn't have the same implications as dictatorship in other areas of life.)

http://subversion.apache.org/docs/community-guide/ is an example of particularly thorough devel oper
guidelines; the LibreOffice guidelines at https://wiki.documentfoundation.org/Development are also a
good example.

If the project has awritten Code of Conduct (see the section called “ Codes of Conduct” [33]), then
the developer guidelines should link to it.

The separate issue of providing a programmer's introduction to the software is discussed in the section
called “ Developer Documentation” [26].

Documentation

Documentation is essential. There needs to be something for people to read, even if it's rudimentary
and incomplete. Thisfalls squarely into the "drudgery" category referred to earlier, and is often the
first area where a new open source project falls down. Coming up with a mission statement and feature
list, choosing alicense, summarizing development status — these are al relatively small tasks, which
can be definitively completed and usually need not be revisited once done. Documentation, on the oth-
er hand, is never really finished, which may be one reason people sometimes delay starting it at all.

Insidiously, documentation's utility to those writing it is the inverse of its utility to those reading it.
The most important documentation for initial usersisthe basics: how to quickly set up the software,
an overview of how it works, perhaps some guides to doing common tasks. Y et these are exactly the
things the writers of the documentation know all too well — so well that it can be difficult for them

23

http://subversion.apache.org/docs/community-guide/
https://wiki.documentfoundation.org/Development

Getting Started

to see things from the reader's point of view, and to laboriously spell out the steps that (to the writers)
seem so obvious as to be unworthy of mention.

There's no magic solution to this problem. Someone just needs to sit down and write the stuff, and
then, most importantly, incorporate feedback from readers. Use a simple, easy-to-edit format such as
Markdown, HTML, plain text, ReStructuredText, or Asciidoc — something that's convenient for light-
weight, quick improvements on the spur of the moment.’° Thisis not only to remove any overhead that
might impede the original writers from making incremental improvements, but also for those who join
the project later and want to work on the documentation.

One way to ensure basic initial documentation gets done isto limit its scope in advance. That way,
writing it at least won't feel like an open-ended task. A good rule of thumb is that it should meet the
following minimal criteria:

 Tell the reader clearly how much technical expertise they're expected to have.

 Describe clearly and thoroughly how to set up the software, and tell the user how to run some sort of
diagnostic test or simple command to confirm that they've set things up correctly. Startup documen-
tation isin some ways more important than actual usage documentation. The more effort someone
has invested in installing and getting started with the software, the more persistent she'll bein figur-
ing out advanced functionality that's not well-documented. When peopl e abandon, they abandon ear-
ly; therefore, it's the earliest stages, like installation, that need the most support.

 Give one tutorial-style example of how to do a common task. Obviously, many examples for many
tasks would be even better, but if timeis limited, pick one task and walk through it thoroughly. Once
someone sees that the software can be used for one thing, they'll start to explore what else it can do
on their own — and, if you're lucky, start filling in the documentation themselves. Which brings us
to the next point...

« Label the areas where the documentation is known to be incomplete. By showing the readers that
you are aware of its deficiencies, you align yourself with their point of view. Y our empathy reas-
sures them that they won't struggle to convince the project of what's important. These labels needn't
represent promises to fill in the gaps by any particular date — it's equally legitimate to treat them as
open requests for help.

Thelast point is of wider importance, actually, and can be applied to the entire project, not just the
documentation. An accurate accounting of known deficiencies is the norm in the open source world.
Y ou don't have to exaggerate the project's shortcomings, just identify them scrupulously and dispas-
sionately when the context calls for it (whether in the documentation, in the bug tracking database,

or on amailing list discussion). No one will treat this as defeatism on the part of the project, nor asa
commitment to solve the problems by a certain date, unless the project makes such a commitment ex-
plicitly. Since anyone who uses the software will discover the deficiencies for themselves, it's much
better for them to be psychologically prepared — then the project will look like it has a solid knowl-
edge of how it's doing.

Opon't worry too much about choosing the right format the first time. If you change your mind later, you can always do an automat-
ed conversion using Pandoc (https://pandoc.org/).

24

https://pandoc.org/

Getting Started

Maintaining a FAQ

A FAQ ("Freguently Asked Questions' document) can be one of the best investments a project
makes in terms of educational payoff. FAQs are highly tuned to the questions users and devel-
opers actually ask — as opposed to the questions you might have expected them to ask — and
therefore, awell-maintained FAQ tends to give those who consult it exactly what they're |ook-
ing for. The FAQ is often the first place users look when they encounter a problem, often even
in preference to the official manual, and it's probably the document in your project most likely to
be linked to from other sites.

Unfortunately, you cannot make the FAQ at the start of the project. Good FAQs are not written,
they are grown. They are by definition reactive documents, evolving over time in response to the
questions people ask about the software. Since it'simpossible to correctly anticipate those ques-
tions, it isimpossible to sit down and write a useful FAQ from scratch.

Therefore, don't waste your time trying to. Y ou may, however, find it useful to set up a mostly
blank FAQ template with just afew questions and answers, so there will be an obvious place for
people to contribute questions and answers after the project is under way. At this stage, the most
important property is not completeness, but convenience: if the FAQ is easy to add to, people
will add to it. (Proper FAQ maintenance is a non-trivial and intriguing problem: see the section
called “"Manager" Does Not Mean "Owner"” [205], the section called “Wikis’ [79], and

the section called “Treat All Resources Like Archives’ [156].)

Availability of Documentation

Documentation should be available from two places: online (directly from the web site), and in the
downloadable distribution of the software (see the section called “Packaging” [182]). It needsto be
online, in browsable form, for two reasons: one, people often read documentation before downl oad-
ing software for the first time, as away of helping them decide whether to download at al, and two,
Internet search engines will often give results that land people directly in the docs. But documentation
should also be accompany the software, on the principle that downloading should supply (i.e., make lo-
cally accessible) everything one needs to use the package.

For online documentation, make sure that thereis alink that brings up the entire documentation in one
HTML page (put a note like "monolithic” or "al-in-one" or "single large page" next to the link, so peo-
ple know that it might take awhile to load). Thisis useful because people often want to search for a
specific word or phrase across the entire documentation. Generally, they already know what they're
looking for; they just can't remember what section it'sin. For such people, nothing is more frustrating
than encountering one HTML page for the table of contents, then a different page for the introduction,
then a different page for installation instructions, etc. When the pages are broken up like that, their
browser's search function is useless. The separate-page style is useful for those who aready know what
section they need, or who want to read the entire documentation from front to back in sequence. But
thisis not necessarily the most common way documentation is accessed. Often, someone who is basi-
cally familiar with the software is coming back to search for a specific word or phrase, and to fail to
provide them with a single, searchable document would only make their lives harder.

25

Getting Started

Developer Documentation

Developer documentation is written by programmers to help other programmers understand the code,
so they can repair and extend it. Thisis somewhat different from the devel oper guidelines discussed
earlier, which are more social than technical. Developer guidelinestell programmers how to get
along with each other; developer documentation tells them how to get along with the code itself. The
two are often packaged together in one document for convenience (as with the https://subversion.a-
pache.org/docs/community-guide/ example given earlier), but they don't have to be.

Although developer documentation can be very helpful, there's no reason to delay areleaseto do it.
Aslong as the original authors are available (and willing) to answer questions about the code, that's
enough to start with. In fact, having to answer the same questions over and over is a common moti-
vation for writing documentation. But even before it's written, determined contributors will still man-
age to find their way around the code. The force that drives people to spend time learning a codebase
isthat the code does something useful for them. If people have faith in that, they will take the timeto
figure things out; if they don't have that faith, no amount of developer documentation will get or keep
them.

So if you have time to write documentation for only one audience, write it for users. All user documen-
tation is, in effect, developer documentation as well; any programmer who's going to work on a piece
of software will need to be familiar with how to use it too. Later, when you see programmers asking
the same questions over and over, take the time to write up some separate documents just for them.

Some projects use wikis for their initial documentation, or even as their primary documentation. In

my experience, thisworks best if the wiki is actively maintained by afew people who agree on how
the documentation is to be organized and what sort of "voice" it should have. See the section called
“Wikis’ [79] for more.

If the infrastructure aspects of documentation workflow seem daunting, consider using https://readthe-
docs.org/. Many projects now depend on it to automate the process of presenting their documentation
online. The site takes care of format conversion, integration with the project's version control reposito-
ry (so that documentation rebuilds happen automatically), and various other mundane tasks, so that you
and your contributors can focus on content.

Demos, Screenshots, Videos, and Example Output

If the project involves a graphical user interface, or if it produces graphical or otherwise distinctive
output, put some samples up on the project web site. In the case of an interface, this means screenshots
or, better yet, abrief (4 minutes or fewer) video with subtitles or a narrator. For output, it might be
screenshots or just sample files to download. For web-based software, the gold standard is a demo site,
of course, assuming the software is amenabl e to that.

The main thing isto cater to people's desire for instant gratification in the way they are most likely to
expect. A single screenshot or video can be more convincing than paragraphs of descriptive text and
mailing list chatter, because it is proof that the software works. The code may still be buggy, it may be
hard to install, it may be incompletely documented, but image-based evidence shows people that if one
puts in enough effort, one can get it to run.

26

https://subversion.apache.org/docs/community-guide/
https://subversion.apache.org/docs/community-guide/
https://readthedocs.org/
https://readthedocs.org/

Getting Started

Keep Videos Brief, and Say They're Brief

If you have avideo demonstration of your project, keep the video under 4 minutes long, and
make sure people can see the duration before they click on it. Thisisin keeping with the "prin-
ciple of scaled presentation” mentioned at the beginning of this chapter: make the decision to
watch the video an easy one by removing as much risk as possible. Visitors are more likely

to click on alink that says "Watch our 3 minute video" than on one that just says "Watch our
video", because in the former case they know what they're getting into before they click — and
they'll watch it better, because they've mentally prepared the necessary amount of attention com-
mitment beforehand, and thus won't tire mid-way through the video.

Asto where the four-minute limit came from: it's a scientific fact, determined through many at-
tempts by the same experimental subject (who shall remain unnamed) to watch project videos.
The limit does not apply to tutorials or other instructional material, of course; it's just for intro-
ductory videos.

In case you don't already have preferred software for recording desktop interaction videos: If
you use the GNOME 3 desktop manager, you can use its built-in screen recording capabili-

ty (see https://hel p.gnome.org/users/gnome-hel p/stabl e/screen-shot-record.html.en#screen-

cast — essentialy, do Ctl+Alt+Shift+R to start recording, and then do Ctl+Alt+Shift+R again
to stop). There are many open source video editors; OQpenShot has been fine for post-capture
editing in my experience.

There are many other things you could put on the project web site, if you have the time, or if for one
reason or another they are especially appropriate: a news page, a project history page, arelated links
page, a site-search feature, a donations link, etc. None of these are necessities at startup time, but keep
them in mind for the future.

Hosting

Where on the Internet should you put the project's material s?
A web site, obviously — but the full answer is alittle more complicated than that.

Many projects distinguish between their primary public user-facing web site — the one with the pret-
ty pictures and the "About" page and the gentle introductions and videos and guided tours and all that
stuff — and their developers' site, where everything's grungy and full of closely-spaced text in mono-
space fonts and impenetrable abbreviations.

In the early stages of your project it is not so important to distinguish between these two audiences.
Most of the interested visitors you get will be developers, or at least people who are comfortable try-
ing out new code. Over time, you may find it makes sense to have a user-facing site (of course, if your
project isacode library, those "users' might be other programmers) and a somewhat separate collabo-
ration area for those interested in participating in development. The collaboration site would have the
code repository, bug tracker, development wiki, links to development mailing lists, etc. The two sites
should link to each other, and in particular it's important that the user-facing site make it clear that the
project is open source and where the open source development activity can be found.

27

https://help.gnome.org/users/gnome-help/stable/screen-shot-record.html.en#screencast
https://help.gnome.org/users/gnome-help/stable/screen-shot-record.html.en#screencast

Getting Started

In the past, many projects set up the devel oper site and infrastructure themselves. Over the last decade
or so, however, most open source projects — and almost al the new ones — just use one of the
"canned hosting" sites that have sprung up to offer these services for free to open source projects. By
far the most popular such site, as of early 2018, is GitHub (https://github.com/), and if you don't have
astrong preference about where to host, you should probably just choose GitHub; many developers
are aready familiar with it and have personal accounts there. See the section called “ Canned Host-
ing” [46] for amore detailed discussion of the questions to consider when choosing a canned host-

ing site and for an overview of the most popular ones.

Choosing a License and Applying It

This section isintended to be a very quick, very rough guide to choosing alicense. Read Chapter 9, Le-
gal Matters: Licenses, Copyrights, Trademarks and Patents [224] to understand the detailed legal
implications of the different licenses, and how the license you choose can affect people's ability to mix
your software with other software.

Synonyms: "free software license", "FSF-approved", "open source license", and
"OSl-approved"

The terms "free software license" and "open source license" are essentially synonymous, and |
treat them so throughout this book.

Technically, the former term refers to licenses confirmed by the Free Software Foundation as
meeting the "four freedoms" of the Free Software Definition (FSD, see https://www.gnu.org/
philosophy/free-sw.html), while the latter term refers to licenses approved by the Open Source
Initiative as meeting the Open Source Definition (OSD, see https://opensource.org/osd). Howev-
er, if you read the FSD and the OSD, it becomes obvious that the two definitions delineate the
same freedoms — which is not surprising, given the historical background explained in the sec-
tion called “"Free" Versus "Open Source"” [8]. The inevitable, and in some sense deliberate, re-
sult is that the two organizations have approved the same set of licenses. 1

There are a great many free software licenses to choose from. Most of them we needn't consider here,
as they were written to satisfy the particular legal needs of some corporation or person, and wouldn't
be appropriate for your project. We will restrict ourselves to just the most commonly used licenses; in
most cases, you will want to choose one of them.

The "Do Anything" Licenses

If you're comfortable with your project's code potentially being used in proprietary programs, then use
an MIT-stylelicense. It isthe simplest of several minimal licenses that do little more than assert nomi-

U There actually are some minor differences between the sets of approved licenses, but they are not significant for our purposes — or
indeed for most practical purposes. In some cases, one or the other organization has simply not gotten around to considering a giv-
en license, usually alicense that is not widely-used anyway. There are also afew rarely-used licenses that have clauses that formally
conflict with the letter, if not the spirit, of one or the other definition. For example, the OSD requires the license to allow redistribu-
tion under the exact same terms the software originally came with, instead of just under some set of OSD-compliant terms, whereas
the FSD goes the other way on this question. These differences are exotic edge cases, however. For any license you are likely to be
using, the terms " OSl-approved" and "FSF-approved" can be treated as implying each other.

28

https://github.com/
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
https://opensource.org/osd

Getting Started

nal copyright (without actually restricting copying) and specify that the code comes with no warranty.
See the section called “ Choosing a License” [230] for details.

The GPL

If you don't want your code to be used in proprietary programs, use the GNU General Public License,
version 3 (https://www.gnu.org/licenses/gpl.html). The GPL is probably the most widely recognized
free software license in the world today. Thisisin itself a big advantage, since many potential users
and contributors will already be familiar with it, and therefore won't have to spend extratime to read
and understand your license. See the section called “The GNU General Public License” [231] for
details.

If usersinteract with your code primarily over anetwork connection — that is, the software is
usualy part of a hosted service, rather than being distributed to run client-side — then consider
using the GNU Affero GPL instead. The AGPL isjust the GPL with one extra clause establish-
ing network accessibility as aform of distribution for the purposes of the license. See the section
caled “The GNU Affero GPL: A Version of the GNU GPL for Server-Side Code” [233] for
more.

How to Apply a License to Your Software

Once you've chosen alicense, you'll need to apply it to the software.

Thefirst thing to do is state the license clearly on the project's front page. Y ou don't need to include
the actual text of the license there; just give its name and make it link to the full license text on anoth-
er page. That tells the public what license you intend the software to be released under — but it's not
quite sufficient for legal purposes. The other step isthat the software itself should include the license.

The standard way to do thisisto put the full license text in afile called LI CENSE (or COPYI NG) in-
cluded with the source code, and then at the top of each source file put a short notice in a comment,
naming the copyright date, holder, and license, and saying where to find the full text of the license.

There are many variations on this pattern, so we'll look at just one example here. The GNU GPL says
to put anotice like this at the top of each source file:

Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foun-
dation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY ; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

Y ou should have received a copy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>

29

https://www.gnu.org/licenses/gpl.html

Getting Started

It does not say specifically that the copy of the license you received along with the program isin the
file COPYI NGor LI CENSE, but that's where it's usually put. (Y ou could change the above notice to
state that directly, but there's no real need to.)

In general, the notice you put in each source file does not have to look exactly like the one above, as
long asit starts with the same notice of copyright holder and date,*? states the name of the license, and
makes clear where to view the full license terms. It's always best to consult a lawyer, of course, if you
can afford one.

Setting the Tone

So far we've covered one-time tasks you do during project setup: picking alicense, arranging the initial
web site, etc. But the most important aspects of starting a new project are dynamic. Choosing a mail-
ing list address is easy; ensuring that the list's conversations remain on-topic and productive is another
matter entirely. For example, if the project is being opened up after years of closed, in-house develop-
ment, its development processes will change, and you will have to prepare the existing developers for
that change.

Thefirst steps are the hardest, because precedents and expectations for future conduct have not yet
been set. Stability in a project does not come from formal policies, but from a shared, hard-to-pin-
down collective wisdom that develops over time. There are often written rules as well, but they tend
to be essentially a digtillation of the intangible, ever-evolving agreements that really guide the project.
The written policies do not define the project’s culture so much as describe it, and even then only ap-
proximately.

There are afew reasons why things work out this way. Growth and high turnover are not as damaging
to the accumulation of social norms as one might think. Aslong as change does not happen too quick-
ly, thereistime for new arrivalsto learn how things are done, and after they learn, they will help re-
inforce those ways themselves. Consider how children's songs survive for centuries. There are chil-
dren today singing roughly the same rhymes as children did hundreds of years ago, even though there
are no children alive now who were aive then. Y ounger children hear the songs sung by older ones,
and when they are older, they in turn will sing them in front of other younger ones. The children are
not engaging in a conscious program of transmission, of course, but the reason the songs surviveis
nonethel ess that they are transmitted regularly and repeatedly. The time scale of free software projects
may not be measured in centuries (we don't know yet), but the dynamics of transmission are much the
same. The turnover rate is faster, however, and must be compensated for by a more active and deliber-
ate transmission effort.

This effort is aided by the fact that people generally show up expecting and looking for social norms.
That's just how humans are built. In any group unified by a common endeavor, people who join in-
stinctively search for behaviors that will mark them as part of the group. The goal of setting precedents

2Thereis some leeway on exactly what the dates should indicate, and of course this book does not provide legal advice. The strictest
legal interpretation I've heard is that the date should show the years in which the file was modified for copyright purposes. In other
words, for afile modified in 2012, 2018, and 2021, you would write "2012, 2018, 2021" — not "2012-2021", because the file wasn't
modified in most of the yearsin that range. Some projects just use a range anyway, with one end being the file's creation year and the
other end being the year of most recent modification, as that's so much shorter and easier.

30

Getting Started

early isto make those "in-group” behaviors be ones that are useful to the project; once established,
they will be largely self-perpetuating.

Following are some examples of specific things you can do to set good precedents. They're not meant
as an exhaustive ligt, just asillustrations of the ideathat setting a collaborative mood early helps a
project tremendously. Physically, every developer may be working separately, but you can do alot to
make them fedl like they're all working together in the same room. The more they feel thisway, the
more time they'll want to spend on the project. | chose these particular examples because situations like
these seem to come up in most open source projects, and should be seen as opportunities to start things
off on the right foot.

Avoid Private Discussions

Even after you've taken the project public, you and the other founders will often find yourselves wanti-
ng to settle difficult questions by private communications among an inner circle. Thisis especially true
in the early days of the project, when there are so many important decisions to make, and, usually, few
people qualified to make them. All the obvious disadvantages of public discussions will loom palpa-
bly in front of you: the delay inherent in email conversations, the need to leave sufficient time for con-
sensus to form, the hasse of dealing with naive newcomers who think they understand al the issues
but actually don't (every project has these; sometimes they're next year's star contributors, sometimes
they stay naive forever), the person who can't understand why you only want to solve problem X when
it's obviously a subset of larger problem Y, and so on. The temptation to make decisions behind closed
doors and present them as faits accomplis, or at |least as the firm recommendations of a united and in-
fluential voting block, will be very great.

Don't doit.

As slow and cumbersome as public discussion can be, it's almost always preferable in the long run.
Making important decisionsin private is like spraying contributor repellent on your project. No serious
contributor would stick around for long in an environment where a secret council makes all the big de-
cisions behind closed doors. Furthermore, public discussion has beneficial side effects that will last be-
yond whatever ephemeral technical question was at issue:

» Thediscussion will help train and educate new developers. Y ou never know how many eyes are
watching the conversation; even if most people don't participate, many may be lurking silently,
gleaning information about the software.

» Thediscussion will train you in the art of explaining technical issues to people who are not as famil-
iar with the software as you are. Thisisaskill that requires practice, and you can't get that practice
by talking to people who already know what you know.

» Thediscussion and its conclusions will be available in public archives forever after, enabling fu-
ture discussions to avoid retracing the same steps. See the section called “ Conspicuous Use of
Archives’ [154].

Finally, there is the possibility that someone on the list may make areal contribution to the conversa-
tion, by coming up with an idea you never anticipated. It's hard to say how likely thisis; it just depends
on the complexity of the code and degree of specialization required. But if anecdotal evidence may

be permitted, | would hazard that thisis more likely than you might expect. In the Subversion project,

31

Getting Started

we (the founders) believed we faced a deep and complex set of problems, which we had been thinking
about hard for several months, and we frankly doubted that anyone on the newly created mailing list
was likely to make areal contribution to the discussion. So we took the lazy route and started batting
some technical ideas back and forth in private emails, until an observer of the proj ect®® caught wind

of what was happening and asked for the discussions to be moved to the public list. Rolling our eyes a
bit, we did — and were stunned by the number of insightful comments and suggestions that quickly re-
sulted. In many cases peopl e offered ideas that had never even occurred to us. It turned out there were
some very smart people on that list; they'd just been waiting for the right bait. It's true that the ensuing
discussions took longer than they would have if we had kept the conversation private, but they were so
much more productive that it was well worth the extratime.

Without descending into hand-waving generalizations like "the group is always smarter than thein-
dividua" (we've all met enough groups to know better), it must be acknowledged that there are cer-
tain activities at which groups excel. Massive peer review is one of them; generating large numbers of
ideas quickly is another. The quality of the ideas depends on the quality of the thinking that went into
them, of course, but you won't know what kinds of thinkers are out there until you stimulate them with
achallenging problem.

Naturally, there are some discussions that must be had privately; throughout this book we'll see exam-
ples of those. But the guiding principle should always be: If there's no reason for it to be private, it
should be public.

Making this happen requires action. It's not enough merely to ensure that al your own posts go to the
public list. Y ou also have to nudge other people's unnecessarily private conversations to the list too. If
someone tries to start a private discussion with you and there's no reason for it to be private, then it is
incumbent on you to open the appropriate meta-discussion immediately. Don't even comment on the
original topic until you've either successfully steered the conversation to a public place, or ascertained
that privacy really was needed. If you do this consistently, people will catch on pretty quickly and start
to use the public forums by default — and will promote this norm to others where necessary.

Nip Rudeness in the Bud

From the very start of your project's public existence, you should maintain a zero-tolerance policy to-
ward rude or insulting behavior in its forums. Zero-tolerance does not mean technical enforcement
per se. You don't have to remove people from the mailing list when they flame another subscriber, or
take away their commit access because they made derogatory comments. (In theory, you might even-
tually have to resort to such actions, but only after all other avenues have failed — which, by defini-
tion, isn't the case at the start of the project.) Zero-tolerance simply means never letting bad behavior
slide by unnoticed. For example, when someone posts a technical comment mixed together with an ad
hominem attack on some other developer in the project, it isimperative that your response address the
ad hominem attack as a separate issue unto itself, separate from the technical content.

It isunfortunately very easy, and al too typical, for constructive discussions to lapse into destructive
flame wars. People will say thingsin email that they would never say face-to-face. The topics of dis-
cussion only amplify this effect: in technical issues, people often feel thereisasingle right answer to

13Credit where credit is due: the observer was Brian Behlendorf, and he was correctly insistent about the general importance of keep-
ing all discussions public unless there was a specific need for privacy.

32

Getting Started

most questions, and that disagreement with that answer can only be explained by ignorance, stupidi-
ty, or laziness. It's a short distance from calling someone's technical proposal stupid to calling the per-
son themselves stupid. In fact, it's often hard to tell where technical debate leaves off and character at-
tack begins, which is one reason why drastic responses or punishments are not a good idea. Instead,
when you think you see it happening, make a post that stresses the importance of keeping the discus-
sion friendly, without accusing anyone of being deliberately poisonous. Such "Nice Police" posts do
have an unfortunate tendency to sound like a kindergarten teacher lecturing a class on good behavior:

First, let's please cut down on the (potentially) ad hominem comments; for example,
calling J's design for the security layer "naive and ignorant of the basic principles

of computer security.” That may be true or it may not, but in either caseit's no way
to have the discussion. J made his proposal in good faith. If it has deficiencies, point
them out, and we'll fix them or get a new design. I'm sure M meant no personal insult
to J, but the phrasing was unfortunate, and we try to keep things constructive around
here.

Now, on to the proposal. | think M was right in saying that...

As stilted as such responses sound, they have a noticeable effect. If you consistently call out bad be-
havior, but don't demand an apology or acknowledgement from the offending party, then you leave
people free to cool down and show their better side by behaving more decorously next time — and
they will.

One of the secrets of doing this successfully is to never make the meta-discussion the main topic. It
should always be an aside, a brief preface to the main portion of your response. Point out in passing
that "we don't do things that way around here," but then move on to the real content, so that you're giv-
ing people something on-topic to respond to. If someone protests that they didn't deserve your rebuke,
simply refuse to be drawn into an argument about it. Either don't respond (if you think they're just let-
ting off steam and don't require aresponse), or say you're sorry if you overreacted and that it's hard

to detect nuance in email, then get back to the main topic. Never, ever insist on an acknowledgement,
whether public or private, from someone that they behaved inappropriately. If they choose of their own
volition to post an apology, that's great, but demanding that they do so will only cause resentment.

The overall goal isto make good etiquette be seen as one of the "in-group” behaviors. This helpsthe
project, because developers can be driven away (even from projects they like and want to support) by
flame wars. Y ou may not even know that they were driven away; someone might lurk on the mailing
list, seethat it takes a thick skin to participate in the project, and decide against getting involved at al.
Keeping forums friendly is along-term survival strategy, and it's easier to do when the project is still
small. Onceit's part of the culture, you won't have to be the only person promoting it. It will be main-
tained by everyone.

Codes of Conduct

In the decade since the first edition of this book in 2006, it has become somewhat more common for
open source projects, especially the larger ones, to adopt an explicit code of conduct. | think thisisa
good trend. As open source projects become, at long last, more diverse, the presence of a code of con-
duct can remind participants to think twice about whether ajoke is going to be hurtful to some people,
or whether — to pick arandom example — it contributes to awelcoming and inclusive atmosphere

33

Getting Started

when an open source image processing library's documentation just happens to use yet another picture
of apretty young woman to illustrate the behavior of a particular algorithm. Codes of conduct remind
participants that the maintenance of arespectful and welcoming environment is everyone's responsibil-

ity.

An Internet search will easily find many examples of codes of conduct for open source projects. The
most popular oneis probably the one at https://contributor-covenant.org/, so naturally there's a posi-
tive feedback dynamic if you choose or adapt that one: more developers will be already familiar with
it, plus you get its trandlations into other languages for free, etc.

A code of conduct will not solve all the interpersonal problemsin your project. Furthermore, if it is
misused, it has the potentia to create new problems — it's always possible to find people who special-
ize in manipulating social norms and rules to harm a community rather than help it (see the section
called “Difficult People” [150]), and if you're particularly unlucky some of those people may find
their way into your project. It is always up to the project leadership, by which I mean those whom oth-
ersin the project tend to listen to the most, to enforce a code of conduct, and to seeto it that a code of
conduct is used wisely. (See also the section called “ Recognizing Rudeness’ [140].)

Some participants may genuinely disagree with the need to adopt a code at al, and argue against it on
the grounds that it could do more harm than good. Even if you feel they're wrong, it isimperative that
you help make sure they're able to state their view without being attacked for it. After al, disagreeing
with the need for a code of conduct is not the same as— is, in fact, entirely unrelated to — engaging
in behavior that would be a violation of the proposed code of conduct. Sometimes people confuse these
two things, and need to be reminded of the distinction.'*

In some projects, a code of conduct specifically for organizational or commercial participants — often
one implies the other, but not always — may also be called for. If you see organizational actors par-
ticipating in your project in ways that might not be conducive to the project's long-term health, con-
sider creating a Commercial Code of Conduct (CCoC, sometimes also expanded as Corporate Code

of Conduct) or Organizational Code of Conduct (OCoC). Two exampl es™ are the General Guidelines
for Commercial Entities and Others Deploying Arches (on https.//www.archesproject.org/code-of-con-
duct/) and the Bytecode Alliance's Organizational Code of Conduct (which appearsto till be a draft
under consideration as of thiswriting, but the draft text is available at https://github.com/bytecodeal -
liance/rfcs/blob/main/ORG_CODE_OF CONDUCT.md and is a representative example).

Practice Conspicuous Code Review

One of the best ways to foster a productive devel opment community is to get people looking at each
others code — idedlly, to get them looking at each others' code changes as those changes arrive. Com-
mit review (sometimes just called code review) is the practice of reviewing commits as they comein,
looking for bugs and possible improvements.

There are a couple of reasons to focus on reviewing changes, rather than on reviewing in-place code
that's already in sourcefiles. First, it just works better socially: when someone reviews your change,
sheisinteracting with work you did recently. That meansif she comments on it right away, you will be

4There's an excellent post by Christie Koehler at https:/subfictional .com/2016/01/25/the-complex-reality-of-adopting-a-meaning-
ful-code-of -conduct/ discussing this in much more depth.
Bpisclosure: My company was involved in drafting both.

https://contributor-covenant.org/
https://www.archesproject.org/code-of-conduct/
https://www.archesproject.org/code-of-conduct/
https://github.com/bytecodealliance/rfcs/blob/main/ORG_CODE_OF_CONDUCT.md
https://github.com/bytecodealliance/rfcs/blob/main/ORG_CODE_OF_CONDUCT.md
https://subfictional.com/2016/01/25/the-complex-reality-of-adopting-a-meaningful-code-of-conduct/
https://subfictional.com/2016/01/25/the-complex-reality-of-adopting-a-meaningful-code-of-conduct/

Getting Started

maximally interested in hearing what she has to say; six months later, you might not feel as motivated
to engage, and in any case might not remember the change very well. Second, looking at what changes
in acodebase is a gateway to looking at the rest of the code anyway: reviewing a change often causes
oneto look at the surrounding code, at the affected callers and callees elsewhere, at related modulein-
terfaces, etc. '

Commit review thus serves several purposes simultaneoudly. It's the most direct example of peer re-
view in the open source world, and helps to maintain software quality. Every bug that shipsin a piece
of software got there by being committed and not detected; therefore, the more eyes watch commits,
the fewer bugs will ship. But commit review also serves an indirect purpose: it confirms to people that
what they do matters, because one obviously wouldn't take time to review a commit unless one cared
about its effect. People do their best work when they know that others will take the time to evaluate it.

Reviews should be public. Even on occasions when | have been sitting in the same physical room with
another developer, and one of us has made a commit, we take care not to do the review verbally in the
room, but to send it to the appropriate online review forum instead. Everyone benefits from seeing the
review happen. People follow the commentary and sometimes find flawsin it; even when they don't, it
still reminds them that review is an expected, regular activity, like washing the dishes or mowing the
lawn.

Some technical infrastructure is required to do change-by-change review effectively. In particular,
setting up commit notificationsis extremely useful. The effect of commit notificationsis that every
time someone commits a change to the central repository, an email or other subscribable notification
goes out showing the log message and diffs (unless the diff istoo large; see diff [63], in the section
called “Version Control Vocabulary” [61]). The review itself might take place on amailing list, or

in areview tool such as Gerrit or the GitHub "pull request” interface. See the section called “ Commit
Notifications/ Commit Emails’ [71] for details.

Case study

In the Subversion project, we did not at first make aregular practice of code review. There was no
guarantee that every commit would be reviewed, though one might sometimes look over achange if
one were particularly interested in that area of the code. Bugs slipped in that really could and should
have been caught. A developer named Greg Stein, who knew the value of code review from past work,
decided that he was going to set an example by reviewing every line of every single commit that went
into the code repository. Each commit anyone made was soon followed by an email to the devel oper's
list from Greg, dissecting the commit, analyzing possible problems, and occasionally praising aclever
bit of code. Right away, he was catching bugs and non-optimal coding practices that would otherwise
have dlipped by without ever being noticed. Pointedly, he never complained about being the only per-
son reviewing every commit, even though it took afair amount of histime, but he did sing the praises
of code review whenever he had the chance. Pretty soon, other people, myself included, started review-
ing commits regularly too.

What was our motivation? It wasn't that Greg had consciously shamed usinto it. But he had proven
that reviewing code was a valuable way to spend time, and that one could contribute as much to the

1N one of thisis an argument against top-to-bottom code review, of course, for example to do a security audit. But while that kind of
review isimportant too, it's more of a generic development best practice, and is not as specifically relevant to running an open source
project as change-by-change review is.

35

Getting Started

project by reviewing others' changes as by writing new code. Once he demonstrated that, it became ex-
pected behavior, to the point where any commit that didn't get some reaction would cause the commit-
ter to worry, and even ask on the list whether anyone had had a chance to review it yet. Later, Greg got
ajob that didn't leave him as much time for Subversion, and had to stop doing regular reviews. But by
then, the habit was so ingrained for the rest of us as to seem that it had been going on since time im-
memorial.

Start doing reviews from the very first commit. The sorts of problems that are easiest to catch by re-
viewing diffs are security vulnerabilities, memory leaks, insufficient comments or API documenta-
tion, off-by-one errors, caller/callee discipline mismatches, and other problems that require a minimum
of surrounding context to spot. However, even larger-scale issues such as failure to abstract repeated
patterns to a single location become spottable after one has been doing reviews regularly, because the
memory of past diffsinformsthe review of present diffs.

Don't worry that you might not find anything to comment on, or that you don't know enough about
every area of the code. There will usually be something to say about almost every commit; even where
you don't find anything to question, you may find something to praise. The important thing is to make
it clear to every committer that what they do is seen and understood, that attention is being paid.

Of course, code review does not absolve programmers of the responsibility to review and test their
changes before committing; no one should depend on code review to catch things she ought to have
caught on her own.

Be Open From Day One

Start your project out in the open from the very first day. The longer a project is run in a closed source
manner, the harder it is to open source later.’

Being open source from the start doesn't mean your developers must immediately take on the extrare-
sponsibilities of community management. People often think that "open source” means "strangers dis-
tracting us with questions’, but that's optional — it's something you might do down the road, if and
when it makes sense for your project. It's under your control. There are still major advantages to be had
by running the project out in open, publicly-visible forums from the beginning. Conversely, the longer
the project is run closed-source, the more difficult it will be to open up later.

| think there's one underlying cause for this:

At each step in a project, programmers face a choice: to do that step in a manner compatible with a hy-
pothetical future open-sourcing, or do it in amanner incompatible with open-sourcing. And every time
they choose the latter, the project gets just alittle bit harder to open source.

The crucia thing is, they can't help choosing the latter occasionally — al the pressures of devel op-
ment propel them that way. It's very difficult to give a future event the same present-day weight as,
say, fixing the incoming bugs reported by the testers, or finishing that feature the customer just added
to the spec. Also, programmers struggling to stay on budget will inevitably cut corners here and there.
In Ward Cunningham's phrase, they will incur "technical debt" (https://en.wikipedia.org/wiki/Techni-
cal_debt), with the intention of paying back that debt later.

"This section started out as a bl og post, http://archive.civiccommons.org/2011/01/be-open-from-day-one/index.html, though it's
been edited alot for inclusion here.

36

https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
http://archive.civiccommons.org/2011/01/be-open-from-day-one/index.html

Getting Started

Thus, when it's time to open source, you'll suddenly find there are things like:

» Customer-specific configurations and passwords checked into the code repository;
» Sample data constructed from live (and confidential) information;

» Bug reports containing sensitive information that cannot be made public;

« Commentsin the code expressing perhaps overly-honest reactions to the customer's latest urgent re-
quest;

» Archives of correspondence among the developer team, in which useful technical information isin-
terleaved with personal opinions not intended for strangers;

 Licensing issues due to dependency libraries whose terms might have been fine for internal deploy-
ment (or not even that), but aren't compatible with open source distribution;

» Documentation written in the wrong format (e.g., that proprietary internal wiki your department us-
es), with no tool available to easily transform it into formats appropriate for public distribution;

» Non-portable build dependencies that only become apparent when you try to move the software out
of your internal build environment;

» Modularity violations that everyone knows need cleaning up, but that there just hasn't been time to
take care of yet...

» (Thislist could go on for along time.)

The problem isn't just the work of actually doing the cleanups; it's the extra decision-making they re-
quire. For example, if sensitive material was checked into the code repository in the past, your team
now faces a choice between cleaning it out of the historical revisions entirely, so you can open source
the entire (sanitized) history, or just cleaning up the latest revision and open-sourcing from that (some-
times called a "top-skim™). Neither method iswrong or right — and that's the problem: now you've got
one more discussion to have and one more decision to make. In some projects, that decision gets made
and reversed several times before the final release. The thrashing itself is part of the cost.

Waiting Just Creates an Exposure Event

The other problem with opening up a developed codebase is that it creates a needlessly large exposure
event. Whatever issues there may be in the code (modularity corner-cutting, security vulnerabilities,
etc), they are all exposed to public scrutiny at once — the open-sourcing event becomes an opportunity
for the technical blogosphere to pounce on the code and see what they can find.

Contrast that with the scenario where devel opment was done in the open from the beginning: code
changes comein one at atime, so problems are handled as they come up (and are often caught sooner,
since there are more eyeballs on the code). Because changes reach the public at alow, continuous rate
of exposure, no one blames your development team for the occasional corner-cutting or flawed code
checkin. Everyone's been there, after all; these tradeoffs are inevitable in real-world development. As

37

Getting Started

long as the technical debt is properly recorded in "FIXME" comments and bug reports, and any securi-
ty issues are addressed promptly, it'sfine. Yet if those same issues were to appear suddenly all at once,
unsympathetic observers may jump on the aggregate exposure in away they never would have if the
issues had come up piecemeal in the normal course of development.

(These concerns apply even more strongly to government software projects; see the section called “Be-
ing Open Source From Day Oneis Especialy Important for Government Projects’ [102].)

The good news is that these are all unforced errors. A project incurs little extra cost by avoiding them
in the ssimplest way possible: by running in the open from Day One.

"In the open" means the following things are publicly accessible, in standard formats, from the first
day of the project: the code repository, bug tracker, design documents, user documentation, wiki (if
any), and devel oper discussion forums. It also means the code and documentation are placed under an
open source license, of course. And it means that your team's day-to-day work takes place in the pub-
licly visible area.

"In the open" does not have to mean: allowing strangers to check code into your repository (they're
freeto copy it into their own repository, if they want, and work with it there); allowing anyoneto file
bug reports in your tracker (you're free to choose your own QA process, and if allowing reports from
strangers doesn't help you, you don't have to do it); reading and responding to every bug report filed,
even if you do allow strangers to file; responding to every question people ask in the forums (even if
you moderate them through); reviewing every patch or suggestion posted, when doing so may cost
valuable development time; etc.

Think of it thisway:

You open source your code, not your time.

Your codeisinfinitely replicable; your timeis not, and you may protect it however you need to. You
get to determine the point at which engaging with outside users and devel opers makes sense for your
project. In thelong run it usually does, and most of this book is about how to do it effectively. But the
pace of engagement is always under your control. Developing in the open does not change this, it just
ensures that everything done in the project is, by definition, done in away that's compatible with being
open source.

Opening a Formerly Closed Project

It's best to avoid being in the situation of opening up a closed project in the first place; just start the
project in the open if you can. But if it'stoo late for that and you find yourself opening up an existing
project, perhaps with active developers accustomed to working in a closed-source environment, there
are certain common issues that tend to arise. Y ou can save alot of time and trouble if you are prepared
for them.

Some of these issues are essentially mechanical, and for them the section called “Be Open From Day
One” [36] can serve as a checklist. For example, if your code depends on proprietary libraries that
are not part of the standard distribution of your target operating system(s), you will need to find open

38

Getting Started

source replacements; if thereis confidential content — e.g., unpublishable comments, passwords or
site-specific configuration information that cannot easily be changed, confidential data belonging to
third parties, etc — in the project's version control history, then you may have to release a "top-skim'
version, that is, restart the version history afresh from the current version as of the moment you open
source the code; and so on.

But there can be social and managerial issues too, and they are often more significant in the long run
than the mere mechanical concerns. Y ou need to make sure everyone on the development team un-
derstands that a big change is coming — and you need to understand how it's going to feel from their
point of view.

Try to imagine how the situation looks to them: formerly, all code and design decisions were made
with agroup of other programmers who knew the software more or less equally well, who all received
the same pressures from the same management, and who all know each others' strengths and weak-
nesses. Now you're asking them to expose their code to the scrutiny of random strangers, who will
form judgements based only on the code, with no awareness of what business pressures may have
forced certain decisions. These strangers will ask lots of questions, questions that jolt the existing de-
velopersinto realizing that the documentation they worked so hard on is still inadequate (thisisin-
evitable). To top it all off, the newcomers are unknown, faceless entities. If one of your developers al-
ready feelsinsecure about his skills, imagine how that will be exacerbated when newcomers point out
flaws in code he wrote, and worse, do so in front of his colleagues. Unless you have ateam of perfect
coders, thisis unavoidable — in fact, it will probably happen to all of them at first. Thisis not because
they're bad programmers; it's just that any program above a certain size has bugs, and peer review will
spot some of those bugs (see the section called “ Practice Conspicuous Code Review” [34]). At the
same time, the newcomers themselves won't be subject to much peer review at first, since they can't
contribute code until they're more familiar with the project. To your developers, it may feel like all the
criticism isincoming, never outgoing. Thus, there is the danger of a siege mentality taking hold among
the old hands.

The best way to prevent thisis to warn everyone about what's coming, explain it, tell them that the ini-
tial discomfort is perfectly normal, and reassure them that it's going to get better. Some of these warn-
ings should take place privately, before the project is opened. But you may also find it helpful to re-
mind people on the public lists that thisis a new way of development for the project, and that it will
take some time to adjust. The very best thing you can do islead by example. If you don't see your de-
vel opers answering enough newbie questions, then just telling them to answer more isn't going to help.
They may not have a good sense of what warrants a response and what doesn't yet, or it could be that
they don't have afeel for how to prioritize coding work against the new burden of external communi-
cations. The way to get them to participate is to participate yourself. Be on the public mailing lists, and
make sure to answer some questions there. When you don't have the expertise to field a question, then
visibly hand it off to a devel oper who does — and watch to make sure she follows up with an answer,
or at least aresponse. It will naturally be tempting for the longtime devel opers to lapse into private dis-
cussions, since that's what they're used to. Make sure you're subscribed to the internal mailing lists on
which this might happen, so you can ask that such discussions be moved to the public lists right away.

If you expect the newly-public project to start involving devel opers who are not paid directly

for their work — and there are usually at least afew such developers on most successful open
source projects — see Chapter 5, Organizations and Money: Businesses, Non-Profits, and Govern-
ments [96] for discussion of how to mix paid and unpaid developers successfully.

39

Getting Started

Announcing

Once the project is presentable — not perfect, just presentable — you're ready to announce it to the
world.

Thisisasimpler process than you might expect. First, set up the announcement pages at your project's
home site, as described in the section called “ Announcing Releases and Other Major Events’ [161]).
Then, post announcements in the appropriate forums. There are two kinds of forums: generic forums
that display many kinds of new project announcements, and topic-specific forums where your project
would be welcome news.

Make sure the announcement includes key words and phrases that will help people find your project

in search engines. A good test is that if someone does a search for "open source foo bar baz", and your
project is a credible offering for foo, bar, and baz, then it should be on the first page of results. (Unless
you have alot of open source competitors — but you don't, because you read the section called “But
First, Look Around” [14], right?)

Asof early 2022, the best general forum for announcements is probably https://news.ycombina-
tor.com/. While you are welcome to submit your project there, note that it will have to successful-

ly climb the word-of-mouth / upvote tree to get featured on the front page. The subreddit forums re-
lated to https:.//www.reddit.com/r/opensource/, https://www.reddit.com/r/programming/, and https.//
www.reddit.com/r/software/ work in asimilar way. Whileit's good news for your project if you can
get mentioned in aplace like that, | hesitate to contribute to the marketing arms race by suggesting any
concrete steps to accomplish this. Use your judgement and try not to spam.

Y ou might also consider submitting an entry for your project at the FSF's Free Software Directory
https://directory.fsf.org/, though that is more about helping its long-term findability rather than about
soliciting attention at the moment of launch.

Topic-specific forums are probably where you'll get the most interest, of course. Think of discussion
forums where an announcement of your project would be on-topic and of interest — you might already
be amember of some of them — and post there. Be careful to make exactly one post per forum, and to
direct people to your project's own discussion areas for follow-up discussion (when posting by email,
you can do this by setting the Repl y-t o header). Y our announcement should be short and get right to
the point, and the Subject line should make it clear that it is an announcement of anew project:

To: di scuss@one. f orum about . search. i ndexers
Subj ect: [ANNOUNCE] Scanl ey, a new open source full-text indexer.
Reply-to: dev@canl ey.org

This is a one-tine post to announce the creation of the Scanl ey
proj ect, an open source full-text indexer and search engine with a
rich APl, for use by programmers in providing search services for
large collections of text files. Scanley already has runni ng code,
i s under active devel opnent, and is |ooking for both devel opers and
testers.

40

https://news.ycombinator.com/
https://news.ycombinator.com/
https://www.reddit.com/r/opensource/
https://www.reddit.com/r/programming/
https://www.reddit.com/r/software/
https://www.reddit.com/r/software/
https://directory.fsf.org/

Getting Started

Home page: http://ww. scanl ey. org/

Feat ures:
- Searches plain text, HTM., and XM
- Word or phrase searching
- (planned) Fuzzy matching
- (planned) Increnental updating of indexes
- (planned) Indexing of renote web sites
- (planned) Long-distance m nd-readi ng

Requi renent s:
- Python 3.9 or higher
- SQLite 3.34 or higher

For nore information, please cone find us at scanl ey. org!

Thank you,
-J. Random

(See the section called “Publicity” [161] for advice on announcing subsequent rel eases and other
project events.)

There is an ongoing debate in the free software world about whether it is necessary to begin with run-
ning code, or whether a project can benefit from being announced even during the design/discussion
stage. | used to think starting with running code was crucial, that it was what separated successful
projects from toys, and that serious devel opers would only be attracted to software that already does
something concrete.

This turned out not to be the case. In the Subversion project, we started with a design document, a core
of interested and well-connected developers, alot of fanfare, and no running code at all. To my com-
plete surprise, the project acquired active participants right from the beginning, and by the time we did
have something running, there were quite afew devel opers already deeply involved. Subversion is not
the only example; the Mozilla project was a so launched without running code, and is now a successful
and popular web browser.

On the evidence of this and other examples, | have to back away from the assertion that running code
is absolutely necessary for launching a project. Running code is still the best foundation for success,
and a good rule of thumb would be to wait until you have it before announcing your proj ect.'® Howev-
er, there may be circumstances where announcing earlier makes sense. | do think that at least awell-
developed design document, or €l se some sort of code framework, is necessary — of course it may be
revised based on public feedback, but there has to be something concrete, something more tangible
than just good intentions, for people to sink their teeth into.

18N ote that announci ng your project usualy comes long after you have open sourced the code. My advice to consider carefully the
timing of your announcement should not be taken as advice to delay open sourcing the code — ideally, your project should be open
source and publicly visible from the very first moment of its existence, and thisis entirely independent of when you announce it. See
the section called “Be Open From Day One” [36] for more.

41

Getting Started

Whenever you announce, don't expect a horde of participants to join the project immediately after-
ward. Usually, the result of announcing is that you get afew casual inquiries, afew more peoplejoin
your mailing lists, and aside from that, everything continues pretty much as before. But over time, you
will notice agradual increase in participation from both new code contributors and users.

Announcement is merely the planting of a seed. It can take along time for the news to spread. If the
project consistently rewards those who get involved, the news will spread, though, because people
want to share when they've found something good. If all goes well, the dynamics of exponential com-
munications networks will slowly transform the project into a complex community, where you don't

necessarily know everyone's name and can no longer follow every single conversation. The next chap-
ters are about working in that environment.

42

Chapter 3. Technical Infrastructure

Free software projects rely on collaboration technologies: tools that support the selective capture and
integration of digitally-expressed human intentions about a shared project. The more skilled you are at
using these tools, and at persuading others to use them, the more successful your project will be.

This only becomes more true as the project grows. Smart information management is what prevents
open source projects from collapsing under the weight of Brooks Law,! which states that addi ng more
people to alate software project makesit later. Fred Brooks observed that the complexity of commu-
nications in a project increases as the square of the number of participants. When only afew people
areinvolved, everyone can easily talk to everyone else, but when hundreds of people areinvolved, it is
no longer possible for each person to remain constantly aware of what everyone else is doing. If good
free software project management is about making everyone feel like they're al working together in
the same room, the obvious question is: what happens when everyone in a crowded room triesto talk
at once?

This problem is not new. In real-world crowded rooms, the solution is parliamentary procedure: for-
mal guidelines for how to have real-time discussions in large groups, how to make sure important dis-
sents are not lost in floods of "me-too" comments, how to form subcommittees, how to recognize and
record when decisions are made, etc. An important part of parliamentary procedure is specifying how
the group interacts with its information management system. Some remarks are made "for the record",
others are not. The record itself is subject to direct manipulation, and is understood to be not aliteral
transcript of what occurred but rather a representation of what the group iswilling to agree occurred.
The record is not monalithic; it takes different forms for different purposes. It comprises the minutes
of individual meetings, the complete collection of all minutes of all meetings, summaries, agendas and
their annotations, committee reports, reports from correspondents not present, lists of action items, etc.

Because the Internet is not really aroom, we can dispense with those parts of parliamentary procedure
that keep some people quiet while others are speaking. But when it comes to information management
techniques, well-run open source projects are parliamentary procedure on steroids. Since amost all
communication in open source projects happens in writing, elaborate systems have evolved for rout-
ing and labeling data appropriately, for minimizing repetitions so as to avoid spurious divergences, for
storing and retrieving data, for correcting bad or obsolete information, and for associating disparate
bits of information with each other as new connections are observed.

Active participants in open source projects internalize many of these techniques, and will often per-
form complex manual tasks to ensure that information is routed correctly. But the whole endeavor ul-
timately depends on sophisticated software support. As much as possible, the communications media
themselves should do the routing, labeling, and recording, and should make the information available
to humans in the most convenient way possible. In practice, of course, humans will still need to inter-
vene at many pointsin the process, and it's important that the software make such interventions conve-
nient too. But in general, if the humans take care to label and route information accurately on its first
entry into the system, then the software should be configured to make as much use of that metadata as
possible.

From his book The Mythical Man Month, 1975. See https://en.wikipedia.org/wiki/The_Mythical_Man-Month, https://en.wikipedi-
a.org/wiki/Brooks_Law, and https://en.wikipedia.org/wiki/Fred_Brooks.

43

https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/Brooks_Law
https://en.wikipedia.org/wiki/Brooks_Law
https://en.wikipedia.org/wiki/Fred_Brooks

Technical Infrastructure

The advice in this chapter isintensely practical, based on experiences with specific software and usage
patterns. But the point is not just to teach a particular collection of techniques. It is also to demonstrate,
by means of many small examples, the overall attitude that will best encourage good information man-
agement in your project. Promoting this attitude will involve a combination of technical skills and peo-
ple skills. The technical skills are essential because information management software always requires
configuration, plus a certain amount of ongoing maintenance and tweaking as new needs arise (for ex-
ample, see the discussion of how to handle project growth in the section called “ Pre-Filtering the Bug
Tracker” [75]). The people skills are necessary because the human community also requires main-
tenance: it's not alwaysimmediately obvious how to use these tools to full advantage, and in some cas-
es projects have conflicting conventions (for example, see the discussion of setting Repl y- t o head-
ers on outgoing mailing list posts, in the section called “Message Forums/ Mailing Lists’ [50]).
Everyone involved with the project will need to be encouraged, at the right times and in the right ways,
to do their part to keep the project'sinformation well organized. The more interested the contributor,
the more complex and specialized the techniques she will be willing to learn.

The right techniques for your project may change over time, as collaboration technology changes and
as your project changes. Y ou may finally get everything configured just the way you want it, and have
most of the community participating, but then project growth will make some of those practices un-
scalable. Or project growth may stabilize, and the developer and user communities settle into a com-
fortable relationship with the technical infrastructure, but then someone will come along and invent
awhole new information management service, and pretty soon newcomers will be asking why your
project doesn't use it — for example, this happened to alot of free software projects that predate the
invention of the wiki (see https://en.wikipedia.org/wiki/Wiki), and more recently has been happen-
ing to projects whose workflows were developed before the rise of GitHub PRs (see the section called
“Pull Requests/ Merge Requests’ [70]) as the canonical way to package proposed contributions.
Many infrastructure questions are matters of judgement, involving tradeoffs between the convenience
of those producing information and the convenience of those consuming it, or between the time re-
quired to configure information management software and the benefit it brings to the project.

Beware of the temptation to over-automate, that is, to automate things that really require human atten-
tion. Technical infrastructure isimportant, but what makes a free software project work is care— and
intelligent expression of that care — by the humansinvolved. The technical infrastructure is really
about giving humans easy opportunities to apply care.

What a Project Needs

Most open source projects offer at least this minimum, standard set of tools for managing information:
Web site

Primarily a centralized, one-way conduit of information from the project out to the public and to
participants. The web site may also serve as a portal leading to other project tools. See the section
caled “Web Site” [45].

Message forums/ Mailing lists

Usually the most active communications forum in the project, and the "medium of record.” Seethe
section called “Message Forums/ Mailing Lists’ [50].

44

https://en.wikipedia.org/wiki/Wiki

Technical Infrastructure

Version control

Enables devel opers to manage code changes conveniently, including reverting and "change port-
ing". Enables everyone to watch what's happening to the code. See the section called “Version
Control” [60].

Bug tracking

Enables developers to keep track of what they're working on, coordinate with each other, and plan
releases. Enables everyone to query the status of bugs and record information (e.g., reproduction
recipes) about particular bugs. Can be used for tracking not only bugs, but also tasks, releases,
new features, etc. See the section called “Bug Tracker” [72].

Real-time chat

A place for quick, lightweight discussions and question/answer exchanges. Not always archived
completely. See the section called “ Real-Time Chat Systems’ [76].

Each tool in this set addresses a distinct need, but their functions are also interrelated, and the tools
must be made to work together. Below we will examine how they can do so, and more importantly,
how to get people to use them.

Y ou may be able to avoid alot of the headache of choosing and configuring many of these tools by
using a canned hosting site: an online service that offers prepackaged, templatized web services with
some or all of the collaboration tools needed to run a free software project. See the section called
“Canned Hosting” [46] for a discussion of the advantages and disadvantages of canned hosting.

Web Site

For our purposes, the web site means web pages devoted to helping people participate in the project as
developers, documenters, etc. Note that this may be different from the main user-facing web site. In
many projects, users have different needs and often (statistically speaking) a different mentality from
the developers. The kinds of web pages most helpful to users are not always the same as those help-
ful for developers. Don't try to make a"one size fits all" web site just to save some writing and mainte-
nance effort: you'll end up with asitethat is not quite right for either audience.

The two types of sites should cross-link, of course, and in particular it'simportant that the user-orient-
ed site have, tucked away in a corner somewhere, aclear link to the developers' site, since most new
developerswill start out at the user-facing pages and look for a path from there to the developers area.

An example may make this clearer. As of thiswriting in February 2022, the office suite LibreOffice
has its main user-oriented web site at https://www.libreoffice.org/, as you'd expect. If you were a user
wanting to download and install LibreOffice, you'd start there, go straight to the "Download" link,

and so on. But if you were a developer looking to fix abug in LibreOffice, you might start at https.//
www.libreoffice.org/, but you'd be looking for alink that says something like "Developers', or "De-
velopment"”, or "Get Involved" — in other words, you'd be looking for the gateway to the development
area

45

https://www.libreoffice.org/
https://www.libreoffice.org/
https://www.libreoffice.org/

Technical Infrastructure

LibreOffice, like other large projects, has afew different gateways to developer-land. There's a promi-
nent link partway down the page that says "Get Involved”, and at the top there's also a dropdown menu
named "Improve It" that offers anumber of paths to participation, including a"Developers' item.

The"Get Involved" pageis aimed at the broadest possible range of potential contributors: devel opers,
yes, but also documenters, quality-assurance testers, marketing helpers, web infrastructure experts, fi-
nancial or in-kind donors, interface designers, support forum helpers, etc. This frees up the "Develop-
ers’ page to target the rather narrower audience of programmersinterested in improving the LibreOf-
fice code. The set of links and short descriptions provided on both pagesis admirably clear and con-
cise: you can tell immediately from looking whether you're in the right place for what you want do,
and if so what the next thing to click onis. The "Development” page gives some information about
where to find the code, how to contact the other devel opers, how to file bugs, and things like that, but
most importantly it points to what most seasoned open source contributors would instantly recognize
asthereal gateway to actively-maintained devel opment information: the development wiki at https:/
wiki.documentfoundation.org/Devel opment.

This division into two contributor-facing gateways, one for al kinds of contributions and another for
coders specificaly, is probably right for alarge, multi-faceted project like LibreOffice. Y ou'll have to
use your judgement as to whether that kind of subdivision is appropriate for your project; at least at
the beginning, it probably isn't. It's better to start with one unified contributor gateway, aimed at all
the types of contributors you expect, and if that page ever gets large enough or complex enough to feel
unwieldy — listen carefully for complaints about it, since you and other long-time participants will

be naturally desensitized to weaknesses in introductory pages! — then you can divide it up however
seems best.

From atechnical point of view there is not much to say about setting up the project web site. Web
hosting is easy to come by, and most of the important things to say about layout and arrangement were
covered in the previous chapter. The web site's main function isto present a clear and welcoming
overview of the project, and to bind together the various collaboration tools (the version control sys-
tem, bug tracker, etc). To save time and effort, many projects just use one of the canned hosting ser-
vices, as described below.

Canned Hosting

A canned hosting siteis an online service that offers some or al of the online collaboration tools need-
ed to run afree software project. At a minimum, a canned hosting site offers public version control
repositories and bug tracking; most also offer wiki space, many offer mailing list hosti n92 too, and
some offer continuous integration tasting3 and other services®. For many projects, canned hosting pro-
vides a perfectly adequate devel oper-oriented entry point to the project, and thereis no need to set up a
separate web site.

°Note that even when a canned hosting site doesn't offer message forums as a standalone feature, it will usually offer rich notification
and subscription/watch features attached to its bug tracker and version control system, such that participants can effectively have a
message-forum-style discussion centered around a particular bug or change. While these features are very useful, they are not afull
substitute for first-class message forums as described in the section called “Message Forums/ Mailing Lists’ [50].

3See automated-testi ng.

“4Note that for successful free software projects, interested commercial entities will eventually often step up to fund many of these
services anyway; see the section called “ Providing Build Farms and Development Servers’ [117] for further discussion of this.

46

https://wiki.documentfoundation.org/Development
https://wiki.documentfoundation.org/Development
automated-testing

Technical Infrastructure

There are two main advantages to using a canned site. Thefirst is server maintenance: uptime monitor-
ing, operating system upgrades, etc. Having someone else handle that is one less thing to worry about.
The second advantage is simplicity. They have already chosen abug tracker, a version control system,
perhaps discussion forum software, and everything else you need to run a project. They've configured
the tools, arranged single-sign-on authentication where appropriate, are taking care of backups for all
the data stored in the tools, etc. Y ou don't need to make many decisions. All you haveto doisfill ina
registration form, press a button, and suddenly you've got a project development web site.

These are pretty significant benefits. The disadvantage, of course, isthat you must accept their choices
and configurations, even if something different would be better for your project. Usually canned sites
are adjustable within certain narrow parameters, but you will never get the fine-grained control you
would have if you set up the site yourself and had full administrative access to the server.

A perfect example of thisisthe handling of generated files. Certain project web pages may be gener-
ated files— for example, there are systems for keeping FAQ datain an easy-to-edit master format,
from which HTML, PDF, and other presentation formats can be generated. As explained in the section
called “Version Everything” [66], you wouldn't want to version the generated formats, only the

master file. But when your web site is hosted on someone else's server, it may be difficult to set up a
custom hook to regenerate the online HTML version of the FAQ whenever the master file is changed.

If you choose a canned site, try to leave open the option of switching to a different site later, by us-

ing a custom domain name as the project's devel opment home address. Y ou can forward that URL to
the canned site, or have a fully customized devel opment home page at the main URL and link to the
canned site for specific functionality. Just try to arrange things such that if you later decide to use a dif-
ferent hosting solution, the project's main address doesn't need to change.

If you're not sure whether to use canned hosting, then you should probably use canned hosting. These
sites have integrated their services in myriad ways (just one example: if acommit mentions a bug tick-
et number using a certain format, then people browsing that commit later will find that it automatically
links to that ticket), ways that would be laborious for you to reproduce, especialy if it's your first time
running an open source project. The universe of possible configurations of collaboration toolsis vast
and complex, but the same set of choices has faced everyone running an open source project and there
are some settled solutions now. Each of the canned hosting sites implements a reasonable subset of that
solution space, and unless you have reason to believe you can do better, your project will probably run
best by just using one of those sites.

Choosing a Canned Hosting Site

There are now so many sites providing free-of-charge canned hosting for projects released under open
source licenses that there is not space here to review the field.

So I'll make this easy:
If you don't know what to choose, then choose GitHub (https://github.com/). It's by far the most pop-

ular and appears set to stay that way for some years to come. It has a good set of features and integra-
tions. Many developers are already familiar with GitHub and have an account there. It offers APIs at

47

https://github.com/

Technical Infrastructure

https://devel op.github.com/ for interacting programmatically with project resources, and starting in
2020 it introduced mesgageforums.‘r’

If you're not convinced by GitHub (for example because your project uses, say, Mercurial instead of
Git for version control), but you aren't sure where to host, take alook at Wikipedia's thorough compar-
ison at https://en.wikipedia.org/wiki/Comparison_of _open_source software hosting_facilities; it'sthe
first place to look for up-to-date, comprehensive information on open source project hosting options.

Hosting on Fully Open Source Infrastructure

Although all the canned hosting sites use plenty of free software in their stack, most of them also wrote
some proprietary code to glue it al together. In these cases the hosting environment itself is not fully
open source, and thus cannot be easily reproduced by others. For example, while Git itself is free soft-
ware, GitHub is a hosted service running partly with proprietary software — if you leave GitHub, you
can't take a copy of their infrastructure with you, at least not all of it.

Some projects would prefer a canned hosting site that runs an entirely free software infrastructure. This
might be to preserve and signal their commitment to software freedom, and in some cases might al-

so be due to immediate utilitarian considerations — for example, politically sensitive projects that are
worried about being deplatformed want to know that they can reproduce their project's hosting inde-
pendently should it ever become necessary.

Fortunately, there are places to obtain fully free-software commercia hosting. | will list afew exam-
ples below (as of early 2020), albeit with no pretense of completeness.

GitLab (https://gitlab.com/)

GitLab offers an excellent collaboration platform that comesin two versions: fully free-software
(they call thistheir "Community Edition") and proprietary (which they call their "Enterprise Edi-
tion".® The proprietary edition is hosted by GitLab.com, and has afew features the open source
edition doesn't have. Interestingly, GitL ab.com themselves don't offer hosting of the strictly open
source edition, but some other companies do. Two of them are GitLabHost BV (https:.//www.git-
labhost.com/) and 2nd Watch (https://www.2ndwatch.com/); you can probably find others by
searching https.//partners.gitlab.com/. (It's also pretty easy to set up your own instance of GitLab.
My own company did so at https://code.librehq.com/ and it was fairly simple, although we have to
perform security upgrades frequently. This does not mean that GitLab is disproportionately likely
to have security problems; it just means that GitLab is very popular and therefore alot of people
are available to detect and report problems.)

Sourcehut (https://sourcehut.org/ and https://sr.ht/)

Sourcehut offers project hosting with both Git and Mercurial available as version control systems.
It is designed to be light, fast, and devel oper-focused: there is no tracking nor advertising, all of its
features work without in-browser Javascript, and many of its features work without even requiring
auser account (e.g., some email-driven interactions with the bug tracker). As of late 2023, it's offi-
ciadly till in "public alpha’, but it is stable and is fine for projects that need reliable hosting.

SThat is, message forums as in the section called “Message Forums/ Mailing Lists’ [50]. The feature's nameis " GitHub Discus-
sions'; you have to turn it on for your repository, asit's not currently on by default.
65ee the section called “"Commercial” vs "Proprietary"” [121] for why this terminol ogy deserves scare quotes.

48

https://develop.github.com/
https://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
https://gitlab.com/
https://www.gitlabhost.com/
https://www.gitlabhost.com/
https://www.2ndwatch.com/
https://partners.gitlab.com/
https://code.librehq.com/
https://sourcehut.org/
https://sr.ht/

Technical Infrastructure

Codeberg (https://codeberg.org/)

Codeberg offers zero-cost project hosting for free and open source projects. It's run by a non-prof-
it organization in Germany that supports free (libre) culture, isfeatureful, and is under active de-
velopment as of |ate 2023. Codeberg's underlying platform is Forgejo (codeberg.org/forgejo/forge-
jo [https://codeberg.org/forgejo/forgejo]), which isitself a community fork made in reaction to

an unexpected corporate move in another free software project (see forgejo.org/2022-12-15-hel-
lo-forgejo [https://forgejo.org/2022-12-15-hello-forgejo/] for details).

Should you host your project on fully open source infrastructure? | can't answer that question for you,
sinceit ultimately depends on you and your project's philosophical positions. However, as a practi-

cal matter, | cannot say I've seen any evidence that the degree of software-freedom of the hosting plat-
form has much effect on a project's success. The vast majority of developers who work on free soft-
ware projects seem to be willing to participate through a non-free hosting platform when that's what
the project isusing.

Whether the hosting platform isitself free software or not, it is crucial to be able to interact with
project datain automatable ways, and to have away to export data out of the hosting platform. A site
that meets these criteria can never truly lock you in, and will even be somewhat extensible, viaits pro-
grammatic interface.

Of course, all the above applies only to the servers of the hosting site. Y our project itself should never
require participants to run proprietary software on their own machi nes.’

Anonymity and Involvement

A problem that is not strictly limited to the canned sites, but is most often found there, isthe over-re-
quirement of user registration to participate in various aspects of the project. The proper degree of re-
quirement isabit of ajudgement call. User registration helps prevent spam, for one thing, and even if
every commit gets reviewed you still probably don't want anonymous8 strangers pushing changesinto
your repository, for example.

But sometimes user registration ends up being required for tasks that ought to be permitted to unregis-
tered visitors, especially the ability to file tickets in the bug tracker, and to comment on existing tick-
ets. By requiring alogged-in username for such actions, the project raises the involvement bar for what
should be quick, convenient tasks. It also changes the demographics of who files bugs, since those
who take the trouble to set up a user account at the project site are hardly a random sample even from
among users who are willing to file bugs (who in turn are already a biased subset of all the project's
users). Of course, one wants to be able to contact someone who's entered data into the ticket tracker,
but having afield where she can enter her email address (if she wants to) would be sufficient for that.
If anew user spots a bug and wants to report it, she'll only be annoyed at having to fill out an account

"The exception to this s proprietary Javascript code that is received from the hosting site and run confined or "sandboxed" in one
tab in the user's browser. The question of whether such code is conceptually an extension of the server, or should be thought of as
running on the client machine even though in some senses it has more access to server resources than it does to client resources, isa
deep and ongoing debate. We won't settleit here, but theissueis at least more complex than just which CPU is executing the instruc-
tions.

8Pseudonymous is another matter. Aslong as a consistent identity has accrued reputation, you may not need to know who it actually
is.

49

https://codeberg.org/
https://codeberg.org/forgejo/forgejo
https://codeberg.org/forgejo/forgejo
https://codeberg.org/forgejo/forgejo
https://forgejo.org/2022-12-15-hello-forgejo/
https://forgejo.org/2022-12-15-hello-forgejo/
https://forgejo.org/2022-12-15-hello-forgejo/

Technical Infrastructure

creation form before she can enter the bug into the tracker. She may simply decide not to file the bug at
all.

If you have control over which actions can be done anonymously, make sure that at |east all read-on-
ly actions are permitted to non-logged-in visitors, and if possible that data entry portals, such asthe
bug tracker, that tend to bring information from users to developers, can also be used anonymously, al-
though of course anti-spam techniques, such as captchas, may still be necessary.

Message Forums / Mailing Lists

Not all projects need to use discussion forum software. For relatively small, focused projects that are
organized around a single code repository, the email gateway features of the bug tracker (as discussed
in the section called “Bug Tracker” [72] later in this chapter) may be enough to sustain most con-
versations. When a non-technical topic needs to be discussed, someone can just create an issue tick-

et — afake bug report, essentially — for the topic and conduct the discussion there. So if you think
your project will get along fine without forums, you can skip this section and just try that. It will be ob-
vious pretty quickly if you do need them.

Larger and more complex projects, however, will aimost always benefit from having dedicated discus-
sion forums. Thisis partly because there will be many conversations that are not attached to a specific
bug, and partly because the larger the project, the more important it is to keep the bug tracker focused

on actual bugs and have a separate place for other kinds of discussions.

For along time, discussion forums were mainly mailing lists, but the distinction between mailing lists
and Web-based forums s, thankfully, slowly disappearing. Services like Google Groups (https://group-
s.google.com/), which is not itself open source, and Discourse (http://www.discourse.org/), which is,
have established that cross-accessibility of message forums as mailing lists and vice versais the mini-
mum bar to meet, and modern discussion management systems reflect this.

Because of this nearly-completed unification between email lists and web-based forums?, I will use
the terms message forum and mailing list more or less interchangeably. They refer to any kind of mes-
sage-based forum where posts are linked together in threads (topics), people can subscribe, archives of
past messages can be browsed, and the forum can be interacted with viaemail or viaaweb browser.

If auser is exposed to any channel besides a project's web pages, it is most likely to be one of the
project's message forums. But before she experiences the forum itself, she will experience the process
of finding the right forum. Y our project should have a prominently-placed description of all the avail-
able public forums, to give newcomers guidance in deciding which ones to browse or post to first. A
typical such description might say something like this;

The mailing lists are the main day-to-day communication channels for the Scanley
community. You don't have to be subscribed to post to alist, but if it's your first time
posting (whether you're subscribed or not), your message may be held in a modera-
tion queue until a human moderator has a chance to confirm that the message is not
spam. We're sorry for this delay; blame the spammers who make it necessary.

SWhich was along time coming — see http://www.rants.org/2008/03/06/thread_theory/ for more. And no, I'm not too dignified to re-
fer to my own blog post.

50

https://groups.google.com/
https://groups.google.com/
http://www.discourse.org/
http://www.rants.org/2008/03/06/thread_theory/

Technical Infrastructure

Scanley has the following lists:
users {_AT_} scanley.org:

Discussion about using Scanley or programming with the Scanley API, suggestions
of possible improvements, etc. Y ou can browse the user s @archives at <<<link to
archive>>> or subscribe here: <<<link to subscribe>>>.

dev {_AT_} scanley.org:

Discussion about devel oping Scanley. Maintainers and contributors are subscribed to
thislist. You can browse the dev @archives at <<<link to archive>>> or subscribe
here: <<<link to subscribe>>>.

(Sometimes threads cross over between user s @and dev @ and Scanley's devel-
opers will often participate in discussions on both lists. In general if you're unsure
where a question or post should go, start it out on user s@ If it should be a develop-
ment discussion, someone will suggest moving it over to dev @)

announcements {_AT_} scanley. org:

Thisisalow-traffic, subscribe-only list. The Scanley developers post announce-
ments of new releases and occasional other news items of interest to the entire Scan-
ley community here, but followup discussion takes place on user s @or dev@
<<<link to subscribe>>>.

notifications {_AT_} scanley.org:

All code commit messages, bug tracker tickets, automated build/integration fail-
ures, etc, are sent to thislist. Most devel opers should subscribe: <<<link to sub-
scribe>>>,

Thereisaso anon-public list you may need to send to, although only developers are
subscribed:

security {_AT_} scanley.org:

Where the Scanley project receives confidential reports of security vulnerabilities.
Of course, the report will be made public eventually, but only after afix is released;
see our security procedures page for more [...]

Choosing the Right Forum Management Software

It's worth investing some time in choosing the right mailing list management system for your project.
Modern list management tools (some of which are listed later in the section called “Mailing List / Mes-
sage Forum Software” [59]) offer at least the following features:

Both email- and web-based access

Users should be able to subscribe to the forums by email, and read them on the web (where they
are organized into conversations or "threads’, just as they would be in a mailreader).

51

Technical Infrastructure

Moderation features

To "moderate" isto check posts, especialy first-time posts, to make sure they are not spam before
they go out to the entire list. Moderation necessarily involves human administrators, but software
can do agreat deal to make it easier on the moderators. There is more said about moderation in the
section called “ Spam Prevention” [52] later in this chapter.

Rich administrative interface

There are many things administrators need to do besides spam moderation — for example, remov-
ing obsolete addresses, atask that can become urgent when a recipient's address starts sending "l
am no longer at this address' bounces back to the list in response to every list post (though some
systems can even detect this and unsubscribe the person automatically). If your forum software
doesn't have decent administrative capabilities, you will quickly realizeit, and should consider
switching to software that does.

Header manipulation

Some people have sophisticated filtering and replying rules set up in their mail readers, and rely
on the forum adding or manipulating certain standard headers. See the section called “Identifica-
tion and Header Management” [54] later in this chapter for more on this.

Archiving

All posts to the managed lists are stored and made available on the web (see the section called
“Conspicuous Use of Archives’ [154] for more on the importance of public archives). Usual-

ly the archiver isa native part of the message forum system; occasionally, it is a separate tool that
needs to be integrated.

The point of the above list isreally just to show that forum management is a complex problem that has
already been given alot of thought, and to some degree been solved. Y ou don't need to become an ex-
pert, but you will haveto learn at least alittle bit about it, and you should expect list management to
occupy your attention from time to time in the course of running any free software project. Below welll
examine afew of the most common issues.

Spam Prevention
A mailing list that takes no spam prevention measures at all will quickly be submerged in junk emails,
to the point of unusability. Spam prevention is mandatory. It is really two distinct functions: preventing

spam posts from appearing on your mailing lists, and preventing your mailing list from being a source
of new email addresses for spammers’ harvesters.

Filtering posts

There are three basic techniques for preventing spam posts, and most mailing list software offers all
three. They are best used in tandem:

1. Only auto-allow postingsfrom list subscribers.

52

Technical Infrastructure

Thisiseffective asfar asit goes, and also involves very little administrative overhead, since it's
usually just amatter of changing a setting in the mailing list software's configuration. But note that
posts which aren't automatically approved must not be simply discarded. Instead, they should go in-
to a moderation queue, for two reasons. First, you want to allow non-subscribers to post: a person
with a question or suggestion should not need to subscribe to amailing list just to ask a question
there. Second, even subscribers may sometimes post from an address other than the one by which
they're subscribed. Email addresses are not a reliable method of identifying people, and shouldn't be
treated as such.

. Filter poststhrough spam-detection software.

If the mailing list software makesit possible (most do), you can have posts filtered by spam-filter-
ing software. Automatic spam-filtering is not perfect, and never will be, since there is a never-end-
ing arms race between spammers and filter writers. However, it can greatly reduce the amount of
spam that makes it through to the moderation queue. Since the longer that queue is the more time
humans must spend examining it, any amount of automated filtering is beneficial.

There is not space here for detailed instructions on setting up spam filters. Y ou will have to con-
sult your mailing list software's documentation for that (see the section called “Mailing List / Mes-
sage Forum Software” [59]). List software often comes with some built-in spam prevention fea-
tures, but you may want to add some third-party filters. I've had good experiences with SpamAssas-
sin (https://spamassassin.apache.org/). That is not acomment on the many other open source spam
filters out there, some of which are apparently also quite good; | just happen to have used SpamAs-
sassin myself and been satisfied with it.

. Moderation.

For mailsthat aren't automatically allowed by virtue of being from alist subscriber, and which
make it through the spam filtering software, if any, the last stage is moderation: the mail isrouted to
aspecia holding area, where a human examines it and confirms or rejectsit.

Confirming a post usually takes one of two forms: you can accept the sender's post just this once, or
you can tell the system to allow thisand all future posts from the same sender. Y ou almost always
want to do the latter, in order to reduce the future moderation burden — after all, someone who has
made avalid post to aforum is unlikely to suddenly turn into a spammer later.

Rejecting is done by either marking the item to be discarded, or by explicitly telling the system the
message was spam so the system can improve its ability to recognize future spams. Sometimes you
also have the option to automatically discard future mails from the same sender without them ever
being held in the moderation queue, but there israrely any point doing this, since spammers don't
send from the same address twice anyway.

Oddly, most message-forum systems have not yet given the moderation queue administrative in-
terface the attention it deserves, considering how common the task is, so moderation often still re-
quires more clicks and Ul gestures than it should. | hope this situation will improve in the future.
In the meantime, perhaps knowing you're not alone in your frustration will temper your disappoint-
ment somewhat.

53

https://spamassassin.apache.org/

Technical Infrastructure

Use the Moderation Channel Only for Moderation

Be sure to use moderation only for filtering out spams, and perhaps for clearly off-topic mes-
sages such as when someone accidentally posts to the wrong mailing list. Although the moder-
ation system may give you away to respond directly to the sender, you should never use that
method to answer questions that really belong on the mailing list itself, even if you know the an-
swer off the top of your head. To do so would deprive the project's community of an accurate
picture of what sorts of questions people are asking, and deprive people of a chance to answer
guestions themselves and/or see answers from others. (Thisisreally just aspecial case of the ad-
vice in the section called “ Avoid Private Discussions’ [31].) Mailing list moderation is strict-

ly about keeping the list free of spam and of wildly off-topic or otherwise inappropriate emails,
nothing more.

Identification and Header Management

When interacting with the forum by email, subscribers often want to filter mails from the list into cus-
tom inboxes. Their mail reading software can do this automatically by examining the mail's headers.
The headers are the fields at the top of the mail that indicate the sender, recipient, subject, date, and
various other things about the message. Certain headers are well known and are effectively mandatory:

From
To: ...
Subj ect :
Dat e:

Others are optional, though still quite standard. For example, emails are not strictly required to have
the

Reply-to: sender @nui | . address. here

header, but most do, because it gives recipients a fool proof way to reach the author (it is especially
useful when the author had to send from an address other than the one to which replies should be di-
rected).

Some mail reading software offers an easy-to-use interface for filing mails based on patternsin the
Subject header. This leads people to request that the mailing list add an automatic prefix to al Sub-
jects, so they can set their readers to look for that prefix and automatically file the mailsin the right
folder. Theideaisthat the original author would write:

Subj ect: Making the 2.5 rel ease.

but the mail would show up on the list looking like this:

Subj ect: [Scanl ey Discuss] Miking the 2.5 rel ease.

54

Technical Infrastructure

Although most list management software offers the option to do this, you may decide against turning
the option on. The problem it solves can often be solved in less obtrusive ways (see below), and there
isacost to eating space in the Subject field. Experienced mailing list users typically scan the Subjects
of the day'sincoming list mail to decide what to read and/or respond to. Prepending the list's name to
the Subject can push the right side of the Subject off the screen, rendering it invisible. This obscures
information that people depend on to decide what mails to open, thus reducing the overall functionality
of the mailing list for everyone.

Instead of munging the Subject header, people could take advantage of the other standard headers,
starting with the To header, which should say the mailing list's address:

To: <discuss@i sts.exanpl e.org>
Any mail reader that can filter on Subject should be ableto filter on To just as easily.

There are afew other optional -but-standard headers expected for mailing lists; they are sometimes
not displayed by most mailreader software, but they are present nonetheless. Filtering on them iseven
more reliable than using the "To" or "Cc" headers, and since these headers are added to each post by
the mailing list management software itself, some users may be counting on their presence:

Li st-Hel p: <mmilto:discuss-hel p@ists. exanpl e. org>

Li st - Unsubscri be: <mailto: di scuss-unsubscri be@i sts. exanpl e. org>

Li st-Post: <nmmilto:discuss@ists.exanple.org>

Li st-1d: <discuss.lists.exanple.org>

Delivered-To: mamiling list discuss@ists. exanple.org

Mai | i ng-List: contact discuss-hel p@ists.exanple.org; run by ezmi m

For the most part, they are self-explanatory. See http://www.nisto.com/listspec/list-manager-intro.html
for more explanation, or if you need the really detailed, formal specification, see http://www.fags.org/
rfcs/rfc2369.html.

Having said all that, these days | find that most subscribers just request that the Subject header in-
clude alist-identifying prefix. That's increasingly how people are accustomed to filtering email: Sub-
ject-based filtering is what many of the major online email services (like Gmail) offer users by default,
and those services tend not to make it easy to see the presence of less-commonly used headers like
the ones | mentioned above — thus making it less likely that people would even realize that they even
have the option of filtering on those other headers.

Therefore, reluctantly, | recommend using a Subject prefix (keep it as short as you can) when that's
what your community wants. But if your project highly technical and most of its participants are com-
fortable filtering on other headers, then do that and leave the Subject line undisturbed.

Some mailing list software offers an option to append unsubscription instructions to the bottom of
every post. If that option is available, turn it on. It causes only a couple of extralines per message, in a
harmless location, and it can save you alot of time, by cutting down on the number of people who mail
you — or worse, mail the list! — asking how to unsubscribe.

55

http://www.nisto.com/listspec/list-manager-intro.html
http://www.faqs.org/rfcs/rfc2369.html
http://www.faqs.org/rfcs/rfc2369.html

Technical Infrastructure

The Great Reply-to Debate

Earlier, in the section called “ Avoid Private Discussions’ [31], | stressed the importance of making
sure discussions stay in public forums, and talked about how active measures are sometimes needed to
prevent conversations from trailing off into private email threads; furthermore, this chapter is all about
setting up project communications software to do as much of the work for people as possible. There-
fore, if the mailing list management software offers away to automatically cause discussionsto stay on
thelist, you would think turning on that feature would be the obvious choice.

Weéll, not quite. Thereis such afeature, but it has some pretty severe disadvantages. The question of
whether or not to use it is one of the hottest debates in mailing list management — admittedly, not a
controversy that's likely to make the evening news in your city, but it can flare up from timeto timein
free software projects. Below, | will describe the feature, give the major arguments on both sides, and
make the best recommendation | can.

Thefeatureitself isvery simple: the mailing list software can, if you wish, automatically set the Re-
ply-to header on every post to redirect replies to the mailing list. That is, no matter what the original
sender puts in the Reply-to header (or even if they don't include one at all), by the time the list sub-
scribers see the post, the header will contain the list address:

Reply-to: discuss@ists.exanple.org

On its face, this seems like a good thing. Because virtually all mail reading software pays attention
to the Reply-to header, now when anyone responds to a post, their response will be automatically ad-
dressed to the entire list, not just to the sender of the message being responded to. Of course, the re-
sponder can still manually change where the message goes, but the important thing is that by default
replies are directed to the list. It's a perfect example of using technology to encourage collaboration.

Unfortunately, there are some disadvantages. The first is known as the Can't Find My Way Back Home
problem: sometimes the original sender will put their "real” email address in the Reply-to field, be-
cause for one reason or another they send email from a different address than where they receiveit.
People who always read and send from the same location don't have this problem, and may be sur-
prised that it even exists. But for those who have unusual email configurations, or who cannot con-

trol how the From address on their mails looks (perhaps because they send from work and do not have
any influence over the IT department), using Reply-to may be the only way they have to ensure that re-
sponses reach them. When such a person posts to a mailing list that she's not subscribed to, her setting
of Reply-to becomes essentia information. If the list software overwrites it, 2 she may never seethe
responses to her post.

The second disadvantage has to do with expectations, and in my opinion is the most powerful argu-
ment against Reply-to munging. Most experienced mail users are accustomed to two basic methods

of replying: reply-to-all and reply-to-author. All modern mail reading software has separate keys for
these two actions. Users know that to reply to everyone (that is, including the list), they should choose
reply-to-all, and to reply privately to the author, they should choose reply-to-author. Although you

O theory, the list software could add the list's address to whatever Reply-to destination were already present, if any, instead of
overwriting. In practice, for reasons | don't know, most list software overwritesinstead of appending.

56

Technical Infrastructure

want to encourage people to reply to the list whenever possible, there are certainly circumstances
where a private reply is the responder's prerogative — for example, they may want to say something
confidential to the author of the original message, something that would be inappropriate on the public
list.

Now consider what happens when the list has overridden the original sender's Reply-to. The respon-
der hits the reply-to-author key, expecting to send a private message back to the original author. Be-
cause that's the expected behavior, he may not bother to look carefully at the recipient addressin the
new message. He composes his private, confidential message, one which perhaps says embarrassing
things about someone on the list, and hits the send key. Unexpectedly, afew minutes later his message
appears on the mailing list! True, in theory he should have looked carefully at the recipient field, and
should not have assumed anything about the Reply-to header. But authors almost always set Reply-to
to their own personal address (or rather, their mail software setsit for them), and many longtime email
users have come to expect that. In fact, when a person deliberately sets Reply-to to some other address,
such asthelist, she usually makes a point of mentioning thisin the body of her message, so people
won't be surprised at what happens when they reply.

Because of the possibly severe consequences of this unexpected behavior, my own preference isto
configure list management software to never touch the Reply-to header. Thisis one instance where
using technology to encourage collaboration has, it seems to me, potentially dangerous side-effects.
However, there are also some powerful arguments on the other side of this debate. Whichever way you
choose, you will occasionally get people posting to your list asking why you didn't choose the other
way. Since thisis not something you ever want as the main topic of discussion on your list, it might be
good to have a canned response ready, of the sort that's more likely to stop discussion than encourage
it. Make sure you do not insist that your decision, whichever it is, is obviously the only right and sen-
sible one (even if you think that's the case). Instead, point out that thisis avery old debate, there are
good arguments on both sides, no choice is going to satisfy all users, and therefore you just made the
best decision you could. Politely ask that the subject not be revisited unless someone has something
genuinely new to say, then stay out of the thread and hope it dies a natural death. (See also the section
caled “Avoid Holy Wars® [147].)

Someone may suggest a vote to choose one way or the other. Y ou can do that if you want, but | per-
sonally do not feel that counting heads is a satisfactory solution in this case. The penalty for someone
who is surprised by the behavior is so huge (accidentally sending a private mail to apublic list), and
the inconvenience for everyone elseis fairly slight (occasionally having to remind someone to respond
to the whole list instead of just to you), that it's not clear that a majority should be able to put a minori-
ty at such risk.

| have not addressed all aspects of thisissue here, just the ones that seemed most important. For afull
discussion, see these two canonical documents, which are the ones people always cite when they're
having this debate:

» Leave Reply-to alone, by Chip Rosenthal
https://unicom.crosenthal .com/pw/reply-to-harmful .html
* Set Reply-totolist, by Smon Hill

https://web.archive.org/web/20090223102606/http://www.metasystema.net/essay s/reply-to.mhtml

57

https://unicom.crosenthal.com/pw/reply-to-harmful.html
https://web.archive.org/web/20090223102606/http://www.metasystema.net/essays/reply-to.mhtml

Technical Infrastructure

Despite the mild preference indicated above, | do not feel thereisa"right" answer to this qu&stion,11
and happily participate in many lists that do set Reply-to. The most important thing you can do is set-
tle on one way or the other early, and try not to get entangled in debates about it after that. When the
debate re-arises every few years, asit inevitably will, you can point people to the archived discussion
from last time.

Two Fantasies

Someday, someone will get the bright idea to implement a reply-to-list key in amail reader.

It would use some of the custom list headers mentioned earlier to figure out the address of the
mailing list, and then address the reply directly to thelist only, leaving off any other recipient
addresses, since most are probably subscribed to the list anyway. Eventually, other mail readers
will pick up the feature, and this whole debate will go away.

(Actually, the Mutt (http://www.mutt.org/) mail reader does offer this feature. Then shortly af-
ter the first edition of this book appeared, Michael Bernstein wrote meto say: "There are other
email clients that implement a reply-to-list function besides Mutt. For example, Evolution has
this function as a keyboard shortcut, but not a button (Ctrl+L).")

An even better solution would be for Reply-to munging to be a per-subscriber preference in the
list management software. Those who want the list to set Reply-to munged — either on posts
they receive or posts they send — could ask for that, and those who don't would ask for Reply-to
to be left alone. However, | don't know of any currently-maintained software that offersthison a
per-subscriber basis.

Archiving

Every discussion forum should be fully archived. It's common for new discussions to refer to old ones,
and often people doing an Internet search will find a solution to a problem by stumbling across a mes-
sage that had been casually posted to a mailing list by some stranger. Archives also provide history and
context for new users and devel opers who are becoming more involved in the project.

The technical details of setting up archiving are specific to the software that's running the forum, and
are beyond the scope of this book. If you need to choose or configure an archiver, consider these prop-
erties:

Prompt updating

People will often want to refer to an archived message that was posted recently. If possible, the
archiver should archive each post instantaneously, so that by the time a post appears on the mail-
ing list, it's already present in the archives. If that option isn't available, then at least try to set the
archiver to update itself every hour or so. (By default, some archivers run their update processes
once per night, but in practice that's far too much lag time for an active mailing list.)

11AIthough thereis, of course, aright answer, and it isto leave the original author's Reply-to untouched. The relevant standards doc-
ument, http://www.ietf.org/rfc/rfc2822.txt, says "When the 'Reply-To:' field is present, it indicates the mailbox(es) to which the au-
thor of the message suggests that replies be sent.”

58

http://www.mutt.org/
http://www.ietf.org/rfc/rfc2822.txt

Technical Infrastructure

Referential stability

Once amessage is archived at a particular URL, it should remain accessible at that exact same
URL forever. Even if the archives are rebuilt, restored from backup, or otherwise fixed, any URLs
that have aready been made publicly available should remain the same. Stable references make

it possible for Internet search engines to index the archives, which is a major boon to users look-
ing for answers. Stable references are also important because mailing list posts and threads are of -
ten linked to from other places, such as from the bug tracker (see the section called “Bug Track-
er” [72]) or from other project documents.

Ideally, mailing list software would include a message's archive URL, or at least the message-spe-
cific portion of the URL, in aheader or footer when it distributes the message to recipients. That
way people who have a copy of the message would be able to instantly know its archive location
without having to actually visit the archives, which would be helpful because any operation that
involves web browsing is automatically time-consuming. Whether any mailing list software ac-
tually offersthisfeature, | don't know; unfortunately, the ones | have used do not. However, it's
something to look for (or, if you write mailing list software, it's a feature to consider implement-
ing, please).

Thread support

It should be possible to go from any individual message to the thread (group of related messages)
that the original message is part of. Each thread should have its own URL too, separate from the
URLSs of the individual messagesin the thread.

Searchability

An archiver that doesn't support searching — on the bodies of messages, as well as on authors and
subjects — is close to useless. Note that some archivers support searching by simply farming the
work out to an external search engine such as Google. Thisis acceptable, but direct search support
isusually more fine-tuned, because it allows the searcher to specify that the match must appear in
asubject line versus the body, for example.

The aboveisjust atechnical checklist to help you evaluate and set up an archiver. Getting people to
actually use the archiver to the project's advantage is discussed in later chapters, in particular the sec-
tion called “ Conspicuous Use of Archives’ [154].

Mailing List / Message Forum Software

Here are some tools for running message forums. If the site where you're hosting your project already
has a default setup, then you can just use that and avoid having to choose. But if you need to install one
yourself, below are some possibilities. (Of course, there are probably other tools out there that | just
didn't happen to find, so don't take this as a complete list).

* Discour se — https://discourse.org/

Discourse was built to be the One True Discussion System for Web and mobile, and so far it seems
to beliving up to its promise. It is open source, supports both browser-based and email-based partic-
ipation in discussions, and is under active development with commercial support available. You can
purchase hosted discourseif you don't want to set up yourself.

59

https://discourse.org/

Technical Infrastructure

e Sympa — https.//www.sympa.org/

Sympa s developed and maintained by a consortium of French universities. It is designed for a giv-
en instance to handle both very large lists (> 1,000,000 members) and alarge number of lists. Sym-
pa can work with avariety of dependencies; for example, you can run it with sendmail, postfix,
gmail or exim as the underlying message transfer agent. It has built-in Web-based archiving.

e Mailman — http://www.list.org/

For many years, Mailman was the standard for open source project mailing lists. It comeswith a
built-in archiver and has hooks for plugging in external archivers. Mailman is very reliable in terms
of message delivery and other under-the-hood functionality, but its reputation suffered for awhile
because of various user interface issuesin its aging 2.x code base (especially for spam moderation
and subscription moderation), and delays in shipping its long-awaited 3.0 release.

However, Mailman 3.0 has now shipped, and is worth alook. It should solve many of the problems
of Mailman 2, and may make Mailman a reasonabl e choice again. This excellent article by Sumana
Harihareswara describes the major improvements: https://lwn.net/Articles/638090/.

» Google Groups— https://groups.google.com/

Listing Google Groups here was atough call. The serviceis not itself open source, and a few of

its administrative functions can be a bit hard to use. However, its advantages are substantial: your
group's archives are always online and searchable; you don't have to worry about scalability, back-
ups, or other run-time infrastructure issues; the moderation and spam-prevention features are pretty
good (with the latter constantly being improved, which isimportant in the neverending spam arms
race); and Google Groups are easily accessible via both email and web, in waysthat are likely to

be already familiar to many participants. These are strong advantages. If you just want to get your
project started, and don't want to spend too much time thinking about what message forum software
or service to use, Google Groupsis agood default choice.

Version Control

A version control system (or revision control system) is a combination of technologies and practices
for tracking and controlling changes to a project'sfiles, in particular to source code, documentation,
and web pages. If you have never used version control before, the first thing you should do is go find
someone who has, and get them to join your project. These days, everyone will expect at least your
project's source code to be under version control, and probably will not take the project serioudly if it
doesn't use version control with at least minimal competence.

The reason version control isso universal isthat it helps with virtually every aspect of running a
project: inter-developer communications, rel ease management, bug management, code stability and ex-
perimental development efforts, and attribution and authorization of changes by particular developers.
The version control system provides a central coordinating force across all of these areas. The core of
version control is change management: identifying each discrete change made to the project'sfiles, an-
notating each change with metadata like the change's date and author, and then replaying these facts to
whoever asks, in whatever way they ask. It is a communications mechanism where a change is the ba-
sic unit of information.

60

https://www.sympa.org/
http://www.list.org/
https://lwn.net/Articles/638090/
https://groups.google.com/

Technical Infrastructure

This section does not discuss all aspects of using aversion control system. It's so all-encompassing that
it must be addressed topically throughout the book. Here, we will concentrate on choosing and setting
up aversion control system in away that will foster cooperative devel opment down the road.

Version Control Vocabulary

This book cannot teach you how to use version control if you've never used it before, but it would be
impossible to discuss the subject without afew key terms. These terms are useful independently of any
particular version control system: they are the basic nouns and verbs of networked collaboration, and
will be used generically throughout the rest of this book. Even if there were no version control systems
in the world, the problem of change management would remain, and these words give us a language
for talking about that problem concisely.

If you're comfortably experienced with version control already, you can probably skip this section. If
you're not sure, then read through this section at least once. Certain version control terms have gradu-
ally changed in meaning since the early 2000s, and you may occasionally find people using themin in-
compatible ways in the same conversation. Being able to detect that phenomenon early in a discussion
can often be helpful.

"Version" Versus "Revision"

The word version is sometimes used as a synonym for “revision”, but | will not use it that way in
this book, because it is too easily confused with "version™ in the sense of a version of a piece of
software — that is, the release or edition number, asin "Version 1.0". However, since the phrase
"version control" is already standard, | will continue to use it as a synonym for "revision con-
trol" and "change control”. Sorry. One of open source's most endearing characteristicsis that it
has two words for everything, and one word for every two things.

commit

To make achangeto the project. More formally: to store a change in the version control database
in such away that it can be incorporated into future releases of the project. "Commit" can be used
asaverb or anoun. For example: "I just committed afix for the server crash bug people have been
reporting on Mac OS X. Jay, could you please review the commit and check that I'm not misusing
the alocator there?'

push

To publish acommit to a publicly online repository, from which others can incorporate it into their
copy of the project's code. When one says one has pushed a commit, the destination repository is
usualy implied. Usually it is the project’s authoritative repository, the one from which public re-
leases are made.

Note that in some older version control systems (e.g., Subversion), commits are automatically
and unavoidably pushed up to a predetermined central repository, while in most newer systems
(e.g., Git, Mercurial) the developer chooses when and where to push commits. Because the for-

61

Technical Infrastructure

mer privileges a particular central repository, they are known as "centralized" version control sys-
tems, while the latter are known as "decentralized". In general, decentralized systems are the mod-
ern trend,*? especially for open source projects, which benefit from the peer-to-peer relationship
between developers repositories.

pull

(or "update" or sometimes "fetch")

To pull others' changes (commits) into your copy of the project. When pulling changes from a
project's mainline development branch (see branch [64]), people often say "update” instead

of "pull", for example: "Hey, | noticed the indexing code is aways dropping the last byte. Isthisa
new bug?' "Yes, but it was fixed last week — try updating and it should go away."

Note that in Git, "pull" and "fetch" are somewhat different. To f et ch means to obtain the latest
changes from aremote repository (e.g., from the authoritative upstream repository) and store them
at the ready in your local repository, but without merging them locally — in essence, it means
"synchronize my local copy of the remote repository with the remote repository”. To pul | means
to fetch and then automatically merge the received changes locally (setting conflict markersif
there are conflicts). Opinions differ on whether it is better to fetch and then manually merge, or to
just pull every time; it depends both on your personal development style and on how the project as
awhole manages changes.

Degspite this difference, even in Git-based projects devel opers may colloquially say "fetch” to refer
to obtaining changes, without meaning f et ch specifically as opposed to pul | .

See al'so the section called “ Pull Requests/ Merge Requests’ [70].
commit message or log message

A bit of commentary attached to each commit, describing the nature and purpose of the commit
(both terms are used about equally often; I'll use them interchangeably in this book). Log mes-
sages are among the most important documents in any project: they are the bridge between the de-
tailed, highly technical meaning of each individual code changes and the more user-visible world
of bugfixes, features and project progress. Later in this section, we'll look at ways to distribute
them to the appropriate audiences; also, the section called “ Codifying Tradition” [157] discuss-
esways to encourage contributors to write concise and useful commit messages.

repository

A database in which changes are stored and from which they are published. In centralized ver-
sion control systems, there is a single, authoritative repository on a remote server; that repository
records all changes to the project, and each developer works with a snapshot of the latest version
on her own machine. In decentralized systems, each developer has her own repository, changes
can be swapped back and forth between repositories arbitrarily, and the question of which reposi-

Decentralized version control has actually been around for along time, but only relatively recently did it become the most popular
form of version control. It is now the assumed default, especially for open source — in both senses: that is, the version control sys-
tems are themselves open source, and are intended to be suitable for managing open source software projects.

62

Technical Infrastructure

tory is authoritative (that is, the one from which public releases are rolled) is defined purely by so-
cial convention, instead of by a combination of social convention and technical enforcement.

clone (see also checkout [63])
To obtain one's own devel opment repository by making a copy of the project's central repository.
checkout

When used in discussion, "checkout" usually means something like "clone", except that central-
ized systems don't really clone the full repository, they just obtain aworking copy or working

files [63]. When decentralized systems use the word "checkout”, they also mean the process of
obtaining working files from arepository, but since the repository islocal in that case, the user ex-
perienceis quite different because the network is not involved.

In the centralized sense, a checkout produces a directory tree called a "working copy" (see below),
from which changes may be sent back to the original repository.

working copy or working files

A developer's private directory tree containing the project's source code files, and possibly its web
pages or other documents, in aform that allows the developer to edit them. A working copy also
contains some version control metadata saying what repository it comes from, what branch it rep-
resents, and a few other things. Typically, each developer has her own working copy, from which
she edlits, tests, commits, pulls, pushes, etc.

In decentralized systems, working copies and repositories are usually colocated anyway, so the
term "working copy" isless often used. Developersinstead tend to say "my clone" or "my copy"
or sometimes "my fork".

revision, change, changeset, or (again) commit

A "revision" isaprecisely specified incarnation of the project at a point in time, or of a particular
file or directory in the project at that time. These days, most systems also use "revision", "change”,
"changeset”, or "commit” to refer to a set of changes committed together as one conceptual unit, if
multiple files were involved, though colloguially most people would refer to changeset 12's effect
onfileF as"revision 12 of F".

These terms occasionally have distinct technical meaningsin different version control systems, but
the general ideais always the same: they give away to speak precisely about exact pointsin time
in the history of afile or a set of files (say, immediately before and after a bug is fixed). For exam-
ple: "Oh yes, she fixed that in revision 10" or " She fixed that in commit fa4d58b1fac".

When one talks about afile or collection of files without specifying aparticular revision, itis gen-
erally assumed that one means the most recent revision(s) available.

diff

A textual representation of achange. A diff shows which lines were changed and how, plus afew
lines of surrounding context on either side. A developer who is already familiar with some code

63

Technical Infrastructure

can usually read a diff against that code and understand what the change did, and often even spot
bugs.

tag or snapshot

A label for aparticular state of the project at a point in time. Tags are generally used to mark inter-
esting snapshots of the project. For example, atag is usualy made for each public release, so that
one can obtain, directly from the version control system, the exact set of files/revisions comprising
that release. Tag names are often thingslike Rel ease_2_0,Del i very_20211009, etc.

branch

A copy of the project, under version control but isolated so that changes made to the branch
don't affect other branches of the project, and vice versa, except when changes are deliberately
"merged" from one branch to another (see below). Branches are aso known as "lines of develop-
ment". Even when a project has no explicit branches, development is still considered to be hap-
pening on the "main branch”, aso known asthe "main line" or "trunk” or sometimes "master".

Branches are away to keep different lines of development from interfering with each other. For
example, a short-term branch is typically used for a bugfix or a minor enhancement. Longer-term
branches can also be used for experimental development that would be too destabilizing for the
main line.

Conversely, abranch can also be used as a safely isolated place in which to stabilize a new re-
lease. During the release process, regular development — that is, frequent integration of devel-
opment branches — would continue uninterrupted in the main branch; meanwhile, on the release
branch, no changes are allowed except those approved by the rel ease managers. This way, making
arelease needn't interfere with ongoing devel opment work. See the section called “ Use Branches
to Avoid Bottlenecks’ [67] for amore detailed discussion of branching.

merge or port

To move a change from one branch to another. This includes merging from the main branch to
some other branch, or vice versa. In fact, those are the most common kinds of merges; it isless
common to port a change between two non-main branches. See the section called “ Singularity of
Information” [67] for more on change porting.

"Merge" has a second, related meaning: it iswhat some version control systems do when they see
that two people have changed the same file but in non-overlapping ways. Since the two changes
do not interfere with each other, when one of the people updates their copy of the file (already
containing their own uncommitted changes), the other person's changes will be automatically
merged in. Thisisvery common, especially on projects where multiple people are hacking on the
same code. When two different changes do overlap, the result is a"conflict"; see below.

conflict

What happens when two people try to make different changes to the same placein the code. All
version control systems automatically detect conflicts, and notify at least one of the humansin-
volved that their changes conflict with someone else's. It is then up to that human to resolve the
conflict, and to communicate that resolution to the version control system.

64

Technical Infrastructure

revert or reversion

To undo an already-committed change to the software. The undoing itself is a versioned event, and
isusually done by asking the version control system to reverse the change(s) in questions, rather
than by manually making the edits and committing them.

lock

A way to declare an exclusive intent to change a particular file or directory. For example, "I can't
commit any changes to the web pages right now. It seems Alfred has them all locked while he fix-
estheir background images." Not all version control systems even offer the ability to lock, and of
those that do, not all require the locking feature to be used. Thisis because parallel, simultaneous
development is the norm, and locking people out of filesis (usually) contrary to thisideal.

Version control systems that require locking to make commits are said to use the lock-modify-un-
lock model. Those that do not are said to use the copy-modify-merge model. An excellent in-depth
explanation and comparison of the two models may be found at https://svnbook.red-bean.com/
nightly/en/svn.basic.version-control-basics.html#svn.basic.vsn-models. In general, the copy-mod-
ify-merge model is better for open source development, and all the version control systems dis-
cussed in this book support that model.

Choosing a Version Control System

If you don't already have an opinion about which version control system your project should use, then
choose Git (https://git-scm.com/), and host your project's repositories at GitHub (https://github.conv),
which offers unlimited free hosting for open source projects.

Git is by now the de facto standard in the open source world, asis hosting one's repositories at GitHub.
Because so many developers are already comfortable with that combination, choosing it sends the sig-
nal that your project is ready for participants. But Git-at-GitHub is not the only viable combination.
Many projects host their authoritative Git repository somewhere else, either at another public host-

ing site (see the section called “Canned Hosting” [46]) or on their own server (perhaps using one

of the open source forge systems listed in the section called “Hosting on Fully Open Source Infras-
tructure” [48]). Some projects use a different version control system entirely, such as Mercurial
(https://www.mercuria -scm.org/).

There isn't space here for an in-depth exploration of why you might choose something other than Git.
If you have areason to do so, then you already know what that reason is. If you don't, then just use Git
(on either GitHub or GitLab). If you find yourself using something other than Git or Mercurial, ask
yourself why — because whatever that other version control system is, most other developers won't be
familiar with it, and it likely has a smaller community of support around it than those two do.

Using the Version Control System

The recommendations in this section are not targeted toward a particular version control system, and
should be implementable in any of them. Consult your specific system's documentation for details.

65

https://svnbook.red-bean.com/nightly/en/svn.basic.version-control-basics.html#svn.basic.vsn-models
https://svnbook.red-bean.com/nightly/en/svn.basic.version-control-basics.html#svn.basic.vsn-models
https://git-scm.com/
https://github.com/
https://www.mercurial-scm.org/

Technical Infrastructure

Version Everything

Keep not only your project’s source code under version control, but also its web pages, documenta-
tion, FAQ, design notes, and anything else that people might want to edit. Keep them right with the
source code, in the same repository tree. Any piece of information worth writing down is worth ver-
sioning — that is, any piece of information that could change. Things that don't change should be
archived, not versioned. For example, an email, once posted, does not change; therefore, versioning it
wouldn't make sense (unless it becomes part of some larger, evolving document).

The reason to version everything together in one place is so that people only have to learn one mech-
anism for submitting changes. Often a contributor will start out making edits to the web pages or doc-
umentation, and move to small code contributions later, for example. When the project uses the same
system for all kinds of submissions, people only have to learn the ropes once. Versioning everything
together also means that new features can be committed together with their documentation updates,
that branching the code will branch the documentation too, etc.

Don't keep generated files under version control. They are not truly editable data, since they are pro-
duced programmatically from other files. For example, some build systems create afile named con-
fi gur e based onatemplatein conf i gur e. i n. To make achangeto theconf i gur e, one would
edit conf i gur e. i n and then regenerate; thus, only the template conf i gur e. i nisan "editable
file." Just version the templates — if you version the generated files as well, people will inevitably for-
get to regenerate them when they commit a change to atemplate, and the resulting inconsistencies will
cause endless confusion.

There are technical exceptionsto the rule that all editable data should be kept in the same version con-
trol system as the code. For example, a project's bug tracker and itswiki hold plenty of editable data,
but usually do not store that datain the main version control system.'® However, they should still have
versioning systems of their own, e.g., the comment history in a bug ticket, and the ability to browse
past revisions and view differences between them in awiki.

Browsability

The project's repository should be browsable on the Web. This means not only the ability to see the lat-
est revisions of the project'sfiles, but to go back in time and look at earlier revisions, view the differ-
ences between revisions, read log messages for selected changes, etc.

Browsability isimportant becauseit is alightweight portal to project data. If the repository cannot be
viewed through a web browser, then someone wanting to inspect a particular file (say, to seeif acer-
tain bugfix had made it into the code) would first have to install version control client software locally,
which could turn their simple query from a two-minute task into a half-hour or longer task.

Browsability also implies canonical URLs for viewing a particular change (i.e., acommit), and for
viewing the latest revision at any given time without specifying its commit identifier. This can be
very useful in technical discussions or when pointing people to documentation or examples. If you tell
someone a URL that always points to the latest revision of the afile, or to a particular known revision,

13some devel opment environments have tried to integrate everything into one unified, version-controlled world, e.g., https://fos-
sil-scm.org/ and http://veracity-scm.com/, but so far none of them have gained widespread adoption in the open source world.

66

https://fossil-scm.org/
https://fossil-scm.org/
http://veracity-scm.com/

Technical Infrastructure

the communication is completely unambiguous, and avoids the issue of whether the recipient has an
up-to-date working copy of the code themselves.

Some version control systems come with built-in repository-browsing mechanisms, and in any case all
hosting sites offer it viatheir web interfaces. But if you need to install athird-party tool to get reposito-
ry browsing, do so; it'sworthiit.

Use Branches to Avoid Bottlenecks

Non-expert version control users are sometimes a bit afraid of branching and merging. If you are
among those peopl e, resolve right now to conquer any fears you may have and take the timeto learn
how to do branching and merging. They are not difficult operations, once you get used to them, and
they become increasingly important as a project acquires more devel opers.

Branches are valuable because they turn a scarce resource — working room in the project's code — in-
to an abundant one. Normally, all developers work together in the same sandbox, constructing the
same castle. When someone wants to add a new drawbridge, but can't convince everyone else that it
would be an improvement, branching makes it possible for her to copy the castle, take it off to an iso-
lated corner, and try out the new drawbridge design. If the effort succeeds, she can invite the other de-
velopers to examine the result (in GitHub-speak, thisinvitation is known asa"pull request" — seethe
section called “Pull Requests/ Merge Requests’ [70]). If everyone agrees that the result is good,

she or someone else can tell the version control system to move ("merge") the drawbridge from the
branch version of the castle over to the main version, usually called the main branch.

It's easy to see how this ability helps collaborative development. People need the freedom to try new
things without feeling like they're interfering with others work. Equally importantly, there are times
when code needs to be isolated from the usual development churn, in order to get a bug fixed or are-
lease stabilized (see the section called “ Stabilizing a Release” [177] and the section called “Main-
taining Multiple Release Lines’ [188]) without worrying about tracking a moving target. At the

same time, people need to be able to review and comment on experimental work, whether it's happen-
ing in the main branch or somewhere else. Treating branches as first-class, publishable objects makes
all this possible.

Use branches liberally, and encourage others to use them. But also make sure that a given branch is
only active for aslong as needed. Every active branch is a slight drain on the community's attention.
Even those who are not working in a branch still stumble acrossit occasionally; it enters their periph-
eral awareness from time to time and draws some attention. Sometimes such awareness is desirable,

of course, and commit notices should be sent out for branch commits just as for any other commit. But
branches should not become a mechanism for dividing the development community's efforts. With rare
exceptions, the eventual goal of most branches should be to merge their changes back into the main
line and disappear, as soon as possible.

Singularity of Information

Merging has an important corollary: never commit the same change twice. That is, agiven change
should enter the version control system exactly once. The revision (or set of revisions) in which the
change entered isits unique identifier from then on. If it needs to be applied to branches other than the
one on which it entered, then it should be merged from its original entry point to those other destina-

67

Technical Infrastructure

tions — as opposed to committing atextually identical change, which would have the same effect in
the code, but would make accurate bookkeeping and release management much harder.

The practical effects of this advice differ from one version control system to another. In some systems,
merges are special events, fundamentally distinct from commits, and carry their own metadata with
them. In others, the results of merges are committed the same way other changes are committed, so
the primary means of distinguishing a"merge commit" from a"new change commit" isin the log mes-
sage. In amerge'slog message, don't repeat the log message of the original change. Instead, just indi-
cate that thisis amerge, and give the identifying revision of the original change, with at most a one-
sentence summary of its effect. If someone wants to see the full log message, she should consult the
original revision. Non-duplication makes it easier to be sure when one has tracked down the original
source of a change: when you're looking at a complete |log message that doesn't refer to a some other
merge source, you can know that it must be the original change, and tresat it accordingly.

The same principle applies to reverting a change. If a change is withdrawn from the code, then the log
message for the reversion should merely state that some specific revision(s) is being reverted, and ex-
plain why. It should not describe the semantic code change that results from the reversion, since that
can be derived by consulting the original log message and diff. (And if you're using a system in which
editing or annotating past log messagesis possible, go back and fix the original change's log message
to mention the future reversion.)

All of the above implies that you should use a consistent syntax for referring to changes. Thisis help-
ful not only in log messages, but in emails, the bug tracker, and elsewhere. In Git and Mercurial, the
syntax is usually "commit c39fcac089" (where the commit hash code on the right islong enough to

be unique in the relevant context). In Subversion, revision numbers are linearly incremented integers
and the standard syntax for, say, revision 1729 is"r1729" (asyntax you'll see in some examplesin this
book). Other systems have their own standard syntaxes for expressing the changeset name. Whatev-
er the appropriate syntax isfor your system, encourage people to use it consistently when referring to
changes. Consistent expression of change names makes project bookkeeping much easier (as we will
see in Chapter 6, Communications [135] and in Chapter 7, Packaging, Releasing, and Daily Devel-
opment [170]). Since alot of this bookkeeping may be done by developers who must also use some
different bookkeeping method for internal projects at their company, it needs to be as easy as possible.

See also the section called “Releases and Daily Development” [189].

Authorization

Even if your project's version control system or hosting site allows technical enforcement of develop-
er's activity areas — e.g., permitting them to push commits in some places but not others — it's usualy
better to not to useit. Automated enforcement is rarely necessary, and may even be harmful.

Instead, most projects use an honor system: when a person is granted commit access, even for a sub-
area of the project, what they actually receive is the physical ability to commit anywhere in the author-
itative repository. They're just asked to keep their commitsin their area. (See the section called “ Com-
mitters’ [213] for how projects decide who can put changes where.)

Remember that thereislittle real risk here: the repository provides an audit trail, and in an active
project, all commits are reviewed anyway. |If someone commits where they're not supposed to, others

68

Technical Infrastructure

will notice it and say something. If a change needs to be undone, that's simple enough — everything's
under version control anyway, so just revert.

There are several advantages to this more relaxed approach. First, as devel opers expand into other ar-
eas (which they usually will if they stay with the project), there is no administrative overhead to grant-
ing them wider privileges. Once the decision is made, the person can just start committing in the new
arearight away.

Second, it allows such expansion to be done in a fine-grained manner. Generally, a committer in area
X who wants to expand to area Y will start posting patches against Y and asking for review. If some-
one who already has commit accessto area’Y sees such a patch and approves of it, she can just tell
the submitter to commit the change directly (mentioning the approver's name in the log message, of
course). That way, the commit will come from the person who actually wrote the change, which is
preferable from both an information management standpoint and from a crediting standpoint.

Last, and perhaps most important, using the honor system encourages an atmosphere of trust and mu-
tual respect. Giving someone commit access to a subdomain is a statement about their technical pre-
paredness — it says. "We see you have expertise to make commitsin a certain domain, so go for it."
But imposing strict authorization controls says: "Not only are we asserting a limit on your expertise,
we're also a bit suspicious about your intentions." That's not the sort of statement you want to make if
you can avoid it. Bringing someone into the project as a committer is an opportunity to initiate them
into a circle of mutual trust. A good way to do that isto give them more power than they're supposed
to use, then inform them that it's up to them to stay within agreed-on limits.

The Subversion project has operated on this honor system way for over two decades, with more than
50 full committers and over 100 partial committers as of thiswriting. (Not all of them are active at any
given time, but that just reinforces the point I'm making here.) The only distinction the system enforces
by technical meansisthe global distinction between committers and everyone else. All further subdi-
visions are maintained solely by human discretion. Y et the project never had a serious problem with
someone deliberately committing outside their domain. Once or twice there's been an innocent misun-
derstanding about the extent of someone's commit privileges, but it's always been resolved quickly and
amiably.

Obvioudly, in situations where self-policing is impractical, you must rely on hard authorization con-
trols. But such situations are rare. Even when there are millions of lines of code and hundreds or thou-
sands of developers, acommit to any given code module should still be reviewed by those who work
on that module,X* and they can recognize if someone committed there who wasn't supposed to. If reg-
ular commit review isn't happening, then the project has bigger problems to deal with than the autho-
rization system anyway.

In summary, don't spend too much time fiddling with technically-enforced authorization controls un-
less you have a specific reason to. It usually won't bring much tangible benefit, and there are advan-
tagesto relying on human controls instead.

None of this should be taken to mean that the socially-enforced restrictions themsel ves are unimpor-
tant, of course. It would be bad for a project to encourage people to commit in areas where they're not
qualified. Furthermore, in many projects, full (project-wide) commit permission has a special corollary

145ee the section called “ Practice Conspicuous Code Review” [34].

69

Technical Infrastructure

status: it implies voting rights on project-wide questions. This political aspect of commit areasisdis-
cussed more in the section called “Who Votes?’ [90].

Receiving and Reviewing Contributions

These days the primary means by which changes — code contributions, documentation contribu-

tions, etc — reach aproject isvia"pull requests" (described in more detail below), though some old-

er projects still prefer to receive a patch posted to amailing list or attached in a bug tracker. Once a
contribution arrives, it typically goes through a review-and-revise process, involving communication
between the contributor and various members of the project. At some point during the process, if all
goes well, the contribution is eventually deemed ready for incorporation into the main codebase and

is merged in. This does not mean that discussion and work on the contribution cease at that point. The
contribution may well continue to be improved, it's just that that improvement now takes place within
the project rather than off to one side. The moment when a code change is merged to the project's main
branch iswhen it becomes officially part of the project. It is no longer the sole responsibility of whoev-
er submitted it; it is the collective responsibility of the project asawhole.

Pull Requests / Merge Requests

A pull request (also called a merge request) is arequest from a contributor to the project for a certain
change to be "pulled” (i.e., merged) into the project — usually into the project's main branch, though
sometimes pull requests are targeted at some other branch.

The changeis offered in the form of the difference between the contributor's copy (or "clone") of the
project and the project's own copy. The two copies share most of their change history, of course, but at
acertain point the contributor's diverges — it contains the change the contributor has implemented and
that the project does not have yet. The project may aso have moved on since the clone was made and
contain new changes that the contributor does not have, but these can be ignored for the purposes of
discussion here. A pull request is directional: it is for sending changes the contributor has that the re-
celver does not, and is not about changes flowing in the reverse direction.

In practice, the two copies are usually stored on the same hosting site, and the contributor can initi-
ate the pull request by simply clicking a button. Creating a pull request automatically creates a track-
ing ticket that everyone can see, so that a pending pull request can use the same workflow as any oth-
er issue. Some projects aso have contributions enter through a collaborative code review tool, such

as https://en.wikipedia.org/wiki/Gerrit_%28software629 or https.//www.reviewboard.org/, and these
days project hosting sites include code-review features directly in their pull request management inter-

face anyway.

Pull requests are so frequent atopic of discussion that you will often see people abbreviate them as
"PR", asin"Yeah, your proposed fix sounds good. Would you post a PR and assign it to me for re-
view please?' For newcomers, however, theterm "pull request” is sometimes confusing, however, be-
cause it sounds like it is arequest by the contributor to pull a change from someone else, when actual -
ly it isarequest the contributor makes to the project to pull the change from the contributor. Some sys-
tems (e.g., GitLab) use the term "merge request” to mean the same thing. | actually find that term much
more natural, but alas, "pull request”, as popularized by GitHub, appears to have won, and we all need
tojust get used to it. I'm not bitter.

70

https://en.wikipedia.org/wiki/Gerrit_%28software%29
https://www.reviewboard.org/

Technical Infrastructure

Commit Notifications / Commit Emails

Every commit to the repository — or every push containing a group of commits — should generate a
notification that goes out to a subscribable forum, such as an email sent to amailing list. The notifica-
tion should show who made the change, when they made it, what files and directories changed, and the
actual content of the change.

The most common form of commit notificationsis to just subscribe to the repository itself, since the
hosting platform will send out notifications — usually by email, sometimes also by other means — for
interesting activity. Each developer gets to customize what counts as interesting for them. Alterna-
tively, some projects have amailing list dedicated to commit notifications. Each commit (or push, or
merge to the main branch) sends an automatic email to that list. Note that thisis a special mailing list
devoted to commit emails, separate from mailing lists to which humans post. Whatever forms of com-
mit notification your project arranges, each notification should make it easy for developersto proceed
from there to reviewing that commit or changeset (see the section called “ Practice Conspicuous Code
Review” [34]).

Whether your project should use an email list — either in addition to or instead of or some other kind
of subscribable natifications — depends on the demographics of your devel opers, but when in doubt,
email is usually agood default choice. The specifics of setting up notifications vary depending on the
version control system, but usually there's a script or other packaged facility for doing it. If you're hav-
ing trouble finding it, try looking for documentation on hooks (or sometimes triggers), specifically a
post-merge hook or post-commit hook. These hooks are a general means of launching automated tasks
in response to receiving changes. The hook isfed all the information about the merge, and isthen free
to use that information to do anything — for example, to send out an email.

With pre-packaged commit email systems, you may want to modify some of the default behaviors:

1. Some commit mailers don't include the actual diffsin the email, but instead provide a URL to view
the change on the web using the repository browsing system. While it's good to provide the URL,
so the change can be referred to later, it is also important that commit emails include the diffs them-
selves. Reading email is already part of people's routine, so if the content of the changeisvisible
right there in the commit email, developers will review the commit on the spot, without leaving
their mail reader. If they have to click on a URL to review the change, most won't do it, because
that requires a new action instead of a continuation of what they were already doing. Furthermore,
if the reviewer wants to ask something about the change, it's vastly easier to hit reply-with-text and
simply annotate the quoted diff than it isto visit aweb page and |aboriously cut-and-paste parts of
the diff from web browser to email client.

Of coursg, if the diff is huge, such as when alarge body of new code has been added to the reposi-
tory, then it makes sense to omit the diff and offer only the URL. Most commit mailers can do this
kind of size-limiting automatically. If yours can't, then it's still better to include diffs, and live with
the occasional huge email, than to leave the diffs off entirely. Convenient reviewing and comment-
ing is a cornerstone of cooperative development, and much too important to do without.

2. The commit emails should set their Reply-to header to the regular development list, not the commit
email list. That is, when someone reviews a commit and writes a response, their response should be

71

Technical Infrastructure

automatically directed toward the human development list, where technical issues are normally dis-
cussed.

There are afew reasons for this. First, you want to keep all technical discussion on onelist, because
that's where people expect it to happen, and because that way there's only one archive to search. Se-
cond, there might be interested parties not subscribed to the commit email list. Third, the commit
email list advertisesitself as a service for watching commits, not for watching commits and having
occasional technical discussions. Those who subscribed to the commit email list did not sign up for
anything but commit emails; sending them other material viathat list would violate an implicit con-
tract.

Note that this advice to set Reply-to does not contradict the recommendations in the section called
“The Great Reply-to Debate” [56]. It's always okay for the sender of a message to set Reply-to.

In this case, the sender isthe version control system itself, and it sets Reply-to in order to indicate
that the appropriate place for repliesis the devel opment mailing list, not the commit list.

Bug Tracker

Bug tracking is a broad topic, and various aspects of it are discussed throughout this book. Here I'll
concentrate mainly on the features your project should look for in a bug tracker, and how to use them.
But to get to those, we have to start with a policy question: exactly what kind of information should be
kept in abug tracker anyway?

The term bug tracker is misleading. Bug tracking systems are used to track not only bug reports, but
new feature requests, one-time tasks, unsolicited patches — really anything that has distinct beginning
and end states, with optional transition states in between, and that accrues information over itslife-
time. For this reason, bug trackers are also called issue trackers, ticket trackers, defect trackers, arti-
fact trackers, request trackers, etc.

In this book, I'll generally use the word ticket to refer the items in the tracker's database, because that
distinguishes between the behavior that the user encountered or proposed — that is, the bug or feature
itself — and the tracker's ongoing record of that discovery, diagnosis, discussion, and eventual resolu-
tion. But note that many projects use the word bug or issue to refer to both the ticket itself and to the
underlying behavior or goal that the ticket is tracking. (Those usages are in fact more common than
"ticket"; it'sjust that in this book we need to be able to make this distinction explicitly in away that
projects themselves usually don't.)

The classic ticket life cycle looks like this:

1. Someone filesthe ticket. They provide a summary, an initial description (including a reproduction
recipe, if applicable; see the section called “ Treat Every User as a Potential Participant” [202] for
how to encourage good bug reports), and whatever other information the tracker asks for. The per-
son who files the ticket may be totally unknown to the project — bug reports and feature requests
are as likely to come from the user community as from the devel opers.

Oncefiled, theticket isin what's called an open state. Because no action has been taken yet, some
trackers also label it as unverified and/or unstarted. It is not assigned to anyone; or, in some sys-

72

Technical Infrastructure

tems, it is assigned to a fake user to represent the lack of real assignation. At this point, itisina
holding area: the ticket has been recorded, but not yet integrated into the project's consciousness.

2. Othersread the ticket, add commentsto it, and perhaps ask the original filer for clarification on
some points.

3. The bug gets reproduced. This may be the most important moment in its life cycle. Although the
bug is not actually fixed yet, the fact that someone besides the original filer was able to make it hap-
pen proves that it is genuine, and, no lessimportantly, confirmsto the original filer that they've con-
tributed to the project by reporting areal bug. (This step and some of the others don't apply to fea
ture proposals, task tickets, etc, of course. But most filings are for genuine bugs, so we'll focus on
that here))

4. The bug gets diagnosed: its cause isidentified, and if possible, the effort required to fix it is estimat-
ed. Make sure these things get recorded in the ticket; if the person who diagnosed the bug suddenly
hasto step away from it for a while, someone else should be able to pick up where she left off.

In this stage, or sometimes in the previous one, a developer may "take ownership" of the tick-

et and assign it to herself (the section called “ Distinguish Clearly Between Inquiry and Assign-
ment” [195] examines the assignment process in more detail). The ticket's priority may aso

be set at this stage. For example, if it is so important that it should delay the next release, that fact
needs to be identified early, and the tracker should have some way of noting it.

5. Theticket gets scheduled for resolution. Scheduling doesn't necessarily mean naming a date by
which it will be fixed. Sometimes it just means deciding which future release (not necessarily
the next one) the bug should be fixed by, or deciding that it need not block any particular release.
Scheduling may also be dispensed with if the bug is quick to fix.

6. The bug getsfixed (or the task completed, or the patch applied, or whatever). The change or set of
changes that fixed it should be discoverable from the ticket. After this, the ticket is closed and/or
marked as resolved.

There are some common variations on thislife cycle. Often aticket is closed very soon after being
filed, because it turns out not to be abug at al, but rather a misunderstanding on the part of the user.
As aproject acquires more users, more and more such invalid tickets will comein, and devel opers will
close them with increasingly short-tempered responses. Try to guard against the latter tendency. It does
no one any good, as the individual user in each case is not responsible for al the previousinvalid tick-
ets; the statistical trend is visible only from the developers' point of view, not from the user's. (In the
section called “ Pre-Filtering the Bug Tracker” [75] we'll ook at techniques for reducing the num-

ber of invalid tickets.) Also, if different users are experiencing the same misunderstanding over and
over, it might mean that some aspect of the software needs to be redesigned. This sort of patternis eas-
iest to notice when there is a dedicated issue manager monitoring the bug database; see the section
called “Issue Manager” [209].

Another common life event for the ticket to be closed as a duplicate soon after Step 1. A duplicateis
when someone reports something that's already known to the project. Duplicates are not confined to
open tickets: it's possible for a bug to come back after having been fixed (thisis known as aregres-
sion), in which case areasonable courseis to reopen the original ticket and close any new reports as

73

Technical Infrastructure

duplicates of the original one. The bug tracking software keeps track of this relationship bidirectional-
ly, so that reproduction information in the duplicatesis available to the original ticket, and vice versa.

A third variation is for the devel opers to close the ticket, thinking they have fixed it, only to have the
original reporter reject the fix and reopen it. Thisis usually because the devel opers simply don't have
access to the environment necessary to reproduce the bug, or because they didn't test the fix using the
exact same reproduction recipe as the reporter.

Aside from these variations, there may be other small details of the life cycle that vary depending on
the tracking software. But the basic shape is the same, and while the life cycle itself is not specific to
open source software, it has implications for how open source projects use their bug trackers.

The tracker is as much a public face of the project as the repository, mailing lists or web pagas.15 Any-
one may file aticket, anyone may look at aticket, and anyone may browse the list of currently open
tickets. It follows that you never know how many people are waiting to see progress on a given tick-
et. While the size and skill of the development community constrains the rate at which tickets can be
resolved, the project should at least try to acknowledge each ticket the moment it appears. Even if the
ticket lingers for awhile, a response encourages the reporter to stay involved, because she feels that
ahuman has registered what she has done (remember that filing a ticket usually involves more effort
than, say, posting an email). Furthermore, once aticket is seen by a developer, it enters the project's
consciousness, in the sense that the devel oper can be on the lookout for other instances of the ticket,
can talk about it with other developers, etc.

This centrality to the life of the project implies afew things about trackers' technical features:

» Thetracker should be connected to email, such that every change to aticket, including itsinitia fil-
ing, causes a natification mail to go out to some set of appropriate recipients. See the section called
“Interaction with Email” [75] later in this chapter for more on this.

» Theform for filing tickets should have a place to record the reporter's email address or other contact
information, so she can be contacted for more details.'® But if possible, it should not require the re-
porter's email address or real identity, as some people prefer to report anonymously. See the section
called “ Anonymity and Involvement” [49] for more on the importance of anonymity.

« Thetracker should have APIs. | cannot stress the importance of this enough. If there is no way to in-
teract with the tracker programmatically, then in the long run there is no way to interact with it scal-
ably. APIs provide aroute to customizing the behavior of the tracker by, in effect, expanding it to
include third-party software. Instead of being just the specific ticket tracking software running on a
server somewhere, it's that software plus whatever custom behaviors your project implements el se-
where and plugsin to the tracker viathe APIs.

Also, if your project uses a proprietary ticket tracker, asis becoming more common now that so
many projects host their code on proprietary canned hosting sites and thus use that site's built-in
tracker, APIs provide away to avoid being locked in to that hosting platform. Y ou can, in theory,

5Indeed, as the section called “ Evaluating Open Source Projects’ [131] discusses, the bug tracker is actually the first place to
look, even before the repository, when you're trying to evaluate a project's overall health.
BEor logged-in users whom the system already knows, these details are automatically filled in, of course.

74

Technical Infrastructure

take the ticket history with you if you choose to go somewhere else (you may never exercise this op-
tion, but think of it as insurance — and some projects have actually doneit).

Fortunately, the ticket trackers of most major hosting sites have APIs.

Interaction with Email

Most trackers now have at |east decent email integration features: at a minimum, the ability to create
new tickets by email, the ability to "subscribe" to aticket to receive emails about activity on that ticket,
and the ability to add new comments to aticket by email. Some trackers even allow one to manipulate
ticket state (e.g., change the statusfield, the assignee, etc) by email, and for people who use the tracker
alot — such as an issue manager (see the section called “Issue Manager” [209]) — that can make a
huge difference in their ability to stay on top of tracker activity and keep things organized.

The tracker email feature that is likely to be used by everyone, though, is simply the ability to read
aticket's activity by email and respond by email. Thisis avauable time-saver for many peoplein
the project, since it makes it easy to integrate bug traffic into one's daily email flow. But don't et this
integration give anyone the illusion that the total collection of bug tickets and their email traffic is
the equivalent of the development mailing list. It's not, and the section called “ Choose the Right Fo-
rum” [159] discusses why thisisimportant and how to manage the difference.

Pre-Filtering the Bug Tracker

Most ticket databases eventually suffer from the same problem: a crushing load of duplicate or invalid
tickets filed by well-meaning but inexperienced or ill-informed users. The first step in combating this
trend is usually to put a prominent notice on the front page of the bug tracker, explaining how to tell if
abug isreally abug, how to search to see if it's already been reported, and finally, how to effectively
report it if one till thinksit's anew bug.

Thiswill reduce the noise level for awhile, but as the number of usersincreases, the problem will
eventually come back. No individual user can be blamed for it. Each oneisjust trying to contribute to
the project's well-being, and even if their first bug report isn't helpful, you still want to encourage them
to stay involved and file better tickets in the future. In the meantime, though, the project needs to keep
the ticket database as free of junk as possible.

The two things that will do the most to prevent this problem are: making sure there are people watch-
ing the bug tracker who have enough knowledge to close tickets as invalid or duplicates the moment
they come in, and requiring (or strongly encouraging) usersto confirm their bugs with other people be-
fore filing them in the tracker.

The first technique seems to be used universally. Even projects with huge ticket databases (say, the De-
bian bug tracker at https://bugs.debian.org/, which contained 996,003 tickets as of this writing) still
arrange things so that someone sees each ticket that comesin. It may be a different person depend-

ing on the category of the ticket. For example, the Debian project is a collection of software packages,
so Debian automatically routes each ticket to the appropriate package maintainers. Of course, users
can sometimes misidentify aticket's category, with the result that the ticket is sent to the wrong per-
son initially, who may then have to reroute it. However, the important thing is that the burden is till

75

https://bugs.debian.org/

Technical Infrastructure

shared — whether the user guesses right or wrong when filing, ticket watching is still distributed more
or less evenly among the developers, so each ticket is able to receive atimely response.

The second technique is less widespread, probably because it's harder to automate. The essential idea
isthat every new ticket gets "buddied” into the database. When a user thinks he's found a problem, he
is asked to describe it on one of the mailing lists, or in achat room, and get confirmation from some-
onethat it isindeed a bug. Bringing in that second pair of eyes early can prevent alot of spurious re-
ports. Sometimes the second party is able to identify that the behavior is not abug, or isfixed in recent
releases. Or she may be familiar with the symptoms from a previous ticket, and can prevent a duplicate
filing by pointing the user to the older ticket. Often it's enough just to ask the user "Did you search the
bug tracker to seeif it's already been reported?’ Many people simply don't think of that, yet are happy
to do the search once they know someone's expecting them to.

The buddy system can really keep the ticket database clean, but it has some disadvantages too. Many
people will file solo anyway, either through not seeing or through disregarding the instructions to find
abuddy for new tickets. Thusit is still necessary for some experienced participants to watch the tick-
et database. Furthermore, because most new reporters don't understand how difficult the task of main-
taining the ticket database is, it's not fair to chide them too harshly for ignoring the guidelines. The
watchers must be vigilant, yet exercise restraint in how they bounce unbuddied tickets back to their re-
porters. The goal isto train each reporter to use the buddying system in the future, so that thereisan
ever-growing pool of people who understand the ticket-filtering system. On seeing an unbuddied tick-
et, theidea steps are:

1. Immediately respond to the ticket, politely thanking the user for filing, but pointing them to the bud-
dying guidelines (which should, of course, be prominently posted on the web site).

2. If theticket is clearly valid and not a duplicate, approve it anyway, and start it down the normal life
cycle. After all, the reporter's now been informed about buddying, so there's no point closing avalid
ticket and wasting the work done so far.

3. Otherwise, if theticket is not clearly valid, closeit, but ask the reporter to reopen it if they get con-
firmation from a buddy. When they do, they should put a reference to the confirmation thread (e.g.,
aURL into the mailing list archives).

Remember that although this system will improve the signal/noise ratio in the ticket database over
time, it will never completely stop the misfilings. The only way to prevent misfilings entirely isto
close off the bug tracker to everyone but devel opers — a cure that is almost always worse than the dis-
ease. It's better to accept that cleaning out invalid tickets will always be part of the project's routine
maintenance, and to try to get as many people as possible to help.

See also the section called “Issue Manager” [209].

Real-Time Chat Systems

Many projects offer real-time chat roomsin which developers can have fast-turnaround conversations
with each other and with users. Such conversations often precede a bug report or some other kind of
more formal, tracked contribution.

76

Technical Infrastructure

For decades, the standard real-time chat system for open source projects was Internet Relay Chat
(IRC), which predates the World Wide Web and uses a text-based interface and command language.
Starting around 2014-2015, a number of open source projects began trying out newer, web-brows-
er-friendly chat systems, in particular the open source platforms https://zulip.org/, https.//matter-
most.org/, https://rocket.chat/, and the M atrix*’ protocol. (A few projects also experimented with the
proprietary online chat service Slack when it was new, but Slack hasn't been widely adopted by open
source projects and | wouldn't recommend it for them. In a post written when that early experimen-
tation was till under way, Drew DeVaullt lists some of the reasons why Slack isn't suitable: https://
drewdevault.com/2015/11/01/Please-stop-using-slack.html.

| don't know whether any of these new systems will emerge as the long-term default choice for open
source projects. Try looking at the open source chat systems used by similar projects and use that as
guidance in choosing yours. Matrix compatibility (sometimes referred to as Matrix "bridging" or hav-
ing a"Matrix bridge") is a good property to keep in mind, and if possible IRC bridging too, since some
developers still like to use their IRC clients with non-1RC server applications.

Chat Rooms and Growth

A chat server isusualy divided into virtual chat rooms. The chat application may call these "chan-
nels', or "streams’, or something else, but the concept is generally the same: a chat room is a shared
space in which everyone who isin that room can see every message posted to the room. Every project
maintains a certain set of advertised, topic-specific public rooms; these are the entry points into chat
for new partici pants18 Some projects maintain a"welcome" or "general” room specifically for new-
comersto start out in, with current project members watching that room in order to greet new arrivals,
but it's also fine to just have new people come directly into the regular rooms to ask their questions too.

Exactly how many rooms to have, and for what topics, will depend on your project, but it's best to start
out with asmall number of rooms — even just one — and only add more when it becomes clearly nec-
essary. Much of the value of real-time chat comes from people being together in the same rooms and
serendipitously seeing conversations between others. the section called “Handling Growth” [153]
discusses when and how to divide into more rooms.

Nick-Flagging and Notifications

Users who are new to such chat systems usually need some time to learn the conventions of real-time
written communications. While each project hasits own local customs, there is at least one convention
that seems to be common in almost all projects: nick-flagging for notification.

A user's nick is their nickname, their handle in the chat system. It might or might not be some form of
their real name, but in any caseiit is how they areidentified in chat. When you want to speak to that

Matrix is actually aprotocol and an open source reference implementation. The protocol is supported by an increasing number

of chat applications, including IRC as well as more modern systems. In the words of Julian Foad in https://issues.apache.org/ji-
ralbrowse/SV N-525#comment-17286477, "Matrix is a 'spiritual successor' to IRC, and truly Open, federated, and standardized. ... In
my opinion Matrix is very much the Right Way forward for all sorts of reasons." For more information, see https://matrix.org/ and
https://en.wikipedia.org/wiki/Matrix_(protocal).

1BWhen two or afew users wish to chat privately, it is sometimes said that they create a " private room". Such rooms are usually tem-
porary.

77

https://zulip.org/
https://mattermost.org/
https://mattermost.org/
https://rocket.chat/
https://drewdevault.com/2015/11/01/Please-stop-using-slack.html
https://drewdevault.com/2015/11/01/Please-stop-using-slack.html
https://issues.apache.org/jira/browse/SVN-525#comment-17286477
https://issues.apache.org/jira/browse/SVN-525#comment-17286477
https://matrix.org/
https://en.wikipedia.org/wiki/Matrix_(protocol)

Technical Infrastructure

person, you prefix your message with her handle (perhaps followed by a separator character such asa
colon). Her chat client, upon seeing her handle used in a message, notifies her by whatever means she
has configured — perhaps by flashing a notification popup on her screen (even when she does not have
the chat window in front of her right then), or perhaps viaan audible signal.

This notification only happens for messages that contain her handle, not for other messages. She may
still see those other messages go by if she happensto bein that chat room right then — devel opers of -
ten "lurk” in achat room just to see what's going on — but thanks to nick-flagging she can easily tell
the difference between messages addressed to her and other messages. A message can contain multiple
nicks, of course, in which case each of the corresponding people would be notified.

The ability for users to separate the conversations they are involved in from other conversationsis key
to successful use of real-time chat in open source projects. It is how alarge number of developers can
beina"room" and al talk "together" without getting their different streams of conversation entangled.
Each developer can tell which messages are specifically requesting her attention and which ones are
not. It is analogous to an observation Deaf people sometimes make about the advantage of communi-
cating with sign language instead of spoken language in a crowded room: as long as you have a clear
line of sight to your interlocutor, the "noisiness’ of the room (whether with signed or spoken language)
does not interfere much with your ability to maintain the conversation. Similarly, a chat room can be
very busy, but as long as everyone follows the convention of nick-flagging, people can simultaneously
participate in their own chats and keep an eye on whatever else they're interested in, at least to the limit
of their attentional capacity.®

Paste Rooms and Paste Sites

Normally, the fact that a chat room is a shared space is agood thing, as it allows people to jump
into a conversation when they think they have something to contribute, and allows spectators to
learn by watching. But it becomes problematic when someone has to provide alarge quantity of
information at once, such as alarge error message or a transcript from a debugging session, be-
cause pasting too many lines of output into the room may disrupt other conversations.

One solution is to have a dedicate chat room just for pastes. The user posts their transcript there,
then grabs the URL to that specific me&ﬂgezo and posts the URL in the origina chat room,
nick-flagging whoever should seeit.

Another solution isto set up a separate pastebin site, which is separate from the chat service op-
erates essentially as described above: the user posts their transcript to the paste site to create a
new paste, which in turn hasits own unique URL, which the user then presents back in the chat
room. Historically there have also been many public pastebin sites, so you might not need to set
up a dedicated one for your project, but note that public pastebin sites tend to be short-lived (my
guessisthat they get spammed alot and end up being expensive to maintain). As of this writing
in early 2022, https://hastebin.com/ is up and running. If you do need to set up your own, there
are many open source codebases available (including the code that backs hastebin: see https://
hastebin.com/about.md.

Pgee http://www.rants.org/2013/01/09/the-irc-curmudgeon/ for a more detailed examination of nick-flagging and some examples.
20Every message posted in an online chat has its own unique URL permalink, just as every comment in, say, a bug ticket does. See
the section called “Treat All Resources Like Archives’ [156] for more about this principle and itsimplications.

78

https://hastebin.com/
https://hastebin.com/about.md
https://hastebin.com/about.md
http://www.rants.org/2013/01/09/the-irc-curmudgeon/

Technical Infrastructure

Chat Bots

Chat rooms can have non-human members too, so-called bots, that provide automated services such as
answering frequently-asked questions. Typically, a bot is addressed just like any other member of the
channdl, that is, commands are delivered by "speaking to" the bot. No special server privileges arere-
quired to run abot. A bot isjust like any other user joining a channel.

People who spend enough time in chat learn how to manipulate these bots and use them to help oth-
ers. For example, when one user comes into a room and asks a common question, another more experi-
enced user may issue aterse command to the local bot telling it to provide that user with a specific de-
tailed answer that the bot has been previously told to remember.

If your chat rooms tend to get the same questions over and over, | highly recommend setting up a bot.
Only asmall percentage of channel userswill acquire the expertise needed to manipulate the bot, but
those users will answer a disproportionately high percentage of questions, because the bot enables
them to respond so much more efficiently. The exact command set and behaviors will differ among bot
implementations; unfortunately, the diversity of bot command languages seems to berivaled only by
the diversity of wiki syntaxes.

Commit Notifications in Chat

One particular kind of bot (also known as an "integration") watches the project's version control repos-
itory and broadcasts commit activity to the relevant chat rooms as it happens. While this offers less
technical utility than subscription-based commit notifications (see the section called “ Commit Notifi-
cations/ Commit Emails’ [71]), since interested observers might or might not be around when a
particular commit pops up in the room, it is of immense social utility. It gives people the sense of be-
ing part of something alive and active — they see progress happening right before their eyes. Because
the notifications appear in a shared space, people in the chat room will often react in real time, congrat-
ulating the committer, or asking a question related to the commit, or even reviewing the commit and
commenting on it on the spot.

The technical details up of setting this up are beyond the scope of this book, but | recommend learn-
ing how to enableit in your project's chat platform. It's worth the effort. Most of the major hosting
sites make thisintegration fairly easy to set up. In addition to "integration”, some key wordstotry in a
search are "hook", "trigger", and "extension".

Wikis
A well-run wiki can be awonderful thing for users and developers. Wikis offer the lowest possible bar-
rier-to-entry for those seeking to contribute to the project. You just click and edit — the wiki software

will keep track of the change, make sure you get credited, notify anyone who needs to be notified, and
immediately publish the new content to the world.

However, wikis aso require some centralized effort to maintain. When open source software project
wikis go bad, they usually go bad for the same reasons: lack of consistent organization and editing
(leading to a mess of outdated and redundant pages) and lack of clarity on who the target audience is
for agiven page or section.

79

Technical Infrastructure

From the outset, try to have a clear page organization strategy and even a pleasing visua layout, so that
visitors (i.e., potential editors) will instinctively know how to fit their contributions in. Make sure the
intended audienceis clear at all timesto all editors. Most importantly, document these standards in the
wiki itself and point people to them, so editors have somewhere to go for guidance. Too often, wiki ad-
ministrators fall victim to the fantasy that because hordes of visitors are individually adding high qual-
ity content to the site, the sum of all these contributions must therefore also be of high quality. That's
not how collaborative editing works. Each individual page or paragraph may be good when considered
by itsdlf, but it will not be good if embedded in a disorganized or confusing whole.

In general, wikis will amplify any failings that are present from early on, since contributors tend to im-
itate whatever patterns they see in front of them. So don't just set up the wiki and hope everything falls
into place. Prime it with well-written content, so people have atemplate to follow.

The shining example of awell-run wiki is Wikipedia, of course, but in many waysit's also a poor ex-
ample because it gets so much more editorial attention than any other wiki in the world. Still, if you
examine Wikipedia closely, you'll see that its administrators laid a very thorough foundation for coop-
eration. There is extensive documentation on how to write new entries, how to maintain an appropri-
ate point of view, what sorts of edits to make, what edits to avoid, a dispute resolution process for con-
tested edits (involving several stages, including eventual arbitration), and so forth. It aso has autho-
rization controls, so that if apage is the target of repeated inappropriate edits, senior editors can lock it
down until the problem is resolved. In other words, they didn't just throw some templates onto aweb
site and hope for the best. Wikipedia works because its editors give careful thought to getting thou-
sands of strangersto tailor their writing to a common vision. While you may not need the same level of
preparedness to run awiki for afree software project, the spirit is worth emulating.

Wikis and Spam

Never alow open, anonymous editing on your wiki. The days when that was possible are long gone
now; today, any open wiki other than Wikipediawill be covered completely with spam in approxi-
mately 3 milliseconds. (Wikipediais an exception only because it has an unusually large number of ed-
itors willing to clean up spam quickly, and because it has a well-funded organization behind it devot-
ed to fighting spam using various large-scale monitoring techniques not practically available to smaller
projects.)

All editsin your project's wiki should come from registered users; if your wiki software doesn't already
enforce this by default, then configure it to enforce that. Even then you may need to keep watch for
spam edits from users who registered under false pretenses for the purpose of spammi ng.21

Choosing a Wiki

If your project is on GitHub or some other free hosting site, it's usually best to use the built-in wiki fea-
ture that most such sites offer. That way your wiki will be automatically integrated with your reposito-
ry or other project permissions, and you can rely on the site's user account system instead of having a
separate registration system for the wiki.

2you may be able to allow editing by non-registered users if you put some spam countermeasures in place. For example, the Emacs
Wiki (https://www.emacswiki.org/) allows editing by anyone, but to submit your edit you must answer a question that a bot is unlike-
ly to be able to answer accurately.

80

https://www.emacswiki.org/

Technical Infrastructure

If you are setting up your own wiki, then you're free to choose which one, and fortunately there are
plenty of good free software wiki implementations available. I've had good experience with DokuWi-
ki (https://www.dokuwiki.org/dokuwiki), but there are many others. There is awonderful tool called
the Wiki Choice Wizard at http://www.wikimatrix.org/ that allows you to specify the features you care
about (an open source license can be one of them) and then view a chart comparing all the wiki soft-
ware that meets those criteria. Another good resource is Wikipedia's own page comparing different
wikis: https://en.wikipedia.org/wiki/Comparison_of wiki_software.

I do not recommend using MediaWiki (https://www.mediawiki.org) as the wiki software for most
projects. MediaWiki is the software on which Wikipediaitself runs, and whileit is very good at that,
its administrative facilities are tuned to the needs of a site unlike any other wiki on the Net — and ac-
tually not so well-tuned to the needs of smaller editing communities. Many projects are tempted to
choose Mediawiki because they think it will be easier for users who already know its editing syntax
from having edited at Wikipedia, but this turns out to be an almost non-existent advantage for several
reasons. First, wikisin general, including Wikipedia, are tending toward rich-text in-browser editing
anyway, so that no one really needs to learn the underlying wiki syntax unless they aim to be a power
user. Second, many other wikis offer aMediaWiki-syntax plugin, so you can have that syntax anyway
if you really want it. Third, for those who will use a plaintext syntax instead of rich-text editing, it's
better to use a standardized generic markup format like Markdown (https.//daringfireball.net/projects/
markdown/), which is available in many wikis either natively or viaa plugin, than to use any flavor of
wiki syntax. If you support Markdown, then people can edit in your wiki using the same markup syn-
tax they already know from GitHub and other popular tools.

Translation Infrastructure

Various online platforms now exist to help automate the organization and integration of human-lan-
guage trandation work in open source projects. "Translation work” here means not just the process of
tranglating the software's documentation, but also its run-time user interface, error messages, etc into
different languages, so that each user can interact with the software in their preferred language. (See
the section called “ Trandation Manager” [207] for more about this process.)

It is not strictly necessary to use a separate translation platform at all. Y our translators could work di-
rectly in the project's repository, like any other developer. But because trandlation is a specialized skill,
and trandators' methods are basically the same from project to project, the process is quite amenable to
being made more efficient through the use of dedicated tools. Web-based trandation platforms make it
easier for tranglators to get involved by removing the requirement that a translator (who may have lin-
guistic expertise but not development expertise) be comfortable with the project's devel opment tools,
and by providing aworking environment that is specially optimized for translation rather than for gen-
eral code devel opment.

Until 2013, the obvious recommendation for a platform would have been https.//transifex.com/,
which was both the premier software translation site and was open source software itself. However,
its main corporate sponsors switched to a closed, proprietary version in March 2013,%2 and devel op-
ment of the open source version stopped then. Transifex till offers zero-cost service for open source
projects, as does a competing proprietary platform called Lokalise. But your transdators may prefer to

225ee https://github.com/transifex/transifex-ol d-core/issues/206# ssuecomment-15243207 for more.

81

https://www.dokuwiki.org/dokuwiki
http://www.wikimatrix.org/
https://en.wikipedia.org/wiki/Comparison_of_wiki_software
https://www.mediawiki.org
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://transifex.com/
https://github.com/transifex/transifex-old-core/issues/206#issuecomment-15243207

Technical Infrastructure

invest their timein learning a fully open source platform, and there are several to choose from: https./
weblate.org/, http://zanata.org/, https.//trandatewiki.net/, and https://transl ations.launchpad.net/ (and
there are probably others | don't know about, so look around and ask in other trandation communities).

Internationalization (i18n) and Localization (110n)

The process of adapting software user interfaces for different groups of humans involves two
termsthat are easily confused: "internationalization” and "localization”.

Internationalization refers to the process of putting software source code into aform that al-
lows the program to be translated (or "localized" — see below). It includes, among other things,
marking all user-visible strings (interface texts, error messages, etc) so that they can be automat-
ically replaced by trandated versions when the software is deployed in a"locale”. The tranda
tions are supplied by humans, but internationalization is what allows those translations to be au-
tomatically integrated into the software.

Thus, internationalization does not involve performing any actua translation. Rather, it's about
putting the program into aform that allows translators, or "localizers’, to get to work.

118n is a common abbreviation for "internationalization”, since the word is so long to type. The
"18" refers to the number of letters between theinitial "i" and then final "n".

Localization, meanwhile, refers to supplying an actual translation into a specific language, as
well asto other changes needed for that audience (for example, conversion of measurement
units, monetary units, etc). Because it may involve more than just language change, the term is
"localization" rather than "translation™, and the destination — the intended audience — is called
alocale. A locale does not always correspond to geographic area or a political grouping. Local-
izing a program for Yiddish, for example, doesn't say anything about where it will be run nor by
whom, other than that they know Y iddish.

110nis likewise a common abbreviation for "localization", using the same scheme as "i18n".

See https://en.wikipedia.org/wiki/lInternationalization _and |ocalization for more information
about i18n and 110n.

Social Networking Services

Perhaps surprisingly for such social endeavors, open source projects typically make only limited use of
what most people think of as "socia networking" services. But this seeming omission is really a mat-
ter of definition: most of the infrastructure that open source projects have been using for decades, since
long before "social networking" became a recognized term, is actually social networking software even
if itisn't called that. The reason open source projects tend not to have much presence as projects on,
say, Facebook isjust that the services Facebook offers are not well-tuned to what open source projects
need. On the other hand, as you might expect, the infrastructure these projects have been using and im-
proving for many years is quite well-tuned to their needs.

82

https://weblate.org/
https://weblate.org/
http://zanata.org/
https://translatewiki.net/
https://translations.launchpad.net/
https://en.wikipedia.org/wiki/Internationalization_and_localization

Technical Infrastructure

Most projects do use Twitter and similar microblog services, because sending out short quips and
announcements that can be easily forwarded and replied to is a good way for a project to have con-
versations with its community; see LibreOffice's " @AskLibreOffice" tweet stream at https.//twit-
ter.com/AskLibreOffice for an example of this. Projects al so sometimes use services such as https://
www.eventbrite.com/ and https.//www.M eetup.com/ to arrange in-person meetings of users and devel-
opers.

But beyond lightweight services such as those, most free software projects do not maintain alarge
presence on mainstream social media platforms (though individual devel opers sometimes do, of

course, and often discuss the project there). The reward the project gets in exchange for that investment
of time and attention appears not to be high enough to be worth the effort.

83

https://twitter.com/AskLibreOffice
https://twitter.com/AskLibreOffice
https://www.eventbrite.com/
https://www.eventbrite.com/
https://www.Meetup.com/

Chapter 4. Social and Political
Infrastructure

Thefirst questions people usually ask about free software are "How does it work? What keeps a
project running? Who makes the decisions?' I'm always dissatisfied with bland responses about meri-
tocracy, the spirit of cooperation, running code speaking for itself, etc. The fact is, the question is not
easy to answer. Meritocracy, cooperation, and running code are all part of it, but they do little to ex-
plain how projects actually make decisions on a day-to-day basis, and say nothing about how conflicts
areresolved.

This chapter tries to show the structural properties successful projects have in common. | mean "suc-
cessful" not just in terms of technical quality, but in terms of operational health and survivability. Op-
erational health is the project's ongoing ability to incorporate new code contributions and new develop-
ers, and to be responsive to incoming bug reports. Survivability is the project's ability to continue inde-
pendently of any individual participant or sponsor — think of it as the likelihood that the project would
continue even if al of its founding members were to move on to other thi ngs.1

There are various ways to achieve thiskind of success. Some involve aformal governance struc-

ture, by which debates are resolved, new developers are invited in (and sometimes out), new features
planned, and so on. Others use aless formal structure, but more personal self-restraint on the part of
leaders, to produce an atmosphere of fairness that people can rely on as a de facto form of governance.
Both ways lead to the same result: a sense of institutional permanence, supported by habits and proce-
dures that are well understood by everyone who participates.

Forkability

The indispensable ingredient that binds devel opers together on a free software project, and makes them
willing to compromise when necessary, is the code's forkability: the ability of anyone to take a copy of
the source code and use it to start a competing project, known as a for k.2

The paradoxical thing is that the possibility of forksis usually a much greater force in free software
projects than actual forks are. Actual forks are very rare. Because afork is usually bad for everyone
(for reasons examined in detail in the section called “Forks’ [219]), the more serious the threat of a
fork becomes, the more willing people are to compromise to avoid it.

The potential for forksisthe reason there are no true dictators in free software projects. This may seem
like a surprising claim, considering how common it is to hear someone called the "dictator”" (some-
times softened to "benevolent dictator") in a given open source project. But thiskind of dictatorship is
special, quite different from our conventional understanding of the word. Imagine a ruler whose sub-

MThisis also known as the "Bus Factor", that is, how many participants would have to get hit by abus (figuratively speaking) for the
groj ect to be unable to continue. See https://en.wikipedia.org/wiki/Bus_factor.

Meaning a"hard fork", not the unrelated "development fork" that is often anormal part of the development cycle. See the section
called “"Development Forks' versus "Hard Forks'” [219] for more on this crucia distinction.

84

https://en.wikipedia.org/wiki/Bus_factor

Social and Political Infrastructure

jects could copy her entire territory at any time and move to the copy to rule as they see fit. Would not
such aruler govern very differently from one whose subjects were bound to stay under her rule no mat-
ter what she did?

Thisiswhy even projects that are not formally organized as democracies are, in practice, democracies
when it comes to important decisions.® Replicability implies forkability, and forkability implies con-
sensus. It may well be that everyone is willing to defer to one leader,* but this is because they choose
to do so, in asituation where they really do have freedom of choice.

The nominal "dictator" has no magical hold over the project. A key property of al open source licenses
isthat they do not give one party more power than any other in deciding how the code can be changed
or used. If the dictator were to suddenly start making bad decisions, there would be restlessness, fol-
lowed eventually by revolt and afork. Except, of course, that things rarely get that far, because the dic-
tator compromises first.

But just because forkability puts an upper limit on how much power anyone can exert in a project
doesn't mean there aren't important differences in how projects are governed. Y ou don't want every de-
cision to come down to the last-resort question of who might consider afork. That would get tiresome
very quickly, and sap energy away from real work. The next two sections examine different ways to
organi ze projects such that most decisions go smoothly. These two examples are somewhat idealized
extremes; many projects fall somewhere along a continuum between them.

Benevolent Dictators

The benevolent dictator model is exactly what it sounds like: final decision-making authority rests
with one person, who, by virtue of personality and experience, is expected to use it wisely.

Although "benevolent dictator” (or BD) isthe standard term for this role, it would be better to think of
it as "community-approved arbitrator” or "judge". Generally, benevolent dictators do not actually make
all the decisions, or even most of the decisions. It's unlikely that one person could have enough exper-
tise to make consistently good decisions across all areas of the project, and anyway, quality developers
won't stay around unless they have some influence in the project. Therefore, benevolent dictators com-
monly do not dictate much. Instead, they let things work themselves out through discussion and exper-
imentation whenever possible. They participate in those discussions themselves, but as regular devel-
opers, often deferring to an area maintainer who has more expertise in the question at hand. Only when
it is clear that no consensus can be reached, and that most of the group wants someone to make a deci-
sion so that development can move on, does she put her foot down and say "Thisis the way it's going
to be." Reluctance to make decisions by fiat isatrait shared by almost all successful benevolent dicta-
tors; it is one of the reasons they manage to keep therole.

Who Can Be a Good Benevolent Dictator?

3Though note that this still leaves alot of room for variety, and the goals of a project's main sponsors usually have a significant effect
on the project's structure and operating processes. As mentioned earlier in Chapter 1, Introduction [1], the report Open Source Arche-
types: A Framework For Purposeful Open Source (https://opentechstrategies.com/archetypes), is worth consulting if you want to un-
derstand more about this.

*The most famous example s probably Linus Torvaldsin Linux kernel development.

85

https://opentechstrategies.com/archetypes

Social and Political Infrastructure

Being a BD requires acombination of traits. It needs, first of al, awell-honed sensitivity to one's own
influence in the project, which in turn brings self-restraint. In the early stages of adiscussion, one
should not express opinions and conclusions with so much certainty that others feel likeit's pointless to
dissent. People must be freeto air ideas, even stupid ideas. It isinevitable that the BD will post a stu-
pid idea from time to time too, of course, and therefore the role also requires an ability to recognize
and acknowledge when one has made a bad decision — though thisisreally atrait that any good de-
veloper should have. The differenceis that the BD can afford to slip from time to time without worry-
ing about long-term damage to her credibility. Devel opers with less seniority may not feel so secure,
so the BD should phrase critiques or contrary decisions with some sensitivity for how much weight her
words carry, both technically and psychologically.

The BD does not need to have the sharpest technical skills of anyone in the project. She must be skilled
enough to work on the code herself, and to understand and comment on any change under considera-
tion, but that's all. The BD position is neither acquired nor held by virtue of intimidating coding skills.
What isimportant is experience and overall design sense — not necessarily the ability to produce good
design on demand, but the ahility to recognize and endorse good design when encountered.

It is common for the benevolent dictator to be a founder of the project, but thisis more a correlation
than a cause. The sorts of qualities that make one able to successfully start a project — technical com-
petence, ability to persuade other peopleto join, and so on — are also the qualities a BD would need.
And of course, founders start out with a sort of automatic seniority, which can often be enough to make
benevolent dictatorship by the founder be the path of least resistance for all concerned.

Remember that the potential to fork goes both ways. A BD can fork a project just as easily as anyone
else, and some have occasionally done so, when they felt that the direction they wanted to take the
project was different from where the majority of other developers wanted to go. Because of forkabil-
ity, it does not matter whether the benevolent dictator has control over the currently accepted author-
itative project repository. People sometimes talk of repository control as though it were the ultimate
source of power in aproject, but in fact it isirrelevant. The ability to add or remove people's commit
privileges for one project on a particular hosting site affects only that copy of the project on that site.
Prolonged abuse of that power, whether by the BD or someone else, would simply lead to devel opers
moving over to adifferent copy of the project.

Whether your project should have a benevolent dictator, or would run better with some less centralized
form of governance, largely depends on who is availableto fill therole. Asagenera rule, if it'ssimply
obvious to everyone who should be the BD, then that's the way to go. But if no candidate for BD isim-
mediately obvious, then the project should probably use a decentralized decision-making process, as
described in the next section.

Consensus-based Democracy

As projects get older, they tend to move away from the benevolent dictatorship model and toward
more openly democratic systems. Thisis not necessarily out of dissatisfaction with aparticular BD. It's
simply that group-based governance is more "evolutionarily stable", to borrow a biological metaphor.
Whenever a benevolent dictator steps down, or attempts to spread decision-making responsibility more
evenly, it is an opportunity for the group to settle on anew, non-dictatorial system — to establish a
congtitution, as it were. The group may not take this opportunity the first time, or the second, but even-

86

Social and Political Infrastructure

tually they will; once they do, the decision is unlikely ever to be reversed. It is easy to seewhy: if a
group of N people were to vest one of their number with special power, it would mean that N - 1 peo-
ple were choosing to decrease their individual influence. People usually don't want to do that. Even if
they did, the resulting dictatorship would still be conditional: the group anointed the BD, so clearly the
group could depose the BD. Therefore, once a project has moved from leadership by a charismatic in-
dividual to amore formal, group-based system, it rarely moves back.

The details of how these systems work vary widely, but there are two common elements. one, the
group works by consensus most of the time; two, thereis aformal voting mechanism to fall back on
when consensus cannot be reached.

Consensus simply means an agreement that everyone iswilling to live with. It is not an ambiguous
state: a group has reached consensus on a given question when someone proposes that consensus has
been reached and no one contradicts the assertion. The person proposing consensus should, of course,
state specifically what the consensus is and what actions would be taken in consequence of it (if they
are not obvious).

Most conversation in aproject is on technical topics, such as the right way to fix a certain bug, whether
or not to add a feature, how strictly to document interfaces, etc. Consensus-based governance works
well because it blends seamlessly with the technical discussion itself. By the end of a discussion, there
is often general agreement on what course to take. Someone will usually make a concluding post,
which is simultaneously a summary of what has been decided and an implicit proposal of consensus.
This provides alast chance for someone else to say "Wait, | didn't agree to that. We need to hash this
out some more."

For small, uncontroversial decisions, the proposal of consensusisimplicit. For example, when a de-
veloper spontaneously commits a bugfix, the commit itself isaproposal of consensus: | assume we all
agree that this bug needs to be fixed, and that thisis the way to fix it. Of course, the developer does
not actually say that; she just commits the fix, and the othersin the project do not bother to state their
agreement, because silence is consent. If someone commits a change that turns out not to have con-
sensus, the result will simply be that the project discusses the change as though it had not aready been
committed. The reason this works is the topic of the next section.

Version Control Means You Can Relax

The fact that the project's source code is kept under version control means that most decisions can

be easily unmade. The most common way this happensis that someone commits a change mistak-
enly thinking everyone will be happy with it, only to be met with objections after the fact. It istypi-

cal for such objectionsto start out with an obligatory apology for having missed out on prior discus-
sion, though this may be omitted if the objector finds no record of such a discussion in the mailing list
archives. Either way, thereis no reason for the tone of the discussion to be different after the change
has been committed than before. Any change can be reverted,” at least until dependent changes are in-
troduced (i.e., new code that would break if the original change were suddenly removed). Version con-

50f course, it's good manners and good sense to discuss before reverting. Reverting a change is not usually the way to start a conver-
sation about whether it should be reverted. There are sometimes situation where it may be appropriate to perform the reversion be-
fore the conversation about it has definitively concluded, but even then it's still important to have started the conversation first.

87

Social and Political Infrastructure

trol gives the project away to undo the effects of bad or hasty judgement. This, in turn, frees people to
trust their instincts about how much feedback is necessary before doing something.

This also means that the process of establishing consensus need not be very formal. Most projects han-
dieit by feel. Minor changes can go in with no discussion, or with minimal discussion followed by a
few nods of agreement. For more significant changes, especially ones with the potential to destabilize
alot of code, people should wait a day or two before assuming there is consensus, the rationale being
that no one should be marginalized in an important conversation simply because he didn't check email
frequently enough.

Thus, when someone is confident she knows what needs to be done, she should just go ahead and do it.
This applies not only to software fixes, but to web site updates, documentation changes, and anything
else unlikely to be controversial. Usually there will be only afew instances where an action draws dis-
approval, and these can be handled on a case-by-case basis. Of course, one shouldn't encourage people
to be headstrong. Thereis still a psychological difference between a decision under discussion and one
that has already taken effect but istechnically reversible. People aways feel that momentum is allied
to action, and will be dightly more reluctant to revert a change than to prevent it in the first place. If a
developer abuses this fact by committing potentially controversial changes too quickly, however, peo-
ple can and should complain, and hold that developer to a stricter standard until things improve.

When Consensus Cannot Be Reached, Vote

Inevitably, some debates just won't consense. When all other means of breaking a deadlock fail, the
solution isto vote. But before a vote can be taken, there must be a clear set of choices on the ballot.
Here, again, the normal process of technical discussion blends serendipitously with the project's de-
cision-making procedures. The kinds of questions that come to a vote often involve complex, multi-
faceted issues. In any such complex discussion, there are usually one or two people playing the role of
honest broker: posting periodic summaries of the various arguments and keeping track of where the
core points of disagreement (and agreement) lie. These summaries help everyone measure how much
progress has been made toward resolving the issues, and remind everyone of what questions remain to
be addressed. Those same summaries can serve as prototypes for a ballot sheet, should a vote become
necessary. If the honest brokers have been doing their job well, they will be able to credibly call for a
vote when the time comes, and the group will be willing to use a ballot sheet based on their summa-
ry of the issues. The brokers themselves may be participants in the debate; it is not necessary for them
to remain above the fray, aslong as they can understand and fairly represent others' views, and not let
their partisan sentiments prevent them from summarizing the state of the debate accurately.

The actual content of the ballot is usually not controversial. By the time matters reach avote, the dis-
agreement has usually boiled down to afew key issues, with recognizable labels and brief descriptions.
Occasionally a developer will object to the form of the ballot itself. Sometimes his concern is legiti-
mate, for example that an important choice was left off or not described accurately. But other times
adeveloper may be merely trying to stave off the inevitable, perhaps knowing that the vote probably
won't go hisway. See the section called “ Difficult People” [150] for how to deal with this sort of
obstructionism.

Remember to specify the voting method, as there are many different kinds, and people might make
wrong assumptions about which procedure is being used. A good choice in most casesis approval vot-

88

Social and Political Infrastructure

ing,6 whereby each voter can vote for as many of the choices on the ballot as she likes. Approval vot-
ing is simple to explain and to count, and comprehensihility is an important factor when choosing a
voting method.

Voting Systems

See https://en.wikipedia.org/wiki/V oting_system for more details about approval voting and
other voting systems, but beware the temptation to geek out on voting systems. | did, in the
course of researching this sidebar, and |'ve never been the same since. Y ou can try all sorts of
fancy voting methods, for example ones that involve scoring or preferential ranking of choic-
es— such as score voting, Borda, Condorcet, instant runoff, and single transferable vote — but
afamous result known as"Arrow's Impossibility Theorem™ (https://en.wikipedia.org/wiki/Ar-
row%27s _impossibility_theorem) has aready demonstrated that no voting system is perfect

(at least among a certain broad class of voting systems). Try to avoid getting into along debate
about which system to use, because, of course, you will then find yourself in a debate about
which voting system to use to choose the voting system!

Approval Voting, or maybe some form of Ranked Choice/ IRV, is usualy fine for the kinds of
ballots an open source project is likely to use to resolve technical or procedural questions.

Conduct votesin public as much as possibl e.” Thereis no need for secrecy or anonymity in avote
about matters that have been debated publicly anyway. Have each participant post her votes to the
project mailing list, so that any observer can tally and check the results for herself, and so that every-
thing is recorded in the archives. If you would like to use specialized software to conduct votes, var-
ious open source applications are available. As of thiswriting in 2022, Helios (https://vote.heliosvot-
ing.org/) isone that | know supports approval voting, and a quick search will turn up plenty of others.

When To Vote

The hardest thing about voting is determining when to do it. In general, taking a vote should be very
rare — alast resort for when all other options have failed. Don't think of voting as a great way to re-
solve debates. It isn't. It ends discussion, and thereby ends creative thinking about the problem. As
long as discussion continues, there is the possibility that someone will come up with a new solution
everyone likes. This happens surprisingly often: alively debate can produce a new way of looking at
the problem, and lead to a proposal that eventually satisfies everyone. Even when no new proposal
arises, it's still usually better to broker a compromise than to hold avote. After a compromise, every-
oneisalittle bit unhappy, whereas after a vote, some people are unhappy while others are happy. From
apolitical standpoint, the former situation is preferable: at least each person can feel she extracted a
price for her unhappiness. She may be dissatisfied, but so is everyone else.

Voting's only function is that it finally settles a question so everyone can move on. But it settlesby a
head count, instead of by rational dialogue leading everyone to the same conclusion. The more experi-

5Also called multiple approval, multiple preference or multiple preference approval.
"An exception is described in the section called * Adding New Maintainers’ [91].

89

https://en.wikipedia.org/wiki/Voting_system
https://en.wikipedia.org/wiki/Arrow%27s_impossibility_theorem
https://en.wikipedia.org/wiki/Arrow%27s_impossibility_theorem
https://vote.heliosvoting.org/
https://vote.heliosvoting.org/

Social and Political Infrastructure

enced people are with open source projects, the less eager | find them to be to resolve questions by vot-
ing. Instead they will try to explore previously unconsidered solutions, or compromise more severely
than they'd originally planned. Various techniques are available to prevent a premature vote. The most
obviousis simply to say "I don't think we're ready for avote yet," and explain why not. Another isto
ask for an informal (non-binding) show of hands. If the response clearly tends toward one side or an-
other, thiswill make some people suddenly more willing to compromise, obviating the need for afor-
mal vote. But the most effective way is simply to offer a new solution, or a new viewpoint on an old
suggestion, so that people re-engage with the issues instead of merely repeating the same arguments.

In certain rare cases, everyone may agree that al the compromise solutions are worse than any of the
non-compromise ones. When that happens, voting is |ess objectionable, both because it is more likely
to lead to a superior solution and because people will not be overly unhappy no matter how it turns out.
Even then, the vote should not be rushed. The discussion leading up to avote is what educates the elec-
torate, so stopping that discussion early can lower the quality of the result.

Note that this advice to be reluctant to call votes does not apply to routine or process-mandated votes.
For example, in the section called “ Stabilizing a Release” [177], voting is more of a communica-

tions mechanism, a means of registering one'sinvolvement in the change review process so that every-
one can tell how much review a given change has received. Another example would be procedural
elections, for example choosing the board of directors for a project organized as a non-profit legal enti-

ty.
Who Votes?

Having a voting system raises the question of electorate: who gets to vote? This has the potential to
be a sensitive issue, because it forces the project to officially recognize some people as being more in-
volved, or as having better judgement, than others.

One solution isto simply take an existing distinction, commit access (see the section called “ Commit-
ters’ [213]), and attach voting privilegesto it. In projects that offer both full and partial commit ac-
cess, the question of whether partial committers can vote largely depends on the process by which par-
tial commit accessis granted. If the project hands it out liberally, for example as away of maintain-
ing many third-party contributed toolsin the repository, then it should be made clear that partial com-
mit accessis just about committing, not voting. The reverse implication naturally holds as well: since
full committerswill have voting privileges, they must be chosen not only as programmers, but as mem-
bers of the electorate. If someone shows disruptive or obstructionist tendencies on the mailing list, the
group should be very cautious about making him a committer, even if the person istechnically skilled.

Not All Maintainers Are Coders

For many projects, it works out fine to have the set of committers and the set of voters be exactly the
same. But thisisn't appropriate for every project. There may be people who are very invested, and who
contribute alot, through means other than coding. People may provide legal help, or organize events,
or manage the bug tracker, or write documentation, or do any number of other things that are highly
valued in the project. They often may have alevel of influence in the community (and familiarity with
the community's dynamics) that exceeds that of many committers.

90

Social and Political Infrastructure

If valuable members of your community are being left out of important decisions just because those
people happen not to be coders, consider expanding the notion of committer to something more like
maintainer (see also Defining "Committer" and "Commit Access" [213]).8 For therest of this sec-
tion, I'll use that term. In projects where commit access and maintainership are synonymous, then it
just means the same thing as "committer”, but in other projects it might mean more than that. The pro-
cedures for adding new maintainers should be the same either way; it doesn't matter if they write code
or not — what mattersistheir good judgement and the trust of their peersin the project.

Adding New Maintainers

The voting system itself should be used to choose new voters, both full and partial. But here is one of
the rare instances where secrecy is appropriate. Y ou can't have votes about potential new maintainers
posted to a public mailing list, because the candidates feelings and reputations are on the line. Instead,
the usual way isthat an existing maintainer posts to a private mailing list consisting only of the other
maintainers, proposing that the candidate be invited to join. The other maintainers speak their minds
freely, knowing the discussion is private. Often there will be no disagreement, and therefore no formal
vote is needed. After waiting a few days to make sure every maintainer has had a chance to respond,
the proposer mails the candidate and makes the offer. If there is disagreement, discussion ensues as for
any other question, possibly resulting in a vote.

For this process to be open and frank, the mere fact that the discussion is taking place at all should be
secret. If the person under consideration knew it was going on, and then were never offered maintain-
ership, he could conclude that he had lost the vote, and would likely feel hurt. Of course, if someone
explicitly asksto be considered, then there is no choice but to take up the proposal and explicitly ac-
cept or reject him. If the latter, then it should be done as politely as possible, with a clear explanation:
"We liked your patches, but haven't seen enough of them yet," or "We appreciate all the work you did
for the conference, but you haven't been very active in the project since then, so we don't feel comfort-
able making you a maintainer just yet. We hope that this will change over time, though." Remember,
what you're saying could come as a blow, depending on the person's temperament or confidence level.
Try to seeit from their point of view as you write the message.

Because adding a new maintainer is more consequential than most other one-time decisions, some
projects have special requirements for the vote. For example, they may require that the proposal re-
ceive at least n positive votes and no negative votes, or that a supermajority vote in favor. The exact
parameters are not important; the main ideaisto get the group to be careful about adding new main-
tainers. Similar, or even stricter, specia requirements can apply to votes to remove a maintainer (see
the section called “ Revoking Commit Access’ [215]), though hopefully that will never be neces-
sary.

Polls Versus Votes

For certain kinds of votes, it may be useful to expand the electorate. For example, if the developers
simply can't figure out whether a given interface choice matches the way people actually use the soft-
ware, one solution isto ask to all the subscribers of the project's mailing liststo vote. These are really

8Some projects call this"member", which is also fine. Thereisn't aset term for it. | prefer "maintainer” because it implies responsi-
bility to the project, rather than belonging to a club.

91

Social and Political Infrastructure

polls rather than votes, but the devel opers may choose to treat the result as binding. Aswith any poll,
be sure to make it clear to the participants that there's a write-in option: if someone thinks of a better
option that was not offered in the poll questions, her response may turn out to be the most important re-
sult of the poll.

Vetoes

Some projects allow a specia kind of vote known as aveto. A veto isaway for adeveloper to put a
halt to a hasty or ill-considered change, at least long enough for everyoneto discuss it more. Think of
aveto as somewhere between a very strong objection and afilibuster. Its exact meaning varies from
one project to another. Some projects make it very difficult to override a veto; others alow them to be
overridden by regular majority vote, but after an enforced delay for more discussion. Any veto should
be accompanied by athorough explanation; a veto without such an explanation should be considered
invalid on arrival.

With vetoes comes the problem of veto abuse. Sometimes developers are too eager to raise the stakes
of disagreement by casting a veto, when redlly all that was called for was more discussion. Y ou can
prevent veto abuse by being very reluctant to use vetoes yourself, and by gently calling it out when
someone el se uses her veto too often. If necessary, you can also remind the group that vetoes are bind-
ing for only aslong as the group agrees they are — after al, if aclear majority of developers wants
X, then X is going to happen one way or another. Either the vetoing developer will back down, or the
group will decide to weaken the meaning of aveto.

Y ou may see people write "-1" to express aveto. This usage originally comes from the Apache Soft-
ware Foundation (which has a highly structured voting and veto process, described at https.//www.a
pache.org/foundation/vating.html), but has since spread to many other projects, albeit not always with
exactly the same formal meaning it has at the ASF. Technically, "-1" does not always indicate afor-
mal veto even according to the Apache standards, but informally it is usually taken to mean a veto, or
at least a very strong objection.

Like votes, vetoes can apply retroactively. It's not okay to object to a veto on the grounds that the
change in question has already been committed, or the action taken (unless it's something irrevocable,
like putting out a press release). On the other hand, a veto that arrives weeks or months late isn't likely
to be taken very seriously, nor should it be.

Writing It All Down

At some point, the number of conventions and agreements floating around in your project may become
so great that you need to record it somewhere. In order to give such a document legitimacy, make it
clear that it is based on mailing list discussions and on agreements already in effect. As you compose
it, link to the relevant threads in the mailing list archives, and whenever there's a point you're not sure
about, ask again. The document should not contain any surprises: remember, it is not the source of the
agreements, it ismerely a description of them. Of course, if it is successful, people will start citing it as
asource of authority initself, but that just meansit reflects the overall will of the group accurately.

Typically, this document lives at the top level of the repository tree, iswritten in asimple markup lan-
guage such as Markdown, and has a name like CONTRI BUTI NG. nrd or DEVEL OPMENT. nd.

92

https://www.apache.org/foundation/voting.html
https://www.apache.org/foundation/voting.html

Social and Political Infrastructure

Linking To Emails

When you link to an email thread in the archives, it's a good practice to give not only the
thread's URL, but the subject, sender name, and date of the first message in the thread (or at
least of some message in the thread). The reason isthat if the archive moves — this can happen
from time to time, for example because of a change in hosting provider — the URL alone will
usually not contain enough information to find the message or thread in its new location.

The same advice could apply to bug tickets too, but in practice bug trackers move less often than
mail archives do, and when a bug tracker moves the project usually manages to either preserve
the ticket numbers or make a mapping between old and new ticket numbers, so that old refer-
ences can be resolved with alittle extra effort. For various technical reasons, thisis harder to do
with emails and especially with threads, so the better solution isjust for referencesto include
enough information to do a search in the new archive if necessary. See aso the section called
“Conspicuous Use of Archives’ [154].

Thisisthe document alluded to in the section called “ Developer Guidelines’ [23]. Naturally, when the
project is very young, you will have to lay down guidelines without the benefit of along project histo-
ry to draw on. But as the devel opment community matures, you can adjust the language to reflect the
way things actually turn out.

Don't try to be comprehensive. No document can capture everything people need to know about par-
ticipating in a project. Many of the conventions a project evolves may remain forever unspoken, nev-
er mentioned explicitly yet adhered to by al. Other things are ssmply too obvious to be mentioned, and
would only distract from important but non-obvious material. For example, there's no point writing
guidelines like "Be polite and respectful to others on the mailing lists, and don't start flame wars," or
"Write clean, readable bug-free code." Of course these things are desirable, but since there's no con-
ceivable universe in which they are not desirable, they are not worth mentioning. If people are being
rude on the mailing list, or writing buggy code, they're not going to stop just because the project guide-
lines said to. Such situations need to be dealt with as they arise, not by blanket admonitions to be good.
On the other hand, if the project has specific guidelines about how to write good code, such asrules
about documenting every API in acertain format, then those guidelines should be written down as
thoroughly as possible.

A good way to determine what to include is to base the document on the questions that newcomers ask
most often, and on the complaints experienced devel opers make most often. This doesn't necessari-

ly mean it should turn into a FAQ sheet — it probably needs a more coherent narrative structure than
FAQs can offer. But it should follow the same reality-based principle of addressing the issues that ac-
tually arise, rather than those you anticipate might arise.

If the project is a benevolent dictatorship, or has officers endowed with special powers (president,
chair, whatever), then the document is also a good opportunity to codify succession procedures. Some-
times this can be as simple as naming specific people as replacements in case the BD suddenly leaves
the project for any reason. Generaly, if thereisaBD, only the BD can get away with naming a succes-
sor. If there are elected officers, then the nomination and election procedure that was used to choose
them in the first place should be described in the document. If there was no procedure originaly, then
get consensus on a procedure on the mailing lists before writing it down in an official place. People

93

Social and Political Infrastructure

can sometimes be touchy about hierarchical structures, so the subject needs to be approached with sen-
sitivity.

Perhaps the most important thing is to make it clear that the rules can be reconsidered. If the conven-
tions described in the document start to hamper the project, remind everyone that it is supposed to be a
living reflection of the group's intentions, not a source of frustration and blockage. If someone makes
ahabit of inappropriately asking for rules to be reconsidered every time the rules get in her way, you
don't always need to debate it with her — sometimes silence is the best tactic. If other people agree
with the complaints, they'll chimein, and it will be obvious that something needs to change. If no one
el se agrees, then the person won't get much response, and the rules will stay as they are.

Three good examples of project guidelines are the LibreOffice Development guide at https://wik-
i.documentfoundation.org/Development, the Subversion Community Guide, at https.//subversion.a
pache.org/docs/community-guide/, and the Apache Software Foundation governance documents, at
https://www.apache.org/foundation/how-it-works.html and https://www.apache.org/foundation/vot-
ing.html. The ASF isreally a collection of software projects, legally organized as a nonprofit corpo-
ration, so its documents tend to describe governance procedures more than devel opment conventions.
They're still worth reading, though, because they represent the accumulated experience of alot of open
source projects.

Joining or Creating a Non-Profit Organiza-
tion

Successful open source projects sometimes get to a point where they feel the need for some sort of
formal existence asalegal entity — to be able to accept donations (see Chapter 5, Organizations and
Money: Businesses, Non-Profits, and Governments [96] for discussion of how to handle incoming
funding), to purchase and maintain infrastructure for the project's benefit, to organize conferences and
developer meetups, to enforce trademarks, etc.

There may be afew exceptional circumstances where forming a new organization from scratch would
be the right solution, but for most projects it is much better to join an existing organization. There are
umbrella organizations whose purposeis to provide alega home for open source projects. Working
with multiple projects gives these organizations economies of scale and broad experience — any of
them would almost certainly do a better job of providing servicesto your project than your project
could manage if it started its own organization.

Here are some well-known and reputable umbrella organizations:
» Software Freedom Conservancy — https://sfconservancy.org/9
» Apache Software Foundation — https://apache.org/

* Eclipse Foundation — https://eclipse.org/

91 think the Software Freedom Conservancy is agood choice for most projects, which iswhy | listed it first. But | should add the dis-
closure that | served on their Evaluation Committee, a volunteer committee that eval uates projects applying to become members of
the Conservancy, for some time while revising this book for its 2nd edition. The recommendation of the Conservancy was already in
the in-progress text before | joined the committee.

94

https://wiki.documentfoundation.org/Development
https://wiki.documentfoundation.org/Development
https://subversion.apache.org/docs/community-guide/
https://subversion.apache.org/docs/community-guide/
https://www.apache.org/foundation/how-it-works.html
https://www.apache.org/foundation/voting.html
https://www.apache.org/foundation/voting.html
https://sfconservancy.org/
https://apache.org/
https://eclipse.org/

Social and Political Infrastructure

» Software in the Public Interest — http://spi-inc.org/
« Linux Foundation — http://collabprojects.linuxfoundation.org/

These are all based in the United States, but there are similar umbrella organizations outside the

U.S. — | just didn't know them well enough to make recommendations. If you're aU.S. reader, re-
member that the distinctions the U.S. tax code makes between different types of non-profit corpora-
tions, such as 501(c)(3) tax-exempt organizations vs 501(c)(6) trade associations, may not be meaning-
ful to people outside the U.S., and that the tax benefits available to donors under 501(c)(3) won't apply
to non-U.S. donors anyway.

If your project joins or creates a non-profit organization, make clear the separation between the le-

gal infrastructure and the day-to-day running of the project. The organization is there to handle things
the developers don't want to handle, not to interfere with the things the devel opers do want to handle
and are already competent to handle. Even if the non-profit becomes the official owner of the project's
copyrights, trademarks, and other assets, that shouldn't change the way decisions are made about tech-
nical questions, project direction, etc. A good reason to join one of the existing organizations is that
they already have experience with this distinction, and know how to fairly read the collective will of
the project even when there is controversy or strong disagreement. They also serve as a neutral place
for resolving disagreements about how to allocate the project's money or other resources. More than
one of the organizations listed above has had to play "project psychotherapist" on occasion, and their
ability to do so should be considered an advantage even by a healthy and smoothly functioning project.

95

http://spi-inc.org/
http://collabprojects.linuxfoundation.org/

Chapter 5. Organizations and
Money: Businesses, Non-Profits,
and Governments

This chapter examines how to use money and organizational capacity constructively in afree software
environment. It also discusses some of the adjustments an organization may need to make asit getsin-
volved in free software projects.

When an organi zation makes an investment in open source, people at al levels have to understand not
just how best to structure that investment, but the effects that long-term open source engagement will
have on the organization itself. Open source can be transformative — at least when done right. Thus,
while the material here should be useful for developers who are paid to work on open source projects,
it'sreally meant for managers and for executives making strategic decisions.

This chapter is not primarily about how to find funding sources for your open source project, though |
hope it will usefully inform that topic. There are many different ways open source projects are funded?,
just as there are many ways all human endeavors are funded. While open source is incompatible with
one particular business model — monopoly-controlled royalty streams based on per-copy sales— it is
compatible with al the others, and indeed is better suited to some of them than proprietary softwareis.

The Economics of Open Source

People are still sometimes surprised to learn that most free software is written by paid devel opers, not
by volunteers. But the economics that drive open source are actually quite straightforward: a company
needs a particular piece of software to be maintained and developed, and does not heed monopoly con-
trol of that software. Indeed, it would often be disadvantageous to have a monopoly, because then the
entire burden of maintenance would fall on that one company, instead of being shared with others who
have the same needs. For example, most companies have web sites and therefore need aweb server,
but almost no companies need exclusive control over the development of their web server, or intend to
sell copies of it on a proprietary basis. The sameis true of office software suites, operating system ker-
nels, network connectivity tools, educational programs, etc — just as historically it has also been true
of electric grids, roads, sewer systems, and other goods that everyone needs but no one needs to own.
Just as we expect road workers to be paid, we should expect software devel opers to be paid as well.

Even in the early days of free software, when the proportion of truly unpaid volunteers was probably
higher2 than it is now, there were aready developers who were paid for their work. Therewas also a
lot of informal subsidy, as there continues to be today. When a system administrator writes a network
analysistool to help her do her job, then postsit online and gets bug fixes and feature contributions
from other system administrators, what's happened is that an unofficial consortium has been formed.

15ee https://en.wikipedia.org/wiki/Business models for_open-source_software for an incomplete list.
2Thisis an educated guess— I'm not aware of any rigorous research into the question. | do know from personal experience and anec-
dotal evidence that at least some paid open source work was happening early on.

96

https://en.wikipedia.org/wiki/Business_models_for_open-source_software

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments
The consortium's funding comes from the sysadmins' salaries; its office space and network bandwidth
are donated, albeit unknowingly, by the organizations those people work for. Those organizations also
benefit from the investment, of course, though they may or may not be institutionally aware of it.

Today such efforts are often more formalized. Corporations have become conscious of the benefits of
open source software, and now involve themselves intentionally in its development. Developers too
have come to expect that really important projects will attract funding in one way or another. The key
guestion is how the hierarchical command structures of corporations and the polyarchical, non-coer-
cive communities of free software projects can work productively with each other — and how they can
agree on what "productively" means.

Financial backing is generally welcomed by open source development communities. Having paid de-
velopers means that bug reports are more likely to be listened to, that needed work is more likely to get
done, and that the project will be less vulnerable to the Forces of Chaos (e.g., a key developer sudden-
ly losing interest) that lurk at the edges of every collaborative endeavor. One important dynamic is that
credibility is contagious, to a point. When alarge company visibly backs an open source project, peo-
ple assume the project will receive adequate support in its early stages and have the chance to succeed
or fail on itslong-term merits; other participants resultant willingness to invest in the project can then
make this a self-fulfilling prophecy.

However, money can also bring a perception of control. If not handled carefully, this can divide a
project into in-group and out-group developers. If devel opers who aren't officially paid to work on the
project get the impression that design decisions or feature additions are simply available to the high-
est bidder, they'll leave for a project that seems more like a meritocracy and less like unpaid labor for
someone else's benefit. They may never complain overtly on the mailing lists. Instead, there will sim-
ply be less and less noise from sources outside the main funded group, as the "out" developers gradual-
ly stop trying to be taken seriously. The buzz of small-scale contribution may continue, in the form of
bug reports and occasional small fixes. But there will be fewer and fewer large code contributions from
unexpected sources, fewer unexpected opinions offered in design discussions, fewer bug reports that
reveal unexpected new uses of the software, and so on. People sense what's expected of them, and live
up (or down) to those expectations.

So money needs to be used carefully, and without communicating an intent to control. But it can still
buy influence. Thetrick isthat it doesn't buy influence directly. Instead, it buys development credibili-
ty, which is convertible to influence through the project's decision-making procaasas.3

In astraightforward commercial transaction, you trade money for what you want, because your coun-
terparty has enough control to guarantee the delivery of the goods. If you need a feature added, you
sign a contract, pay for it, and (if al goes well) the work gets done and the feature eventually landsin
the product.

In an open source project, the process is more complex. Y ou may sign a contract with some devel-
opers, but they'd be fooling themselves — and you — if they guaranteed that the work you paid for
would be accepted by the devel opment community simply because you paid for it. The work can on-

3The report Open Source Archetypes: A Framework For Purposeful Open Source (https://opentechstrategies.com/archetypes), as
mentioned earlier in Chapter 1, Introduction [1], may be worth alook if you're trying to understand the ways in which a project
should be subject to influence and by whom.

97

https://opentechstrategies.com/archetypes

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments
ly be accepted based on its own merits and on how it fits into the community's vision for the software
(see the section called “ Contracting” [107] and the section called “Hiring Open Source Develop-
ers’ [129]). Y ou may have some say in that vision, but you won't be the only voice.

But although money can't purchase influence directly in an open source project, it can purchase things
that lead to influence. The most obvious example is programmers. If you hire good programmers, and
they stick around long enough to get experience with the software and credibility in the community,
then they can influence the project by the same means as any other member. They will have avote, or
if there are many of them, they will have avoting bl ock.? If they are respected in the project, they will
have influence beyond just their votes. There is no need for paid developers to disguise their motives,
either. After al, everyone who wants a change made to the software wantsit for areason. Y our com-
pany's reasons are no less legitimate than anyone else's. It's just that the weight given to your compa-
ny's goals will be determined by its representatives’ status in the project, rather than by your company's
size, budget, or business plan.®

Goals of Corporate Involvement

There are many different reasons open source projects get corporate support. Thelist below isjust a
high-level survey, and theitemsin it aren't mutually exclusive — often a project's financial backing
will result from several, or even al, of these motivations:

Share the burden

Separate organizations with related needs often find themselves duplicating effort, either by redun-
dantly writing similar code in-house or by purchasing similar products from proprietary vendors.
Astheinefficiency becomes apparent to the different parties, they may pool their resources — of -
ten gradually, without at first realizing the overall trgjectory of the process — and create or join

an open source project tailored to their needs. The advantages of doing so are obvious: the costs

of development are divided, but the benefits accrue to al. Although this scenario might seem most
intuitive for nonprofits, in practice it happens often among for-profit competitors too.

Ensure maintenance of product infrastructure
When a company sells services which depend on, or are made more attractive by, particular open

source programs, it is naturally in that company's interests to ensure those programs are actively
maintai ned.

“Even though actual votes may be rare, as noted in the section called “ Consensus-based Democracy” [86], the possibility of avote
has great implicit power, so membership in the electorate is still important even if no vote is ever held.

SWhen companies need to guarantee that certain features and bug fixes land in a specified amount of time, they accomplish this by
keeping their own copy of the project (ideally also public and under open source license), and merging it from time to time with the
separate upstream project that has its own independent governance. Google's Android operating system is a classic example: Google
maintainsits own copy (or copies) of Android, which it governs asiit pleases, and from time to time merges changes to or from the
main Android Open Source Project (https://en.wikipedia.org/wiki/Android_%28operating_system%29#0Open-source_community).
Essentially, Google is on a very long copy-modify-merge loop with respect to main the open source project, and vice versa. Itisin
neither side's interests to permanently diverge from the other.

98

https://en.wikipedia.org/wiki/Android_%28operating_system%29#Open-source_community

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

Establish a standard

Often a corporation has strategic reasons to establish atechnical standard. Releasing an open
source implementation of that standard, and shepherding the software into widespread use, is usu-
ally the most effective way to get buy-in from others for the standard.

Create an ecosystem

For investors who like to think big, the right open source effort can create a new ecosystem — one
in which those investors are more likely to flourish.

Support hardware sales

The value of computers and computer componentsiis directly related to the amount of software
available for them. Hardware vendors — not just whole-machine vendors, but also makers of pe-
riphera devices and microchips — have found that having high-quality free software to run on
their hardware isimportant to customers.

Undermine a competitor

Sometimes companies support a particular open source project as a means of undermining a com-
petitor's product, which may or may not be open source itself. Eating away at a competitor's mar-
ket shareis usually not the sole reason for getting involved with an open source project, but it can
be afactor.

Marketing

Having your company associated with a popular open source application can be good brand man-
agement, not just in the eyes of customers but in the eyes of potential employees.

Proprietary relicensing

Proprietary relicensing is the practice of offering software under a proprietary license for cus-
tomers who want to resell it as part of a proprietary application of their own, and simultaneously
under afree license for those willing to use it under open source terms. If the open source devel-
oper community is active, the software gets the benefits of wide-area debugging and development,
yet the company still gets aroyalty stream to support some full-time programmers.

Proprietary relicensing is controversial because it is not a open source" model, but rather yokes
funding for open source development to a monopoly-based revenue stream. Whether thisisa
problem for you depends on where you fall on the "open sourceisjust away of software devel-
opment" to "open source isaway of life" spectrum. The presence of revenue from a proprietary
version does not necessarily mean that the free software version is worse off, and some very well-
known and widely-used free software has had corresponding proprietary versions (M ySQL6 is
probably the most famous example). However, some developers didlike the thought that their con-
tributions may end up in the proprietary version. Also, the mere presence of the proprietary ver-
sion suggests the possibility that some of the best salaried devel opers' attention is going to the

6https//en.wi kipedia.org/wiki/MySQL

99

https://en.wikipedia.org/wiki/MySQL

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments
proprietary code, not the open source code. Thistends to undermine other developers faith in
the open source project, which in turn makes it difficult to develop atruly flourishing ecosystem
around the open source version.

None of is meant to persuade you not to do proprietary relicensing. Y ou should just be aware that
this strategy is unlike the other business approaches I've listed here, that it requires more care and
sophistication to manage successfully, and that it is usually incompatible with the presence of a
committed and involved ecosystem of developers from outside your organization, particularly de-
velopers who might have their own commercial motivations.

A funder's business model is not the only factor in how that funder relates to an open source communi-
ty. The historical relationship between the two also matters: did the company start the project, or did it
join an existing development effort? In both cases, the funder will have to earn credibility, but, not sur-
prisingly, there's a bit more earning to be done in the latter case. The organization needs to have clear
goals with respect to the project. Isit trying to keep a position of leadership, or simply trying to be one
voice in the community, to guide but not necessarily govern the project's direction? Or maybe it just
wants to have a couple of committers around, able to fix customers bugs and get the changes into the
public distribution without any fuss?

Keep the question of goalsin mind as you read the guidelines that follow. They are meant to apply to
any sort of organizational involvement in afree software project, but every project is a human environ-
ment, and therefore no two are exactly alike. To some degree, you will always have to play by ear, but
following the principlesin this chapter will increase the likelihood of things turning out the way you
want.

Governments and Open Source

Since the first edition of this book came out in 2005, I've worked with various U.S. government agen-
cies (federal, state, and municipal) to help them develop and participate in open source software. I've
also been lucky enough to observe, and in afew cases work with, some government agencies outside
the U.S. These experiences have convinced me of one thing: government is different. If you work at a
government agency and the material in this book so far has made you shake your head and think "Sure,
but it'll never work here", you have my sympathy — | know what you mean. Governments differ from
individuals and from private-sector organizations in some fundamental ways:

» Governments often aren't trying to retain technical expertise in-house. That's what contractors are
for, after all.

» Governments have labyrinthine and in certain ways inflexible procurement and employment poli-
cies. These policies can make it difficult for a government agency to be nimbly responsive in an
open source development community.

» Government agencies tend to be unusually risk-averse. Somewhere at the top there's an elected of -
ficial who, reasonably, sees an open source project as just another exposed surface for opponents to
attack. After all, when development happensin public, the inevitable fal se starts and wrong turns are
also public; if development were internal, no one else would know about it when those things hap-
pen.

100

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

» Government officials hunger for well-timed and well-controlled publicity events, and this need can
sometimes be in tension with overall project health. The need for good publicity is, in away, the
complement of being risk-averse. Elected officials and those who work for them understand that
most people aren't paying much attention most of the time. Therefore, government workers want
to make sure that in the few moments when peopl e are paying attention they see something good.
Thisis understandable, but it can cause certain actions to be delayed — or, in some cases, done too
soon — based on external publicity implications rather than on what's best for the project technically
and socialy.

There are good reasons for all of these things; they've been true for decades or even centuries, and
they're not going to change. So if you're a government agency and you want to start a successful open
source project, certain adjustments will be necessary to compensate for the structural idiosyncrasies
mentioned above. Much of that advice is also applicable to non-governmental organizations, and is al-
ready present elsewhere in this chapter, so below I'll simply list the sections that | think are most im-
portant for a government agency:

» Update Your RFI, RFP and Contract Language [110]

» Open Source Quality Assurance (OSQA) [111]

» Don't Surprise Your Lawyers[113]

* Open Source and Freedom from Vendor Lock-1n [118]
* Dispel Myths Within Y our Organization [122]

« Don't Let Publicity Events Drive Project Schedule [126]
» TheKey Role of Middle Management [127]

In addition to the above sectionsin this book, there are many excellent online resources about open
source in government. | won't even try to include a complete list, as there is too much and it changes
too quickly. Here are afew sitesthat are likely to remain good starting points for some time to come,
especialy for government agenciesin the United States and in countries with procurement and civil
service systems similar to those of the U.S.

« https://18f.gsa.gov/ isadigital services agency within the United States federal government, created
in 2014 to bring modern software development practices to government work. 18F serves as atech-
nology consultancy to other agencies, and builds its deliverables out in the open as open source soft-
ware. Along the way, 18F has generated useful guidelines and observations that anyone trying to run
an open source software project within government can benefit from.

« http://www.dwheeler.com/, the home site of Dr. David A. Wheeler, is afantastic trove that includes,
among many other open-source-related things, tons of information about how to use U.S. govern-
ment procurement regul ations to support open source devel opment.

« http://ben.balter.com/2015/11/23/why-open-source/ is aterrific post to mine for arguments, if you
are advocating for open source development within a government agency. Many of Ben Balter's oth-
er writings are worth looking at too.

101

https://18f.gsa.gov/
http://www.dwheeler.com/
http://ben.balter.com/2015/11/23/why-open-source/

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

Finally, thereisoneissuein particular that | have encountered over and over again in government-ini-
tiated open source projects. It is so common, and so potentially damaging to a project, that | have given
it its own subsection below.

Being Open Source From Day One is Especially Im-
portant for Government Projects

In the section called “Be Open From Day One” [36], | explained why it's best for an open source
project to be run in the open from the very beginning. That advice, particularly the section called
“Waiting Just Creates an Exposure Event” [37], is especially applicable to government code.

Government projects have greater potential to be harmed by a needless exposure event than pri-
vate-sector projects have. Elected officials and those who work for them are understandably sensitive
to negative public comments. Thus even for the most conscientious team, aworrying cloud of uncer-
tainty will hover over everything by the time they're ready to open up hitherto closed code. How can
they ever know they've got it al cleaned up? One can never be totally sure some hawk-eyed hacker out
there won't spot something embarrassing after the publication. Thisworry is an energy drain: it caus-
es the team to spend time chasing down ghosts, and at the same time can cause them to unconsciously
avoid steps that might risk revealing real problems.

This concern doesn't only apply to government software, of course. But in the private sector, business-
es sometimes have competitive reasons to stay behind the curtain until their first release, even if they
intend for the project to be open source in the long run. Government projects should not have that mo-
tivation for starting out closed, at least in theory, and they have even more to lose.

Hire for the Long Term

If you're managing programmers on an open source project, keep them there long enough that they ac-
quire both technical and political expertise — a couple of years, at aminimum. Of course, no project,
whether open or closed-source, benefits from swapping programmersin and out too often. The need
for a newcomer to learn the ropes each time would be a deterrent in any environment. But the penalty
iS even stronger in open source projects: outgoing devel opers take with them not only their knowledge
of the code, but also their status in the community and the human rel ationships they have made there.

The credibility a devel oper has accumulated cannot be transferred. To pick the most obvious example,
an incoming developer can't inherit commit access from an outgoing one (see the section called “Mon-
ey Can't Buy You Love” [105] later in this chapter), so if the new developer doesn't aready have
commit access, he will have to submit patches until he does. But commit access is only the most easi-
ly quantifiable manifestation of lost influence. A long-time developer also knows all the old arguments
that have been hashed and rehashed on the discussion lists. A new devel oper, having no memory of
those conversations, may try to raise the topics again, leading to aloss of credibility for your organi-
zation; the others might wonder " Can't they remember anything?' A new developer will also have no
political feel for the project’s personalities, and will not be able to influence development directions as
quickly or as smoothly as one who's been around along time.

Train newcomers through a program of supervised engagement. The new developer should bein direct
contact with the public development community from the very first day, starting off with bug fixes and

102

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
cleanup tasks, so he can learn the codebase and acquire a reputation in the community, yet not spark
any long and involved design discussions. All the while, one or more experienced developers should
be available for questioning, and should be reading every post the newcomer makes to the project fo-
rums, even if the posts are in threads that the experienced developers normally wouldn't pay atten-
tion to. Thiswill help the group spot potential rocks before the newcomer runs aground. Private, be-
hind-the-scenes encouragement and pointers can also help alot, especialy if the newcomer is not ac-
customed to intense peer review of his code.

Case study

At CollabNet, when we hired a new developer to work on Subversion, we would sit down together and
pick some open bugs for the new person to cut histeeth on. We'd discuss the technical outlines of the
solutions, and then assign at |east one experienced developer to (publicly) review the patches that the
new developer would (also publicly) post. We typically didn't even look at the patch before the main
development list saw it, although we could if there were some reason to. The important thing is that the
new devel oper goes through the process of public review, learning the codebase while simultaneous-
ly becoming accustomed to receiving critiques from complete strangers. But we also tried to coordi-
nate the timing so that our own review came immediately after the posting of the patch. That way the
first review the list seesis ours, which can help set the tone for the others' reviews. It also contributes
to the idea that this new person is to be taken serioudly: if others see that we're putting in thetime to
give detailed reviews, with thorough explanations and references into the archives where appropriate,
they'll appreciate that aform of training is going on, and that it probably signifies along-term invest-
ment. This can make them more positively disposed toward the new devel oper, to the degree of spend-
ing alittle extra time answering questions and reviewing patches themselves.

Appear as Many, Not as One

Y our developers should strive to appear in the project's public forums as individua participants, rather
than as a monolithic corporate presence. Thisis not because there is some negative connotation inher-
ent in monolithic corporate presences (well, perhaps there is, but that's not what this book is about).
Rather, it's because individuals are the only sort of entity that open source projects are structurally
equipped to deal with. Anindividual contributor can have discussions, submit patches, acquire credi-
bility, vote, and so forth. A company cannot.

Furthermore, by behaving in a decentralized manner, you avoid stimulating centralization of opposi-
tion. Let your devel opers disagree with each other on the mailing lists. Encourage them to review each
other's code as often, and as publicly, as they would anyone else's. Discourage them from always vot-
ing as abloc, because if they do, others may start to feel that, just on general principles, there should be
an organized effort to keep them in check.

There's a difference between actually being decentralized and simply striving to appear that way. Un-
der certain circumstances, having your devel opers behave in concert can be quite useful, and they
should be prepared to coordinate behind the scenes when necessary. For example, when making a pro-
posal, having several people chime in with agreement early on can help it along, by giving the impres-
sion of agrowing consensus. Others will feel that the proposal has momentum, and that if they were to
object, they'd be stopping that momentum. Thus, people will object only if they have a good reason to

103

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
do so. There's nothing wrong with orchestrating agreement like this, as long as objections are still tak-
en seriously. The public manifestations of a private agreement are no less sincere for having been coor-
dinated beforehand, and are not harmful aslong as they are not used to prejudicially snuff out opposing
arguments. Their purpose is merely to inhibit the sort of people who like to object just to stay in shape;
see the section called “ The Smaller the Topic, the Longer the Debate” [146] for more about them.

Be Open About Your Motivations

Be as open about your organization's goals as you can without compromising business secrets. If you
want the project to acquire a certain feature because, say, your customers have been clamoring for it,
just say so outright on the mailing lists. If the customers wish to remain anonymous, as is sometimes
the case, then at least ask them if they can be used as unnamed examples. The more the public devel-
opment community knows about why you want what you want, the more comfortable they'll be with

whatever you're proposing.

This runs counter to the instinct — so easy to acquire, so hard to shake off — that knowledge is pow-
er, and that the more others know about your goals, the more control they have over you. But that in-
stinct would be wrong here. By publicly advocating the feature (or bugfix, or whatever it is), you have
already laid your cards on the table. The only question now is whether you will succeed in guiding the
community to share your goal. If you merely state that you want it, but can't provide concrete examples
of why, your argument is weak, and people will start to suspect a hidden agenda. But if you give just
afew real-world scenarios showing why the proposed feature is useful, that can have a dramatic effect
on the debate.

To see why thisis so, consider the alternative. Too frequently, debates about new features or new di-
rections are long and tiresome. The arguments people advance often reduce to "'l personally want X,"
or the ever-popular "In my years of experience as a software designer, X is extremely important to
users' or "...isauselessfrill that will please no one." The absence of real-world usage data neither
shortens nor tempers such debates, but instead allows them to drift farther and farther from any moor-
ing in actual user experience. Without some countervailing force, the end result is likely to be deter-
mined by whoever was the most articulate, or the most persistent, or the most senior.

As an organization with plentiful customer data available, you have the opportunity to provide just
such a countervailing force. Y ou can be a conduit for information that might otherwise have no means
of reaching the development community. The fact that the information supports your desires is nothing
to be embarrassed about. Most devel opers don't individually have very broad experience with how the
software they write is used. Each devel oper uses the software in her own idiosyncratic way; asfar as
other usage patterns go, she's relying on intuition and guesswork, and deep down, she knows this. By
providing credible data about a significant number of users, you are automatically improving the quali-
ty of debate in the public development community. Aslong as you present it right they will welcome it
enthusiastically, and it will propel thingsin the direction you want to go.

Thekey, of course, is presenting it right. It will never do to insist that simply because you deal with a
large number of users, and because they need (or think they need) a given feature, therefore your so-
lution ought to be implemented. Instead, you should focus your initial posts on the problem, rather
than on one particular solution. Describe in great detail the experiences your customers are encounter-
ing, offer as much analysis as you have available, and as many reasonabl e solutions as you can think

104

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

of. When people start speculating about the effectiveness of various solutions, you can continue to
draw on your data to support or refute what they say. Y ou may have one particular solution in mind all
along, but don't single it out for special consideration at first. Thisis not deception, it is simply stan-
dard "honest broker" behavior. After all, your true goal isto solve the problem; a solution is merely a
means to that end. If the solution you prefer really is superior, other devel opers will recognize that on
their own eventually — and then they will get behind it of their own free will, which is much better
than you browbeating them into implementing it. Thereis also the possibility that they will think of a
better solution.

Thisis not to say that you can't ever come out in favor of a specific solution. But you must have the pa-
tience to see the analysis you've already done internally repeated on the public development lists. Don't
post saying "Y es, we've been over al that here, but it doesn't work for reasons A, B, and C. When you
get right down to it, the only way to solvethisis Q." The problem is not so much that it sounds arro-
gant asthat it gives the impression that you have already devoted some unknown (but, people will pre-
sume, large) amount of analytical resources to the problem, behind closed doors. It makes it seem as
though efforts have been going on, and perhaps decisions made, that the public is not privy to — and
that is arecipe for resentment.

Naturally, you know how much effort you've devoted to the problem internally, and that knowledge

is, in away, adisadvantage. It puts your developersin adightly different mental space than everyone
else on the mailing lists, reducing their ability to see things from the point of view of those who haven't
yet thought about the problem as much. The earlier you can get everyone el se thinking about things

in the same terms as you do, the smaller this distancing effect will be. This logic applies not only to
particular technical discussions, but to the broader mandate of making your goals as clear as you can.
The unknown is always more destahilizing than the known. If people understand why you want what
you want, they'll feel comfortable talking to you even when they disagree. If they can't figure out what
makes you tick, they'll assume the worst, at least some of the time.

Y ou won't be able to publicize everything, of course, and people won't expect you to. All organizations
have secrets; perhaps for-profits have more of them, but nonprofits have them too. If you must advo-
cate a certain course, but can't reveal everything about why, then simply offer the best arguments you
can under that handicap, and accept the fact that you may not have as much influence as you want in
the discussion. Thisis one of the compromises you make in order to have a development community
not on your payroll.

Money Can't Buy You Love

If you're a paid developer on a project, then set guidelines early on about what the money can and can-
not buy. This does not mean you need to post twice a day to the mailing lists reiterating your noble
and incorruptible nature. It merely means that you should be on the lookout for opportunities to defuse
the tensions that could be created by money. Y ou don't need to start out assuming that the tensions are
there; you do need to demonstrate an awareness that they have the potential to arise.

A perfect example of this came up early in the Subversion project. Subversion was started in 2000 by
CollabNet (http://www.collab.net/), which was the project's primary funder and paid the salaries of
several developers (disclosure: including myself). Soon after the project began, we hired another de-
veloper, Mike Pilato, to join the effort. By then, coding had already started. Although Subversion was

105

http://www.collab.net/

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments
still very much inits early stages, it already had a devel opment community with a set of basic ground
rules.

Mike's arrival raised an interesting question. Subversion already had a policy about how a new de-
veloper gets commit access. First, she submits some patches to the development mailing list. After
enough patches have gone by for the other committers to see that the new contributor knows what she's
doing, someone proposes that she just commit directly (that proposal is private, as described in the sec-
tion called “ Committers’ [213]). Assuming the committers agree, one of them mails the new devel-
oper and offers her direct commit access to the project's repository.

CollabNet had hired Mike specifically to work on Subversion. Among those who aready knew him,
there was no doubt about his coding skills or his readiness to work on the project. Furthermore, the
non-CollabNet developers had a very good relationship with the CollabNet employees, and most like-
ly would not have objected if we'd just given Mike commit access the day he was hired. But we knew
we'd be setting a precedent. If we granted Mike commit access by fiat, we'd be saying that CollabNet
had the right to ignore project guidelines, simply because it was the primary funder. While the damage
from this would not necessarily be immediately apparent, it would gradually result in the non-salaried
developers feeling disenfranchised. Other people have to earn their commit access — CollabNet just
buysit.

So Mike agreed to start out his employment at CollabNet like any other new devel oper, without com-
mit access. He sent patches to the public mailing list, where they could be, and were, reviewed by
everyone. We aso said on the list that we were doing things this way deliberately, so there could be no
missing the point. After a couple of weeks of solid activity by Mike, someone (I can't remember if it
was a CollabNet developer or not) proposed him for commit access, and he was accepted, as we knew
he would be.

That kind of consistency gets you a credibility that money could never buy. And credibility isavalu-
able currency to have in technical discussions: it'simmunization against having one's motives ques-
tioned. In the heat of argument, people will sometimes look for non-technical ways to win the battle.
The project's primary funder, because of its deep involvement and obvious concern over the directions
the project takes, presents awider target than most. By being scrupulous to observe al project guide-
lines right from the start, the funder makes itself the same size as everyone ese’

The need for the funders to play by the same rules as everyone else means that the Benevolent Dic-
tatorship governance model (see the section called “Benevolent Dictators’ [85]) is dightly harder to
pull off in the presence of funding, particularly if the benevolent dictator works for the primary fun-
der. Since adictatorship has few rules, it is hard for the funder to prove that it's abiding by communi-
ty standards, even when it is. It's certainly not impossible; it just requires a project leader who is able
to see things from the point of view of the outside developers as well as that of the funder, and act ac-
cordingly. Even then, it's probably a good idea to have a proposal for non-dictatorial governance sitting
in your back pocket, ready to be brought out if there start to be indications of widespread dissatisfac-
tion in the community.

"See al'so Danese Cooper's blog post, preserved in the Internet Archive's Wayback Machine at https://we-
b.archive.org/web/20050227033105/http://bl ogs.sun.com/roll er/page/ DaneseCooper/20040916, for a similar story about commit ac-
cess. Cooper was then Sun Microsystem's "Open Source Diva' — | believe that was her official title— and in the blog entry, she
describes how the Tomcat devel opment community got Sun to hold its own devel opers to the same commit-access standards as the
non-Sun developers.

106

https://web.archive.org/web/20050227033105/http://blogs.sun.com/roller/page/DaneseCooper/20040916
https://web.archive.org/web/20050227033105/http://blogs.sun.com/roller/page/DaneseCooper/20040916

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

Contracting

Contracted work needs to be handled carefully in free software projects. Ideally, if you hire a contrac-
tor you want her work to be accepted by the community and folded into the public distribution. In the-
ory, it wouldn't matter who the contractor is, aslong as her work is good and meets the project's guide-
lines. Theory and practice can sometimes match, too: a complete stranger who shows up with a good
patch will generally be able to get it into the software. The troubleis, it's very hard to produce an ac-
ceptable patch for a non-trivial enhancement or new feature as a complete stranger. One must first dis-
cuss the changes with the rest of the project, and even for those who are very familiar with the project
the duration of that discussion cannot be precisely predicted — for those new to the project, the mar-
gin of error will only be higher. If the contractor is paid by the hour, you may end up paying more than
you expected; if sheis paid aflat sum, she may end up doing more work than she can afford.

There are various ways to cope with this. Y ou can try to make an educated guess about the length of
the discussion process, based on whatever past experience you have with that community, add in some
padding for error, and base the contract on that. It also helps to divide the problem into as many small,
independent chunks as possible, to increase the predictability of each chunk.

Another standard technique isto contract for delivery of a patch that meets the formal upstream guide-
lines and for atightly budgeted "best effort" at getting the patch integrated into the upstream project
treat. The contract itself can never require that the patch be accepted by the upstream project, because
that would involve selling something that's not for sale. (What if the rest of the project unexpected-

ly decides not to support the feature?) However, the contract can require a bona fide effort to get the
change accepted by the community, and that it be committed to the repository if the community agrees
with it. For example, if the project has written standards (e.g., about coding conventions, documenta-
tion, writing regression tests, submitting patches, etc), the contract can reference those standards and
specify that the contracted work must meet them. In practice, this usually works out the way everyone
hopes.

Hiring From Within the Community

Onetactic for successful contracting isto hire one of the project's devel opers — preferably a commit-
ter — as the contractor. This may seem like aform of purchasing influence, and, well, it is. But it's not
as corrupt asit might seem. A developer'sinfluence in the project is due mainly to the quality of her
code and to her interactions with other devel opers. The fact that she has a contract to get certain things
done doesn't raise her statusin any way, and doesn't lower it either, though it may make people scru-
tinize her more carefully. Most developers would not risk their long-term position in the project by
backing an inappropriate or widely disliked new feature. In fact, part of what you get, or should get,
when you hire such a contractor is advice about what sorts of changes are likely to be accepted by the
community. You also get adight shift in the project's priorities. Because prioritization is just a matter
of who has time to work on what, when you pay for someone's time, you cause their work to move up
in the priority queue a bit. Thisis awell-understood fact of life among experienced open source devel-
opers, and at least some of them will devote attention to the contractor's work simply because it looks
likeit's going to get done, so they want to help it get done right. Perhaps they won't write any of the
code, but they'll still discuss the design and review the code, both of which can be very useful. For all
these reasons, the contractor is best drawn from the ranks of those already involved with the project.

107

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments
(See dlso the section called “Hiring Open Source Developers’ [129] for the related topic of hiring
open source devel opers as employees.)

Hiring From Outside The Community

If you have along-term goal of increasing the project's stability and longevity, then the opposite tactic
from that described above may be called for: you might want to deliberately hire a person or firm who
is new to the project. While it may take them some time to find their way in the code and in the devel-
opment community, once the contract is done they will now be invested in the project and may con-
tinue to participate, and even to develop new business based on the project. the section called “ Foster
Pools of Expertise in Multiple Places” [125] discusses this strategy in more depth.

Contracting and Transparency

Both techniques described above raise a couple of questions. Should contracts ever be secret? And
when they're not secret, should you worry about creating tensions in the community by the fact that
you've contracted with some devel opers and not others?

In general, it's best to be open about contracts when you can. Otherwise, the contractor's behavior may

seem strange to others in the community — perhaps she's suddenly giving inexplicably high priority to
features she's never shown interest in the past. When people ask her why she wants them now, how can
she answer convincingly if she can't talk about the fact that she's been contracted to write them?

At the same time, neither you nor the contractor should act as though others should treat your arrange-
ment as a big deal. Sometimes I've seen contractors waltz onto a devel opment list with the attitude that
their posts should be taken more seriously simply because they're being paid. That kind of attitude sig-
nalsto the rest of the project that the contractor regards the fact of the contract — as opposed to the
code resulting from the contract — to be the important thing. But from the other developers' point of
view, only the code matters. At all times, the focus of attention should be kept on technical issues, not
on the details of who is paying whom. For example, one of the devel opers in the Subversion communi-
ty handles contracting in a particularly graceful way. While discussing his code changes in chat, he'll
mention as an aside (often in a private remark, or privmsg, to one of the other committers) that he's be-
ing paid for hiswork on this particular bug or feature. But he also consistently gives the impression
that he'd want to be working on that change anyway, and that he's happy the money is making it pos-
sible for him to do that. He may or may not reveal his customer's identity, but in any case he doesn't
dwell on the contract. His remarks about it are just an ornament to an otherwise technical discussion
about how to get something done.

That example shows another reason why it's good to be open about contracts. There may be multiple
organi zations sponsoring contracts on a given open source project, and if each knows what the oth-
ersaretrying to do, they may be able to pool their resources. In the above case, the project's largest
funder (CollabNet) was not involved with these piecework contracts, but knowing that someone else
was sponsoring certain bug fixes allowed CollabNet to redirect its resources to other bugs, resulting in
greater efficiency for the project asawhole.

Will other devel opers resent that some are paid for working on the project? In general, no, particular-
ly when those who are paid are established, well-respected members of the community anyway. No

108

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
one expects contract work to be distributed equally among all the committers. People understand the
importance of long-term relationships: the uncertainties involved in contracting are such that once
you find someone you can work reliably with, you would be reluctant to switch to a different person
just for the sake of evenhandedness. Think of it thisway: the first time you hire, there will be no com-
plaints, because clearly you had to pick someone — it's not your fault you can't hire everyone. Later,
when you hire the same person a second time, that's just common sense: you already know her, the last
time was successful, so why take unnecessary risks? Thus, it's perfectly natural to have afew go-to
people in the community, instead of spreading the work around evenly.

Review and Acceptance of Changes

The project's community will always be important to the long-term success of contract work. Their in-
volvement in the design and review process for sizeable changes cannot be an afterthought; It must be
considered part of the work, and fully embraced by the contractor. Don't think of community scrutiny
as an obstacle to be overcome — think of it as afree design board and QA department. It is a benefit to
be aggressively pursued, rather than an obstacle to be overcome.

Case Study: the CVS Password-Authentication Protocol

In 1995, | was one half of a partnership that provided support and enhancements for CV'S (the Concur-
rent Versions System; see http://nongnu.org/cvs). My partner Jim Blandy and | were, informally, the
maintainers of CV S by that point. But we'd never thought carefully about how we ought to relate to the
existing mostly part-time and volunteer CV S development community. We just assumed that they'd
send in patches, and we'd apply them, and that was pretty much how it worked.

Back then, networked CV S could be done only over aremote login program (in those daysr sh rather
than ssh). Using the same account for CV S access as for system (shell) access was an obvious securi-
ty risk, and many organizations were put off by it. A major investment bank hired usto add a new au-
thentication mechanism, so they could safely use networked CV S with their remote offices.

Jim and | took the contract and sat down to design the new authentication system. What we came up
with was pretty simple (the United States had export controls on cryptographic code at the time, so
the customer understood that we couldn't implement strong authentication), but as we were not experi-
enced in designing such protocols, we still made afew gaffes that would have been obvious to an ex-
pert. These mistakes would easily have been caught had we taken the time to write up a proposal and
run it by the other developers for review. But we never did so, because it didn't occur to usto think

of the development list as a resource to be used to improve our contracted work. We knew that peo-
ple were probably going to accept whatever we committed, and — because we didn't know what we
didn't know — we didn't bother to do the work in avisible way, e.g., posting patches frequently, mak-
ing small, easily digestible commits to a specia branch, etc. The resulting authentication protocol was
not very good, and of course, once it became established, it was difficult to improve, because of com-
patibility concerns.

Theroot of the problem was not lack of experience; we could easily have learned what we needed to
know. The problem was our attitude toward the rest of the development community. We regarded ac-
ceptance of the changes as a hurdle to get over, rather than as a process by which the quality of the

109

http://nongnu.org/cvs

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments
changes could be improved. Since we were confident that what we did would be accepted (as it was),
we made little effort to get othersinvolved.

Obviously, when you're choosing a contractor, you want someone with the right technical skills and
experience for the job. But it's also important to choose someone with atrack record of constructive
interaction with the other developersin the community. That way you're getting more than just asin-
gle person; you're getting an agent who will be able to draw on a network of expertise to make sure the
work is done in arobust and maintainable way.

Update Your RFI, RFP and Contract Language

If you're hiring outside contractors to create software for you, the language you put in your Requests
For Information (RFIs), Requests For Proposals (RFPs), and contracts becomes crucially important.

Thereis one key thing you must understand at the outset: the decision makers at most large-scal e soft-
ware development vendors don't really want their work to be open source. (The programming staff

may fedl differently, of course, but the path to the executive suite is usually smoother for those with an
instinct for monopoly.) Instead, the vendors would prefer that a customer hire them to produce bespoke
software that, under the hood, shares many components with the other bespoke software they're pro-
ducing for other customers.® That way the vendor can sell mostly the same product at full price many
times. Thisis especialy true of vendors to government agencies, because the needs of government
agencies are so similar, and because jurisdictional boundaries create an artificial multiplicity of cus-
tomers who all have pretty much the same needs. Only minor customizations may be needed for each
instance, but the different customers will pay full price each time.

As a customer, then, your starting point for a successful large-scale open source project isto set clear,
explicit requirements about open source development from the beginning. From the RFI or RFP stage,
all the way through the contract and into delivery and maintenance, you must require behaviors and de-
liverables that will result in atruly open source product — meaning, among other things, a product that
has the potential to be supported and customized by vendors other than the one who originally devel-
oped it. The most important of those requirements are;

» Design and development must be done in the open from the very start of the project (see the section
called “Be Open From Day One” [36]

» The code shall be explicitly licensed for open source distribution, from the start of development
through delivery and deployment.

« If the same vendor is both writing the software and deploying the production instances, require that
deployed code must match the open source code. Don't let proprietary tweaks — and thus vendor
lock-in — dip in via the back door through deployment customizations.

» The product should have no dependencies on proprietary software modules; written permission from
you must be obtained before any such dependencies are introduced.

8By the way, those common components are quite often open source libraries themselves. These days, it's typical for a proprietary
software product to contain alot of open source code, with alayer of proprietary custom code wrapped around the outside.

110

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

» Documentation must be sufficient to allow third parties to understand, configure, and deploy the
software. (Some customers even test this by hiring an independent third party to perform a deploy-
ment and submit any needed improvements to the installation documentation — via the open source
project's usual contribution channels, of course.) documentation must be in formats typically used by
open source projects, e.g., plaintext, Markdown, Asciidoc, DocBook, etc.®

» The vendor's engagement with third parties who become involved in the project should be antici-
pated and budgeted for. If it is a successful open source project, there will eventually be communi-
ty management overhead, so plan for it: e.g., specify that the vendor must establish a participation
workflow, review and prioritize contributions, etc.

» Set clear expectations about the extent to which the vendor will participate in publicity about the
project, both among technical developer communities and among potential users.

 You, the customer, should be the copyright owner of the code written by the vendor.

* For any patents controlled by the vendor and affecting the project, there must be an unambiguous,
non-restrictive patent grant not just to you but to everyone who receives the code under its open
source license.

« If the vendor has little or no experience running or at least participating open source projects, bring
in a separate Open Source Quality Assurance (OSQA) vendor to provide assistance and oversight
(see the section called “ Open Source Quality Assurance (OSQA)” [111]).

Although thisis not a complete list — every project is different — it should give you some idea of
how to set expectations with your partners. The ability to recognize whether these expectations are be-
ing met, in spirit not just in letter, is aso important of course, and is the subject of the next section.

Open Source Quality Assurance (OSQA)

When a vendor whose normal mode is proprietary development is hired to do open source, the result
isusually a product that is not truly open source and that no third party can actually d(—:tploy.10 This
section is about how to avoid that problem. While in some instances the vendor — or at least factions
within the vendor — may be actively resistant to open source, more often the problem is that they sim-
ply don't know what they don't know. The fastest solution isto bring in that knowledge from the out-
side: have a separate contract with a different company, one entirely independent of the primary ven-
dor, to play the role of third-party open source participant.

Thereisalong tradition of such outside review in technical contracting, whereit's known as V&V, for
"Independent Verification and Validation™ 1t ensures that the deliverables meet the necessary stan-

SMicrosoft Word format is almost never seen in open source projects, among other reasons becatise it is not amenable to auditable
spot-changes by contributors. Y ou will need to make sure your vendor knows this, or else you are likely to end up with alot of .docx
filesin the repository.

1OWhile some selection bias no doubt informs my experience — after all, the consultant tends to get brought in when things are going

wrong, not when they're going right — my assertion that proprietary vendors don't get open sourceright if l€ft to their own habitsis

based not just on my own experiences but a so on talking to many other people, who report the same finding with remarkable consis-

tency.
For amore general discussion of V&YV, see https://en.wikipedia.org/wiki/Verification_and_validation and https://en.wikipedi-
aorg/wiki/Software_verification_and_validation. Note that neither of those discusses open source specifically, however.

111

https://en.wikipedia.org/wiki/Verification_and_validation
https://en.wikipedia.org/wiki/Software_verification_and_validation
https://en.wikipedia.org/wiki/Software_verification_and_validation

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

dards by having an independent party verify this. The independent reviewer reports to the customer,
not to the primary development contractor.

My colleague James Vasile came up with the name Open Source Quality Assurance (OSQA) for the
corresponding role in open source software development efforts. | like that name much better than
"Open Source V& V" because it emphasizes the interactive and collaborative nature of the indepen-
dent vendor's role. In an open source project, the deliverables include not just the code, but the devel-
opment process itself and the resultant potential for third-party participation. Assistance from a sepa-
rate OSQA vendor can make the difference between a project that is open source in name only and a
project that is truly open source, in the sense that it is possible for parties other than its original devel-
opersto deploy, maintain, and improveit.

During development, an OSQA reviewer participates the way any third party would, posting in the
project's public discussion forums, using the installation documentation to try to get the software up
and running, reporting bugs viathe public tracker, submitting pull requests, and so on. Asthe project
reaches the alpha or beta stage, the reviewer confirms that the software can be deployed as document-
ed, without reliance on proprietary dependencies or vendor-specific environmental conditions; that
necessary per-deployment configurations can be made; that sample data can be loaded; that there ex-
ist documented paths by which third parties can participate in the project; and so on — in other words,
that all the expectations one would have of an open source project are truly met.

But the reviewer's job is not just to review. The reviewer is there to help the primary vendor meet these
expectations throughout devel opment, and to report back to the customer as to whether the vendor is
doing so. In far too many cases, | have seen anominally open source project be contracted for and de-
veloped, only for the customer to discover at the end — too late to do anything about it — that no party
besides than the original vendor can actually deploy, maintain, or extend the software, because the ven-
dor never came close to meeting normal open source standards. Had paralel, independent review been
built into the process from the start, the problems would have been detected early and the unsatisfacto-
ry outcome prevented. (Relatedly, see the section called “Be Open From Day One” [36].)

Note that the primary vendor may often be quite unconscious that anything is wrong. In their mind,
they developed and delivered software the way they usually do, so what's the problem? The fact that
no one other than them can deploy or modify the end result doesn't register as afailure, becausein al
their other projects third-party deployability was not agoal in the first place. The fact that the contract
requiresit is meaningless unless the customer has some way to test and enforce that requirement. Since
most customers do not have the in-house technical capability to do so, the open source clausesin the
contract are effectively void unless there is some kind of external review process.

Independent review is not merely a sort of open source insurance, however, although it would be
worthwhile even if it were only that. It is also an investment in the success of future partnerships with
the primary vendor. The vendor becomes more inherently capable of performing quality open source
work in the future, because the OSQA process provides a practical education in open source devel op-
ment. Thus, done right, third-party review resultsin both a healthier open source project and a healthi-
er long-term relationship with the primary vendor.

It also helps foster concentrations of expertise outside that primary contractor right from the start, as
discussed in the section called “Foster Pools of Expertisein Multiple Places’ [125]. Ideally, at the
end of development for a new open source product, you should have at least two independent commer-

112

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

cial entities able to deploy and support the software: the primary development vendor and the OSQA
vendor. That's already twice as much supplier diversity as most projects have coming out of the gate,
and it's much easier to add a third vendor than a second.

The key to successful OSQA isthat the reviewer is responsible to the customer, not to the primary de-
velopment vendor. That part is crucial: even if the two vendors are contracting through the same prime
vehicle, or oneis a subcontractor to the other, it must be clear in the contracts that the reviewer re-
ports directly to the client, interacting with the primary development vendor only to perform the OSQA
function.

The cost of OSQA review is much smaller than the cost of the main contract — generally, expect on
the order of 5% to 10% — and the benefit islarge: the difference between an end product that is not
usably open source and one that is truly open source, able to be deployed and supported by anyone.

The "New Developer" Test

One of the most useful forms of OSQA iswhat | call the new developer test: have a competent
developer who is entirely unfamiliar with the project approach it through its front door, by trying
to get an instance up and running, and perhaps even contributing a minor bugfix or documenta-
tion patch.

The key is that the new developer doesn't get any special access. At the beginning of the
process, she is simply told the project's home page, and perhaps pointed to a suitable bug re-
port if oneisavailable. Her mission is to become a participant in the project by following the
project's own documented procedures for doing so. If the deployment instructions are insuffi-
cient, shefiles aticket in the issue tracker and tries to get a constructive response — there are no
behind-the-scenes telephone calls or special requests made by those who hired her for thisrole,
because those would reduce the value of the exercise.

The output of a successful New Developer Test consists of two things. One: aflurry of forum
posts, new tickets, and documentation patches that show the project the difference between
where they thought they were in terms of welcoming new participants and where they actually
are. Two: a heightened appreciation on the part of the project's devel opers of the effort required
to make open source software that is truly approachable by strangers, and of what it will take to
maintain that approachability over the lifetime of the project.

Don't Surprise Your Lawyers

Corporate lawyers (and to alesser degree lawyersin the non-profit world and in government) some-
times have an uneasy relationship with free software. They have often spent their careers diligent-

ly seeking to maximize the control and exclusivity their clients have over everything the clients pro-
duce — including software. A good lawyer will understand why their client is choosing to deliberate-
ly give up that control for some larger purpose, when it is explained, but even then may still be unfa-
miliar with the factors that go into choosing an open source license for the project, the interaction of
the license with trademarks and patents, the legal technicalities of how to accept contributed code such
that it can be redistributed, etc. (See Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks and
Patents [224] for a deeper discussion of legal issues.)

113

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
Theideal courseisto make sure your lawyers first understand why you are running an open source
project, and give them a chance to familiarize themselves with open source in general, before you
bring the particulars of the project to them. If the lawyers are good, they will know when they should
seek help from outside advisors and will not hesitate to do so. By the time the project is under way,
the lawyers should have enough familiarity with open source legal issues to make basic decisions with
confidence, and to know when and where they need help.

Do not assume that open source is part of a standard legal education. It is not, at least as of thiswrit-
ing in 2022. If you wait until development is already under way and code is starting to be published be-
fore consulting your legal team, they may be forced to scramble and make under-researched decisions
hastily. Thiswill not be good for either the project or the organization, in the long run.

Funding Non-Programming Activities

Programming is only part of the work that goes on in an open source project. From the point of view of
the project's participants, it's the most visible and glamorous part. This unfortunately means that other
activities, such as documentation, formal testing, etc, can sometimes be neglected, at least compared to
the amount of attention they often receive in proprietary software. Organizations are sometimes in the
best position to make up this gap, by devoting some of their own staff time to open source projects.

The key to doing this successfully isto translate between the company's internal processes and those

of the public development community. Such trandlation is not effortless: often the two are not a close
match, and the differences can only be bridged via human intervention. For example, the company may
use a different bug tracker than the public project. Even if they use the same tracking software, the data
stored in it will be very different, because the bug-tracking needs of a company are very different from
those of afree software community. A piece of information that starts in one tracker may need to be re-
flected in the other, with confidential portions removed or, in the other direction, added.

The sections that follow are about how to build and maintain such bridges. The end result should be
that the open source project runs more smoothly, the community recognizes the company's investment
of resources, and yet does not feel that the company isinappropriately steering things toward its own
goals.

Technical Quality Assurance (i.e., Professional
Testing)

In proprietary software development, it is normal to have teams of people dedicated solely to quali-

ty assurance: bug hunting, performance and scalahility testing, interface and documentation check-

ing, etc. Asarule, these activities are not pursued as vigorously by the development community on a
free software project. Thisis partly because it's hard to get highly-motivated labor for unglamorous
work like testing (committers have their names inscribed for al time in the history of the project, but
there are fewer mechanisms for remembering the tester who found the bug a committer fixed), partly
because developers tend to assume that having alarge user community gives the project good testing
coverage, and, in the case of performance and scalability testing, partly because not all devel opers have
access to the requisite hardware resources anyway.

114

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

The assumption that having many usersis equivalent to having many testersis not entirely baseless.
Certainly there's little point assigning testers for basic functionality in common environments: bugs
there will quickly be found by usersin the natural course of things. But because users are just trying to
get work done, they do not consciously set out to explore uncharted edge cases in the program's func-
tionality, and are likely to leave certain classes of bugs unfound. Furthermore, when they discover a
bug with an easy workaround, they often silently implement the workaround without bothering to re-
port the bug. Most insidiously, the usage patterns of your customers (the people who drive your inter-
est in the software) may differ in statistically significant ways from the usage patterns of the Average
User In The Street.

A professional testing team can uncover these sorts of bugs, and can do so as easily with free software
as with proprietary software. The challenge isto convey the testing team's results back to the public
in auseful form. In-house testing departments usually have their own way of reporting test results to
their own developers, involving company-specific jargon, or specialized knowledge about particu-

lar customers and their data sets. Such reports would be inappropriate for the public bug tracker, both
because of their form and because of confidentiality concerns. Even if your company'sinterna bug
tracking software were the same as that used by the public project, management might need to make
company-specific comments and metadata changes to the tickets (for example, to raise aticket'sin-
ternal priority, or to schedule its resolution for a particular customer). Usually such notes are confi-
dential — sometimes they're not even shown to the customer. And even when they're not confidential,
they're not very helpful to the public project.

Y et the core bug report itself isimportant to the public. In fact, a bug report from your testing depart-
ment isin some ways more valuable than one received from users at large, since the testing department
probes for things that other users won't. Given that you're unlikely to get that particular bug report
from any other source, you definitely want to preserve it and make it available to the public project.

To do this, either the QA department can file tickets directly in the public ticket tracker, if they're com-
fortable with that, or an intermediary (usually one of the devel opers) can "translate” the testing depart-
ment's internal reports into new ticketsin the public tracker. Tranglation simply means describing the
bug in away that makes no reference to customer-specific information (the reproduction recipe may
use customer data, assuming the customer approvesit, of course).

It is definitely preferable to have the QA department filing tickets in the public tracker directly. That
gives the public amore direct appreciation of your company's involvement with the project: useful

bug reports add to your organization's credibility just as any technical contribution would. It also gives
developers adirect line of communication to the testing team. For example, if the internal QA team

is monitoring the public ticket tracker, a developer can commit afix for a scalability bug (which the
developer may not have the resources to test herself), and then add a note to the ticket asking the QA
team to seeif the fix had the desired effect.

Either way, once a public ticket exists, the original internal ticket should simply reference the pub-

lic ticket for technical content. Management and paid developers may continue to annotate the inter-
nal ticket with company-specific comments as necessary, but use the public ticket for information that
should be available to everyone.

Y ou should go into this process expecting extra overhead. Maintaining two tickets for one bug is, natu-
rally, more work than maintaining one ticket. The benefit is that many more coders will see the report
and be able to contribute to a solution.

115

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

Legal Advice and Protection

Corporations, for-profit or nonprofit, are almost the only entities that ever pay attention to complex le-
gal issuesin free software. Individual developers know basic differences between various open source
licenses, but they generally do not have the time or resources to competently handle legal issues them-
selves. If your company has alegal department, it can help a project by assisting with trademark is-
sues, copyright license ownership and compatibility questions, defense against patent trolls, etc. If the
project decides to organize formally, or to join an existing umbrella organization (as described in the
section called “ Joining or Creating a Non-Profit Organization” [94]), your legal department can help
with issues of corporate law, asset transfer, reviewing agreements, and other due diligence matters.

Some more concrete ideas of what sorts of legal help might be useful are discussed in Chapter 9, Le-
gal Matters: Licenses, Copyrights, Trademarks and Patents [224]. The main thing is to make sure
that communications between the legal department and the development community, if they happen at
all, happen with a mutual appreciation of the very different universes the parties are coming from. On
occasion, these two groups talk past each other, each side assuming domain-specific knowledge that
the other does not have. A good strategy isto have aliaison (usually a developer, or else alawyer with
technical expertise) stand in the middle and translate for as long as needed.

Documentation and Usability

Documentation and usability are both famous weak spots in open source projects, although | think,
at least in the case of documentation, that the difference between free and proprietary softwareisfre-
quently exaggerated. Nevertheless, it is empirically true that much open source software lacks first-
class documentation and usability research.

If your organization wantsto help fill these gaps for a project, probably the best thing it can dois hire
people who are not regular developers on the project, but who will be able to interact productively with
the developers. Not hiring regular developersis good for two reasons: one, that way you don't take de-
velopment time away from the project; two, those closest to the software are usually the wrong people
to write documentation or investigate usability anyway, because they have trouble seeing the software
from an outsider's point of view.

However, it will still be necessary for whoever works on these problems to communicate with the de-
velopers. Find people who are technical enough to talk to the coding team, but not so expert in the soft-
ware that they can't empathize with regular users anymore.

A medium-level user is probably the right person to write good documentation. In fact, after the first
edition of this book was published, | received the following email from an open source devel oper
named Dirk Reiners:

One comment on Money::Documentation and Usability: when we had some mon-
ey to spend and decided that a beginner's tutorial was the most critical piece that we
needed we hired a medium-level user to write it. He had gone through the induc-
tion to the system recently enough to remember the problems, but he had gotten past
them so he knew how to describe them. That allowed him to write something that

116

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

needed only minor fixes by the core developers for the things that he hadn't gotten
right, but still covering the 'obvious' stuff devs would have missed.

Funding User Experience (UX) Work

Thefield of user experience (UX) design has lately (starting somewhere between 2010 and 2020) be-

gun to acquire a new seriousness of purpose and consistency of professional standards. Naturaly, one
thing many companies think of when they want to help improve an open source project isto fund UX
work, since that's just the sort of thing that projects often overlook or, in some cases, don't even know
they need.

Aswith many other types of engagement, do not assume that a UX expert can be parachuted into the
project. User experience design is not a checkbox. It is an attitude taken by a team throughout devel op-
ment, and one of the primary qualificationsto look for in UX contractorsistheir ability to gain long-
term credibility with the developers, and to help devel opers pay attention to user experience goals. For
example, in addition to their innate domain knowledge, UX designers often know how to set up and in-
corporate feedback from user trials— but those trials will only be effective if the results are present-
ed to the development team in away that makes it easy for the devel opers to take the results seriously.
This can only happen through a sustained, two-way interaction, in which UX experts are subscribed to
the appropriate project forums and take the attitude that they are akind of specialized developer on the
project, rather than an outside expert providing advice. Use UX experts who have worked with open
source projects before, if possible.

Providing Build Farms and Development Servers

Many projects have infrastructure needs beyond just hosting of code, bug tracker, etc. For example,
projects often use continuous integration (CI) testing, a.k.a. build farms, to automatically ensure that
the changes devel opers are committing integrate cleanly into the main branch and pass al automated
tests. See the section called “ Automated testing” [200] for more about this practice.

Depending on the size and complexity of the codebase, the number of developers checking in changes,
and other factors, running a responsive build farm can cost more money than any individual developer
has at their disposal. A good way to help, and gain some goodwill in the process, isto donate the serv-
er space and bandwidth and the technical expertise to set up the continuous integration and automat-
ed testing. If you don't have the technical expertise available on staff, you could hire someone from the
project to do it, or at the very least give some of the project's devel opers administrative access to the Cl
servers so they can set things up themselves.

Running Security Audits

If your company has a good internal security department, or can afford to hire speciaists, providing in-
depth security review on an open source project's code base can do the project a tremendous amount of
good. Any feedback from a security audit should be provided back to the project using the precautions
described in the section called “Receive the Report” [163]. However, it is fine to be public about the
fact that you are conducting the audit; there your organization should get credit for a substantial contri-
bution like that.

117

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

Sponsoring Conferences, Hackathons, and other
Developer Meetings

A very effective use of fundsis to sponsor in-person contact between developers who might not oth-
erwise meet. The usefulness of in-person meetings — e.g., conferences, hackathons, smaller informal
meetups, etc — is mainly discussed in the section called “Meeting In Person: Conferences, Hackfests,
Code-a-Thons, Code Sprints, Retreats’ [204]. Here | will simply mention that encouraging such en-
countersis avery good use of money in an open source project. From a corporate sponsorship point
of view, nothing creates good will like a plane ticket and a hotel room. From a personnel management
point of view, it is healthy for your own devel opers to have in-person contact with their peersin the
open source projects they work on, and when those peers work at at other companies, project-centric
meetups are the perfect neutral ground for such meetings.

Sending your developers to conferencesis also agood way to signal commitment to a project. When
others meet your developers at a conference the first time, it isa signal that your company has areal
investment in the project. But when your developers show up again at the same conference the next
year, still working on the same project, that's avery powerful signal that your organizational commit-
ment to the project islong-term and strategic. This gives your developers an advantage in influencing
the direction of the project, because they are seen as people who will be around for the long term, and
it of course gives your company a recruiting advantage when you are looking for new developersto
work on the same project.

Even when you don't have people traveling to a meetup, you can still sponsor some of the meetup's ex-
penses. Everyone remembers fondly the company that sponsors the pizza, or lunch, or drinks or dinner
for one night of the meetup.

Marketing

Although most open source devel opers would probably hate to admit it, marketing works. Good mar-
keting can create buzz around an open source product, even to the point where hardheaded coders find
themselves having vaguely positive thoughts about the software for reasons they can't quite put their
finger on. It isnot my purpose here to dissect the arms-race dynamics of marketing in general. Any
corporation involved in free software will eventually find itself considering how to market themselves,
the software, or their relationship to the software.

Much of the advicein this section is simply about how to avoid common pitfallsin marketing open
source products (see aso the section called “Publicity” [161] and the section called “Don't Bash
Competing Open Source Products’ [149]), although we will start by examining a major marketing
advantage that open source products enjoy over proprietary products, and that open source businesses
should promote as often as possible: the lack of vendor lock-in.

Open Source and Freedom from Vendor Lock-In

Vendor lock-iniswhat happens when a vendor sells a service or product to a customer, perhaps at a
cheap up-front price, but the customer has to make certain further investmentsin order to use the prod-
uct — e.g., infrastructure changes, workflow and other process changes, data reformatting, retraining,

118

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

etc. The cost to the customer of switching away from that vendor's product is now the degree to which
the vendor has the customer locked in. Note that these switching costs are different from sunk costs.
There may also be sunk costs involved, but that is independent of the switching costs, and it is the lat-
ter that are the real issue here. Even if the customer is eventually unhappy with the vendor, by that
point the total cost of moving to someone else may be quite high, and that cost is separate from what-
ever licensing or service fees the vendor charges.

The great commercial strength of open source is that product and vendor are not the same. In open
source, you can switch to another vendor, or to a combination of vendors, or even a combination of
vendor and in-house support, all while continuing to use the same product in more or less the same

way.

So if you sell open source, make sure your potential customers are clear on this point, and give them as
many concrete examples as you can. It may, in some circumstances, even be useful to point out the ex-
istence of some of your competitors, because their presence paradoxically reassures the customer that
choosing you is a safe decision — if things don't work out, there are other options. If you just make
sure things work out, then the customer will never need to seek out those other options.

Proprietary vendors often compete against open source by talking about the "total cost of ownership”,
that is, they sell against open source's up-front cost of zero — no per-copy royalties, no per-seat license
fees— by pointing out, reasonably enough, that although there may be no licensing fees, in practice
software integration involves organizational and technical costs that can be quite significant. Thisis
quite true, asfar asit goes, but that argument works the other way too: to the extent that there are such
costs — and there really are — the danger to the customer of vendor lock-in is directly proportional

to them. Another way of saying it is that the costs of proprietary software tend to outstrip the costs of
open source over along enough period of time. One pays a premium for decreasingly competitive ven-
dor selection, both in money and in loss of flexibility and options.

To draw acontrast with "total cost of ownership”, | would love to see open source sales representatives
talk more about the "cost of total ownership”, that is, how much does it cost a company to be totally
owned by its software vendors? With open source, customers are not owned — they are the owners, to
exactly the degree that they want to be, and they can outsource as much of that responsibility to outside
vendors as they want. Their relationships with those vendors are thus more likely to be based on mu-
tual satisfaction and mutual benefit, not on an asymmetrical pseudo-monopoly that gives existing ven-
dors undueinertiain customers procurement decisions.

Remember That You Are Being Watched

For the sake of keeping the developer community on your side, it is very important not to say anything
that isn't demonstrably true. Audit all claims carefully before making them, and give the public the
means to check your claims on their own. Independent fact checking isamajor part of open source,
and it applies to more than just the code.

Naturally no one would advise companies to make unverifiable claims anyway. But with open source
activities, there is an unusually high quantity of people with the expertise to verify claims — people
who are aso likely to have high-bandwidth Internet access and the right social contactsto publicize
their findings in a damaging way, should they choose to. When Global Megacorp Industries pollutes a
stream, that's verifiable, but only by trained scientists, who can then be refuted by Global Megacorp's

119

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
scientists, leaving the public scratching their heads and wondering what to think. On the other hand,
your behavior in the open source world is not only visible and recorded, it is also easy for many peo-
ple to check it independently, come to their own conclusions, and spread those conclusions by word of
mouth. These communications networks are already in place: they are the essence of how open source
operates, and they can be used to transmit any sort of information. Refutation is difficult when what
people are saying istrue.

For example, it's okay to refer to your organization as having "founded project X" if you really did. But
don't refer to yourself as the "makers of X" if most of the code was written by outsiders. Conversely,
don't claim to have a deeply involved, broad-based developer community if anyone can look at your
repository and see that there are few or no code changes coming from outside your organization.

Case Study: You Can't Fake It, So Don't Try

Years ago | saw an announcement by a very well-known computer company, stating that they were re-
leasing an important software package under an open source license. When the initial announcement
came out, | took alook at their now-public version control repository and saw that it contained only
three revisions. In other words, they had done an initial import of the source code, but hardly anything
had happened since then. That in itself was not worrying — they'd just made the announcement, after
all. There was no reason to expect alot of development activity right away.

Some time later, they made another announcement. Hereis what it said, with the name and release
number replaced by pseudonyms:

We are pleased to announce that following rigorous testing by the Snger Communi-
ty, Snger 5 for Linux and Windows are now ready for production use.

Curious to know what the community had uncovered in "rigorous testing,” | went back to the repos-
itory to look at its recent change history. The project was still on revision 3. Apparently, they hadn't
found a single bug worth fixing before the release! Thinking that the results of the community testing
must have been recorded elsewhere, | next examined the bug tracker. There were exactly six open tick-
ets, four of which had been open for several months already.

This beggars belief, of course. When testers pound on alarge and complex piece of software for any
length of time, they will find bugs. Even if the fixes for those bugs don't make it into the upcoming re-
lease, one would still expect some version control activity as aresult of the testing process, or at |least
some new tickets. Yet to al appearances, nothing had happened between the announcement of the
open source license and the first open source release.

The point is not that the company was lying about the "rigorous testing" by the community (though |
suspect they were). The point is that they were oblivious to how much it looked like they were lying.
Since neither the version control repository nor the ticket tracker gave any indication that the alleged
rigorous testing had occurred, the company should either not have made the claim in the first place,

or should have provided a clear link to some tangible result of that testing (*We found 278 bugs; click
here for details"). The latter would have allowed anyone to get a handle on the level of community ac-
tivity very quickly. Asit was, it only took me afew minutes to determine that whatever this commu-
nity testing was, it had not Ieft traces in any of the usual places. That's not alot of effort, and I'm sure
I'm not the only one who took the trouble. (It's now been over a decade since that announcement; | can
confirm that the software project did not flourish.)

120

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments
Transparency and verifiability are also an important part of accurate crediting, of course. See the sec-
tion called “ Credit” [217] for more on this.

Don't Bash Competing Vendors' Efforts

Another situation companies find themselves in, when selling services based on open source software,
isthat they have competitors in the marketplace who may be selling services based on the same soft-
ware.

If you're going to sell your company's services, you inevitably will need to compare your company
against others selling the same or similar things. Thisis expected, and in many ways healthy. Howev-
er, be careful to avoid straying into public criticism of the other development teams or of their develop-
ment priorities.

Y our own developers have to work directly with those competitors' devel opers in the open source
project. They often have friendly relations, show up at the same conferences, etc. Even if that's not
the case today, it may be tomorrow (as discussed in the section called “ Don't Bash Competing Open
Source Products’ [149]). Furthermore, you may find yourself hiring developers from your competi-
tors; if you burn up available goodwill in advance, you may not get the best candidates.

Without mentioning names, in part because the situation eventually got better and | don't want to rekin-
dle the flames now, | will say that | saw exactly this happen between two companies (one of whom
was my employer at the time) who were competing to sell services based on the same open source soft-
ware. Theill will stirred up among the project's devel opers by the marketing statements of one com-
pany (not my employer) had real consequences, and that company lost out on retaining the services of
some excellent devel opers because it failed to think about the fact that their marketing in the commer-
cial realm was also visible and had effects in the development community.

"Commercial" vs "Proprietary”

One common pattern among companies involved in open source software is to market afully open
source version of their product alongside, and in direct comparison to, an enhanced proprietary ver-
sion. Since the open source version is free software, anyone could in theory add those enhancements
themself, or collaborate with othersto do so, but in practice, the effort required to do that (and to main-
tain a divergent fork of the project) is, for each collaborator, much greater than the cost of just paying
for the proprietary version, so it rarely happens.

This sales model is often referred to as "open core", that is, a core set of functionality that is available
as open source software, with a more featureful application wrapped around it as proprietary software.
Thismodel usually depends on the open source core having a non-copyleft license, of course, and is
discussed in more detail in the section called “ Proprietary Relicensing” [236].

Open core is somewhat controversial among open source developers, but it has been successful strict-
ly from a business point of view: companiesthat do it make money in the way that they expect to make
money. However, thereis bit of marketing slippage that many of these companiesfall into, and | would
like to point it out here in order to convince you not to be part of the problem.

121

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments
If you sell afree software version and an enhanced proprietary version of your product, please use the
words "open source" and "proprietary” to refer to them, respectively. Do not call the open source ver-
sion the "Community Edition" and the proprietary version the "Commercial Edition" (or "Enterprise
Edition").

Aside from the fact that everyone knows there is very little "community" around these so-called "Com-
munity Editions’, there is a deeper problem here. Calling the proprietary version the "Commercial Edi-
tion" implies that open source software is not commercial, while calling it the "Enterprise Edition" im-
plies that open source softwareis not suitable for enterprise-level use. The former is untrue because
open source software is commercial by definition: the license guarantees the freedom to use the soft-
ware for any commercia purpose. (Open source is anti-monopoly, of course, but that doesn't affect its
commerciality.) The latter is also generally untrue: open source software iswidely used at enterprise
scale, with and without third-party support, and chances are an enterprise could use your open source
edition too.

Thiskind of misleading marketing particularly hurts efforts by open source companies to get their soft-
ware accepted by governments and by other buyers who have sophisticated procurement requirements.
These procurement regul ations often include stipulations that purchased software must be "commer-
cia", "commercia off-the-shelf", or "commercially available" — definitions that all open source soft-
ware meets — so portraying open source as hon-commercia gives purchasing officers a misimpres-
sion. When those decision-makers think of open source as inherently non-commercial, that hurts open
source software as awhole.

Open Source and the Organization

Through the consulting work I've done in the years since the first edition of this book was published,
it's become clear to me that there are special concerns that apply to organizations launching or partici-
pating in open source projects. Organizations contain formal management structures and informal so-
cia structures: both are affected by engagement with open source projects, and both may need adjust-
ment to better support open source activity by the individuals within the organization. In particular,
government agencies have special pitfalls to watch out for when working with open source projects.

This section therefore examines organizational issues generally, and some issues specific to govern-
ment agencies, and offers advice about how to make organizational engagement with open source
more likely to succeed. Many of these recommendations will be brief and somewhat generalized, not
because there isn't more depth to go into, but because the specifics can vary so much from organization
to organization that exploring all the possibilities here would require too much space. Please treat these
bits of advice as starting points, not as complete recipesin themselves.

Dispel Myths Within Your Organization

In organizations that have been producing or using proprietary software for along time, certain myths
about open source software sometimes circulate. One traditional source of such mythsis, of course,
sales representatives from vendors of proprietary systems. But one can't attribute it all to them. It's

just as often the case that someone had some bad experiences in an open source project, or used open
sourcein the past without ensuring proper support channels, and since that was their first experiencein
an unfamiliar territory, the entire territory is now tainted.

122

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

Below are some of the myths I've encountered most frequently. First, the negative myths:
If it's open, that means anyone can change our code.

Believeit or not, you need to be prepared to respond to this. Sometimes people — particularly se-
nior decision-makers who have limited technical experience — don't understand the difference be-
tween an upstream codebase allowing anyone to copy the code and modify the resultant copies,
and someone modifying the particular instance that you deploy. The former isjust the definition
of open source, of course. The latter would be a security vulnerability, if it happened, but it has
nothing to do with the license on the code. | mention this myth merely to prepare you for encoun-
tering it, because otherwise you might not expect that anyone could hold this particular misunder-
standing. Trust me, they can, and you need to be ready to answer it.

Open source software is insecure, because anyone can see the code / change the code.

These are so easy to answer that | won't give a detailed refutation here; again, | merely noteit so
you can be prepared for it. If you find yourself having to explain why open source softwareis at
least as secure as any other kind of software, if not more secure, you may wish to use the excellent
resources provided by Dr. David A. Wheeler at http://www.dwheel er.com/#oss.

Open source comes with no support.

There are plenty of companies that sell support for open source software, and they're not hard to
find. There are also wonderfully helpful unofficial support communities on the Internet for differ-
ent open source packages, of course, but often what organizations are looking for is vendor that
offers a guaranteed response time. Such offerings are available, it's just that the source from which
you procure the software may be unrelated to the source from which you procure the support. One
way to respond to this myth isto ask specifically what packages support is desired for, and then
show some sources of support available for them.

If we open source this project, we'll have to spend a lot of time interacting with outside developers.

Y ou open source your code, not your time and attention. Y ou are never under any obligation to re-
spond at all to outside parties, let alone engage substantively with them. Y ou should only do so
when engaging will benefit you — which it often will; after all, one of the key strengths of open
sourceisthat it enlarges the collective brain of your development team in direct proportion to how
much they interact with other developers who become interested in the code. But that engagement
is always under your control and at your discretion. If you don't want your team'’s attention go-

ing to bug reports or devel opment questions from outside your organization, that's fine. Just be up
front about that in project announcements and in the documentation, so that others can take that in-
to account before they put alot of energy into trying to communicate with your developers, and so
they can decide whether forking to create a more open community would make sense for them (in-
deed, sometimes it might even be to your advantage for them to do that).

If we open source this project, then we'll have to release all our other stuff as open source too.

This myth usually results from a misunderstanding of copyleft licenses and the GNU General Pub-
lic License (GPL) in particular. | won't go into detail here; see Chapter 9, Legal Matters. Licenses,

123

http://www.dwheeler.com/#oss

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

Copyrights, Trademarks and Patents [224] for a discussion of what the GPL actually stipulates.
After reading that chapter, especially the section called “The Copyright Holder Is Special, Even In
Copyleft Licenses’ [233], you will be able to explain why this belief isincorrect.

Next, the positive myths:
Open source is cheaper.

Licensing costs are often not the largest cost with proprietary software; they are often outweighed
by training costs, installation and configuration costs, and other factors that make up the "total

cost of ownership". But all of those other costs are, on average, the same for open source software.
Don't make the mistake of pitching your organization on open source software on the grounds that
it is cheaper. At least in terms of the most easily quantified costs, it is not. It is often cheaper in the
long run, because it frees your organization from proprietary vendor lock-in (see the section called
“Open Source and Freedom from Vendor Lock-In" [118]), reduces training costs for new em-
ployees (because they arrive already familiar with the software), gives you greater ability to cus-
tomize software to your needs — which is a strategic advantage, not just a cost advantage — and
S0 on. But these are long-term benefits, and they may not show up directly on a balance sheet un-
less you take steps to make your accounting reveal them. In the short term, open source generally
isn't cheaper than proprietary software, and shouldn't be pitched that way.

Developerswill devote attention to this code just because we released it.

People with little experience in open source sometimes assume that the mere act of releasing code
to the public will result in aflurry of attention from other devel opers — questions, patches, high-
quality code review, bug reports, etc. But what actually happens, in most cases, is silence. Most
good developers are busy people, and they're not going to pay attention to your project until they
have some reason to. If your code is good and solves areal problem, you can expect word to trav-
el to the right places eventually, and of course you can help that word along with tactically smart
announcements and posts (see the section called “ Publicity” [161]). But until your code has had
time to naturally accumulate credibility and mindshare, most people won't pay any attention, so
you shouldn't expect that first release to be a big deal for anyone but you.

There isasituation in which this myth is not amyth. A large organization with a reputation and
adedicated public relations team can create buzz around an initial open source release. If you do
this, then make sure not to squander that buzz: be ready to constructively engage the devel oper at-
tention you attract right away.

Other companies/ cities/ whoever will pick up this software and start using it right away.

Adopting any software involves costs. Indeed, merely evaluating software involves costs. So when
you release a new open source project that you and your team are excited about, that doesn't nec-
essarily mean other entities are going to adopt that software right away. Many of them may notice
it, if you've done your announcement process well, but that just means they'll put it on their list of
things to investigate based on long-term organizational priorities— in other words, they'll take a
closer look based on their schedule, not yours. So don't expect a flood of early adopters. Y ou may
get afew, and they should be cultivated because they will provide the word-of-mouth that gets
you more adopters. But in general you're more likely to see atrickle of early adopters over the first

124

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments
year or so after your initial release, than to see aflood of them immediately when therelease is
made.

We can casually copy open source code into our own code.

Open source licenses are still licenses, and they come with afew conditions. Virtually all of them
require attribution at the source level and inclusion of the license together with the covered code.
Some licenses, especially the copyleft licenses discussed in the section called “ Aspects of Licens-
es’ [228], cause the entire derivative work to be under the same open source license, thusim-
plying redistribution obligations that you may not want. Some licenses have patent clauses that
can affect your company in complex ways.12

For all these reasons, incorporating open source code into software that will be distributed under
adifferent license — whether open source or proprietary — cannot be done casually. Organiza-
tions that incorporate open source code into their products usually need aformal process for doing
so, one that involves review by someone who understands the legal issues and the possible interac-
tions between licenses.

Foster Pools of Expertise in Multiple Places

Sometimes organizations that are accustomed to procuring proprietary software treat open source
software asif it were proprietary, in the sense that they assume there is exactly one authoritative
provider of expert support, and that therefore it is necessary to have a commercial relationship with
that provider.

That's not how open source works. One of the great strengths of open source is the availability of sup-
port from multiple, competing providers. It's perfectly fine, and often advisable, to have a commercial
relationship with just one of those sources, but you must remember that support in open source is fun-
damentally a marketplace, not an add-on feature that just happens to come with the software license, as
is often the case with proprietary software. Actually, even proprietary software sometimes has a com-
petitive support marketplace — think for example of the third-party support providers for Oracle data-
bases and Microsoft operating systems — but in open source these marketplaces tend to be more fluid
and not as dominated by single, easily-recognizable giants, because there isn't necessarily one commer-
cia outfit that automatically assumes a place at the top of the hierarchy to sell gold-label support (as
Oracle or Microsoft themselves would be, in the example just given).

The goal of fostering independent pools of expertise should even influence how you structure contracts
to develop the software in the first place. If you hire afirm to develop new open source software, have
afew of your own programmers working alongside them if possible, so that you accumulate some in-
house expertise. Thisis not necessarily because you won't want to use the same firm for future main-
tenance — they might be a great choice — but just so that you'll have a better bargaining position

and not be locked in. Essentially, the more people in different organizations who know the code, the
healthier it is for the project, and the better position you are in® The report Open Data For Resilience

12| am strongly opposed to software patents of any kind, for the reasons given in the section called “ Patents’ [240], but if you are
apatent holder | would still like you to at least be aware of the possible patent consequences of incorporating open code into your
programs.

BThisis also one of the side benefits of holdi ng hackathons, as discussed in the section called “ Sponsoring Conferences,
Hackathons, and other Developer Meetings’ [118].

125

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

Initiative & Geonode: A Case Sudy On Institutional Investments In Open Source™ describesin detail
how this technique was used in the GeoNode project, for example.

If your organization does not have enough in-house technical ability to participate in the development
process directly alongside your contractor, or at least to perform knowledgeable review, then | strong-
ly recommend finding a third-party to provide independent deployability and maintainability review
while the project is under way, as described in the section called “Open Source Quality Assurance

(OSQA)” [111].
Establish Contact Early With Relevant Communities

Another way to foster independent sources of expertise isto establish contact with potentially interest-
ed technical communities early and often during development. They're almost always out there. For
example, if you're devel oping software with geospatial functionality, there is an open source geospatial
community that probably wants to hear about it; if you're devel oping software to process financial da-
ta, or medical data, there are open source fintech and medical data communities.

Y ou may even have already announced your project to those people when you began, as discussed

in the section called “ Announcing” [40]. But there's more you can do to create external reservoirs of
knowledge. When your project runs across a design issue that you suspect others may have encoun-
tered before, it's fine to ask them how they handled it, aslong as you do your homework by first find-
ing out what you can from their code and documentation and then asking any remaining questions.

Y ou can also arrange small-scale contracts with devel opers who are active in related projects, to serve
two goals at once: improving your project's quality while also establishing mindshare in places that
may be strategically useful later.

Don't Let Publicity Events Drive Project Schedule

Although open source projects are amenabl e to software project management techniques, in general if
you have an active developer community you do lose some control over the exact timing of eventsin
the life of the project, especially the scheduling of releases. Or rather, you can still have as much con-
trol as you want, but then there are other things you lose if you exercise that control in the wrong way.
For example, if the release manager (see the section called “Release Manager” [181]) is someone
from outside your organization, and she's doing agood job, then if you try to force the release to be on
acertain precise date, you may cause her and many of the developers participating in release-specific
work to give up and devote their attention to something else. Y ou'd gain fine-grained control of the re-
lease schedule, but at the cost of lower quality releases and the possible loss of some of your develop-
ment community.

Thisisjust one exampleillustrating the general principle that if you have publicity needs related to an
open source project, you generally shouldn't let those needs drive the project's schedule. If you arrange
apress conference for the project reaching 1.0 and being deployed live, but then the devel opers decide
on an extratwo weeks of testing because of some last-minute bugs, you'll have some improvising to
do. (Thisexampleis drawn from real life, by the way.)

Ynttps://opendri.org/wp-content/upl oads/2017/03/0OpenDRI -and-GeoNode-a- Case- Study-on-I nstituti onal - nvestments-in-Open-
Source.pdf. | am a co-author.

126

https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Investments-in-Open-Source.pdf
https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Investments-in-Open-Source.pdf

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
There are two ways to achieve this independence, and they are not mutually exclusive. One way isto
just let project events drive publicity instead of the other way around, such as by preparing release an-
nouncements ahead of time but being ready to publish them based on when the release is actually done.
The other way isto create publicity events that are not bound to devel opment milestones, but are rather
associated with project-related things that are able to be scheduled, such as new support offerings, new
partnership announcements, major deployments, conference appearances, hackathons, etc.

Y ou might be tempted to try athird way: to bring the development community into the scheduling
process, so that through consensus you are able schedule certain milestones accurately enough to tie
timed publicity to them. While that may sound like agood idea, in practice it rarely works. An excep-
tion to thisisif the whole project is on board with doing time-based rel eases, as described in Time-
Based Releases vs Feature-Based Releases [178]. If the development community as a whole shares
that goal, then they will make the sacrifices necessary to keep to the time-based cycle — but your or-
ganization must also be willing to abide by that schedule, evenif it doesn't ways align with business
needs.

An open source development community's first priority is the software itself, and making sure it meets
the needs its devel opers are working toward. Of course the community wants releases and other dead-
lines to be met with reasonable regularity, and every development community makes tradeoffs for that.
But even with the best of intentions among all parties, you can never guarantee how that tradeoff will
be decided in a particular case, when things get down to the wire. The outcome of a community's de-
cision-making process cannot be anticipated with perfect accuracy, by definition — if it could, there
would be no need for a decision-making process. So while it's fine to try to influence the community's
priorities in ways that work to your advantage, you should avoid relying on that for scheduling purpos-
es, because you won't succeed at it every time.

The Key Role of Middle Management

If you intend to have long-term organizational engagement with open source software projects, the
people in your middle layer of management will play akey rolein determining whether you succeed or
fail.

Supervising programmers who spend part or all of their time on open source projects is more complex
than supervising programmers on purely internal projects. Many aspects of the developers work and
schedule will be strongly influenced by external factors not under the control of management, and in
any case the developers' own desires may not always perfectly line up with the employer's. After al,
each devel oper now has two unrelated audiences to satisfy: her employer, as embodied by her direct
manager, and her colleagues in the open source project, many of whom may work for other employers.

If amanager is not sufficiently sensitive to this dynamic, then developers can start to feel like they're
being pulled in conflicting directions. Sometimes thisis just the result of poor planning, but other
times it may be unavoidable. Good management can prevent the former case from happening in the
first place. In the latter case, good management is essential for recognizing the situation and addressing
it so asto give the developer clarity and away to handle the conflict.

Middle managers also have not only the usual upward and lateral internal reporting responsibilities, but
are to some degree responsible for the image — the open source brand identity — of the organization
itself in the projects where its developers are active. This essentially means having an entire extra con-

127

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments
stituency to satisfy, and managers who have no experience with open source participation themselves
are unlikely to have a solid understanding of how to position the organization and its devel opers within
the project.

The middle layer of management is often also in the best position to serve as a communications con-
duit and information filter between the project (that is, the whole project including all its other par-
ticipants) and the company. The wealth of information available from the activity in an open source
project is most useful to the organization if there is afiltered channel by which the most interesting
activities can be communicated to the relevant stakehol ders within the organization — stakeholders
who might include other technical staff, executives, and sales team members. Both by their position
and their temperament, the programmers themselves are often not best suited to serve as this conduit.
They may have avery deep understanding of the particul ar projects they work on, but they often have
aless complete view of the organization's interests — for example, in acommercial environment, the
programmers often do not have a clear idea of how the project fits into the company's strategy, vari-
ous lines of business, or sales processes. Middle managers are better positioned to maintain the requi-
site bidirectional sensitivity: aware enough of the project to ask the programmers for more information
when necessary, and aware enough of the organization to have a sense of what in the project is most
relevant to the organization.

Think carefully about who occupies the middle management positions that serve as the interface be-
tween the organization's priorities and the open source project's development direction, and provide
them with extratraining if necessary. It is best if the managers themselves have had direct, person-

al experience as participants in some open source project. This doesn't have to be the same project as
the one for which they are now managing developers; the situations and tensions that arise in open
source projects tend to be similar, so experience from one project will generally transate well to oth-
er projects. But amanager who has never dealt with open source projects first-hand at all will start
out with limited ability to understand the pressures faced by the organization's devel opers operating in
open source environments, and limited ability to be an effective communications conduit between the
organization and the project.

InnerSourcing

Inner Sour ce or innersourcing means using standard open source development practices only within the
boundaries of an organization. For example, a company might move all of its projects to GitHub (albeit
in private, not public, repositories), and declare that, inside the company, any engineer can report bugs
and contribute pull requests to any project anywhere else in the company. Innersourcing also often in-
cludes serious efforts at internal cultural change: managers encouraging devel opers to speak their mind
on both technical and process issues, devel opers being given more latitude to choose which projects
and teams they work with, etc.

In early 2016 | conducted interviews' with open source specialists at a number of medium- and large-
sized technology companies, many of whom had observed innersourcing efforts and were willing to
talk about the results. What they reported was pretty consistent from company to company, and consis-
tent with my own experience as a consultant: innersourcing really can make a positive difference, in
several ways, but it's also definitely not the same as true open source.

15Actually, my friend and business partner James Vasile and | both conducted these interviews, and we were much aided by O'Reilly
Media providing introductions to open source staff at a few companies where we did not have personal contacts.

128

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
For companies that already participate in open source projects, innersourcing can reduce the differ-
ence between internal development practices and external ones. If some of your engineers participate
in upstream open source projects anyway, where they must use typical open source collaboration tools
and adhere to open source standards for submitting and reviewing code and documentation, then mov-
ing the company'sinterna engineering infrastructure and processes in that direction means less con-
text-switching overhead for existing staff, an easier onboarding process for new hires, and often im-
proved technical compatibility between internal and external projects. (For these reasons, innersourc-
ing is also often used as the first "baby steps' toward genuine corporate participation in open source
projects.)

But the benefits of innersourcing go beyond that. When accompanied by areal commitment to reduce
managerial and organizational barriers to engineers participating in projects across the company, inner-
sourcing can improve morale, help spread expertise around the company and make software develop-
ment more efficient.'®

Nevertheless, innersource is not the same as open source, nor isit even "open source lite". The man-
agers we talked to reported that innersourced projects don't have the provocative, uncontrolled ener-

gy of truly open source projects, because all the actors in innersourcing are, ultimately,embedded in
the same hierarchical authority structure. Fundamentally, open source dynamics require at least the po-
tential for totally permissionless modification (i.e., you don't have to worry what someone else might
think of afork). When software only circulates within a given management hierarchy, then that poten-
tial for permissionless collaboration vanishes — and with it, the potential for true open source behavior
vanishes too. The permission structure that governs one's behavior with respect to the code is not just
amatter of the code's license: it's also about power: whom you report to, what others in the hierarchy
might think about your changes, etc.

In the long run, the dynamics of open source collaboration require an external supply of freedom.
There must always be people who could, in principle, fork or do whatever they want without worry-
ing about consequences to the original authors' organization. When that external freedom is removed,
everything changes.

Innersourcing also fails the "portable résumé" test — an employee can't take the code with her, and her
work will not be publicly visible (see the section called “Hiring Open Source Developers’ [129]). If
she leaves the company, she will be alienated from the fruits of her work, which means that her moti-
vation to personally invest is reduced.

None of this means that innersourcing isn't worth it. It can be very beneficial on its own terms, and is
also sometimes useful as an intermediate step for atraditionally closed company that's still figuring out
how to do open source participation. Just don't imagine that innersourcing is somehow "just like open
source, but inside our company”. They're two different things and shouldn't be conflated.

Hiring Open Source Developers

If you're trying to hire devel opers who have open source experience, you have a big advantage com-
pared to hiring other kinds of developers. Most of the résumé of an open source developer is pub-

16 you're interested in learning more, see http://innersourcecommons.org/, where Danese Cooper and others have organized a num-
ber of resources about InnerSource.

129

http://innersourcecommons.org/

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

lic— it's everything they've ever donein every open source project they've ever worked on, because
all of that activity is publicly archived.?” But you shouldn't need to go searching for all of it. When you
put out a job posting, tell prospective candidates directly that the résumé they send in should include
references to their open source profile. This means their committer accounts on the projects where
they've been active (or their account names at the overall project hosting sites where they're been ac-
tive, e.g., their usernames on sites like GitHub, GitL ab, etc), the email addresses or usernames they
have used when posting in discussion forums, documentation they have written, and anything el se that
would lead you to places where you can see their open source project activity.

Look not only at their direct technical activity, but also at their relations with the other developersin
the project. Examine the candidate's commits, but also examine the frequency with which they re-
viewed others' commits, and examine the candidate's reaction to reviews of their own commits. In the
project's issue tracker, how often did the candidate respond constructively to incoming bug reports or
contribute useful information to a bug ticket? Visit a threaded view of the project's discussion forums
and see how often the candidate's posts were responded to, and what the general tone of the responses
was. Someone who consistently causes negative reactions from othersin the project may have social
problems as a collaborator, which is important to know independently of their technical ability.

If the candidate is applying for a position that would involve working on an open source project, but
seems to have little or no open source experience themselves, thisis not necessarily a showstopper, but
it'sasign that you should ask some probing questions, and that you should expect some ramp-up time
if you hire them. If the candidate is young and inexperienced in general, then lack of participationin
open source is easy to understand. However, if the candidate has been a programmer for awhile, and
especialy if they already have experience as a user of some of the open source software you'd be hir-
ing them to work on, and yet they have never participated much in that project except to download and
useit, then you should ask them questions about why. There is nothing wrong with being uninvolved
as a participant in software that one uses. However, if you're hiring someone to be a participant in a
project, and they aready had a chance to be and chose not to, that could imply alack of intrinsic moti-
vation to participate and may indicate that this person's temperament is not what you're looking for. Or
there could be other reasons — for example, the candidate's prior management forbade them from par-
ticipating. Whatever the reasons are, you should make sure you find out.

Hiring for Influence

It isvery common for companies to hire an open source developer precisely because of her existing
position in an open source project. She may be the founder or leader of the project, or may just have
commit access, '8 but either way her ability to get things done in the upstream community is part of her
value as a prospective employee; often, it is just asimportant as raw technical skill.

As noted in the section called “ The Economics of Open Source” [96], there is nothing wrong with
purchasing influence in this way, aslong as the employer understands that the new employee will have
dual loyalty. It isinappropriate to ask the employee to take actions that would harm her standing in the
project. The employee's manager needs to be sensitive to this, and to let the employee know that the

Brian Fitzpatrick has written about the usefulness of having an open source résumé in two articles, The Virtual Referral (https:/we-
b.archive.org/web/20171203195720/http://www.onlamp.com/pub/a/onl amp/2005/07/14/osdevel opers.html) and The Virtual Intern-
ship (https://web.archive.org/web/20180325231558/http://www.onlamp.com/pub/a/onlamp/2005/08/01/opensourcedevel opers.html).
185ee the section called “ Committers’ [213].

130

https://web.archive.org/web/20171203195720/http://www.onlamp.com/pub/a/onlamp/2005/07/14/osdevelopers.html
https://web.archive.org/web/20171203195720/http://www.onlamp.com/pub/a/onlamp/2005/07/14/osdevelopers.html
https://web.archive.org/web/20180325231558/http://www.onlamp.com/pub/a/onlamp/2005/08/01/opensourcedevelopers.html

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
door is open for discussion and pushback if she ever feels she's being put into such a situation (hence
the importance of managers who understand open source, as described in the section called “ The Key
Role of Middle Management” [127]). It is perfectly fine for the employee to promote the company's
technical interestsin the project, and to do so openly, as long as the proposals are compatible with the
project's overall goals and the company provides resources to support those proposalsin away that's
sustainable for the project.

Remember that influence in an upstream project is usually not transferable to some other employee.
Position and influence travel with the person, not with the employer. There are occasional exceptions
to this, e.g., in corporate-driven projects where the balance of power among competitorsis especially
important, or in standards bodies with formal organizational representation policies. In these cases, a
governance committee seat may be reserved for a certain company, and the company gets to designate
who sitsin that seat. But even then, informal influence still tends to matter alot, and individuals may
not be truly interchangeable in practice.

This makes the recommendations in the section called “Hire for the Long Term” [102] all the more
important. When an employee holds a position of influence in an open source project that is strategi-
cally important to your company, that employee has a pretty good bargaining position.

Since that kind of employee islikely to be with you for the long term, try to take advantage of it by
having her help onboard others into open source projects. Nithya Ruff, then Director of Open Source
Strategy at Western Digital, told me that when her company acquired another company that had a his-
tory of working on certain strategically important (to the acquirer) open source projects, the engineer-
ing team that came with the acquisition became a strong influence inside the newly combined compa-
ny. The developers had good reputations in the upstream projects, and the new management not only
made sure they were able to continue working in those projects, but brought them into a company-wide
open source working group to help other engineers get involved in upstream maintenance too.

Evaluating Open Source Projects

Although this book is mainly about how to launch and run new open source projects, that topic is inex-
tricably linked to the problem of evaluating existing open source projects. Y ou can't know whether you
need to start anew project until you've evaluated what's out there (as explained in the section called
“But First, Look Around” [14]). Furthermore, even in anew project, you'll usualy still be building

on existing open source components, and will often be in the position of choosing between different
projects that implement the same basic functionality. That is not just atechnical choice; it's a so about
socia health and general level of project maturity. How large and diverse are their devel oper commu-
nities? Do they get new contributors on aregular basis? Do they handle incoming bug reportsin area
sonable way? Do they make stable rel eases frequently enough for your needs?

Evaluating open source projectsis an art, not a science. However, there are some shortcuts that expe-
rienced people use. Below iswhat has worked for me. By "worked", | mean that when | have applied
these evaluation techniques to a project and then checked in with that project months or years later, |
have generally found its current status to be in line with what the evaluation predicted.

131

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

Look at bug tracker activity first.

The most reliable reflections of project health can usually be found in the bug tracker. Look at the
rate of issue filings and the number of unique filers (because that's a proxy for the size and level

of engagement of the user base). Look also at how often project developers respond in bug tickets,
and at how they respond: are they constructive? Do they interact well with both the reporter and
with other developers? Isit always the same devel oper responding, or is responsiveness well-dis-
tributed throughout the development team? Are they inviting technically promising reportersto try
becoming contributors?

More bug reportsis better, by the way (as discussed in the section called “Version Control and
Bug Tracker Access’ [21]). The rate at which bug reports are closed is not asimportant as you
might think; in a healthy project with an active user base, bug reports are often filed faster than the
development team can close them, especially when the user baseis growing. The relevant signal is
not the rate of resolution, but how project devel opers respond to and organize the influx of reports.

Measure commit diversity, not commit rate.

Look at the distribution of commits across committers, not just at the raw frequency of commits.
Does the project have avariety of people working together in a sustained way? Too often, eval-
uators look just at the commit rate, but that rate isn't very informative — knowing the number of
commits per week could just tell you that someone keeps making typos and then correcting them
in new commits. If you have time to look at the content of individual commits, then look at how
often one developer's commit is aresponseto (i.e., refers to) some other devel oper's previous com-
mit. Thistells you that group code review is going on, and the more of that you see, the better the
project is doing.

Evaluate organizational diversity.

In addition to looking for avariety of individual identities, seeif you can tell how many different
organizations are participating in the project — in particular, commercial organizations. If a num-
ber of different sources of money are al investing in a project, that's a sign that that project is go-
ing to be around for the long term. (See a so the discussion of "bus factor" in Chapter 4, Social
and Political Infrastructure [84].)

Discussion forums.

If the project has discussion forums, scan them quickly looking for signs of afunctional communi-
ty. Specifically, whenever you see along thread, spot check responses from core devel opers com-
ing late in the thread. Are they summarizing constructively, or taking stepsto bring the thread to a
decision while remaining polite? If you see alot of flame wars going on, that can be a sign that en-
ergy is going into argument instead of into development.

News, announcements, and releases.
Any project that is functioning well will usually have made announcements within the past few

months. Check the project's front page, news feed, Twitter or other microblog accounts, etc. If
things are quiet on stage, they're probably quiet backstage too.

132

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments
Thisisjust abrief introduction to the art of evaluating projects, but even using just the steps above can
save you alot of trouble. | have found them particularly useful when evaluating the two sides of are-
cent fork.'® Even in arecent fork, it is often possibleto tell, just by looking at some of the signals de-
scribed above, which side will flourish over the long term.

Crowdfunding and Bounties

Perhaps unfairly, | will group crowdfunding campaigns and bounty-based devel opment incentives to-
gether here, not because they are the same thing, but because to the extent that they are problematic as
ways of funding free software development, their problems are similar.

Crowdfunding refers to many funders — often mostly individuals — coming together to fund a partic-
ular piece of development. Crowdfunding campaigns generally fall into two categories: "al or noth-
ing", meaning that each funder pledges money toward atotal threshold and the pledges are collected
only if the threshold is met, or "keep it all", which is essentially traditional donation: funds go imme-
diately to the recipient whether or not a stated goal amount is ever met. https://goteo.org/ and https://
kickstarter.com/ are probably the best-known examples of all-or-nothing crowdfunding services,
though there are many others (I like Goteo because their platform isitself free software, and because

it is meant specifically for freely-licensed projects, whereas Kickstarter does not take a position on re-
stri%iverms of licensing). There are also sites like https://www.indiegogo.com/ that support both mod-
els.

Bounties are one-time rewards for compl eting specific tasks, such asfixing a particular bug or imple-
menting a new feature. Bounties are often offered directly by the interested parties, since thereis no
need for a pledge-collecting system, but the site https://www.bountysource.com/ also serves as a clear-
inghouse for open source development bounties.

While both crowdfunding and bounties have funded some open source work, they have not been ama-
jor economic force compared to contracted or salaried development. This does not mean you shouldn't
consider them: depending on the problem you're trying to solve, and on the shapes of solutions you're
willing to accept, crowdfunding or bounty funding might be a good answer. The problem they share
isthat they are structured around devel opment as a one-time event rather than as an ongoing process.
This would be problematic for any kind of software development, but is especially so for open source
development, which if anything isis optimized more for low-intensity, long-term investment rather
than for high-intensity burst investment. Both crowdfunding campaigns and bounty prizes are more
compatible with high-intensity, one-time bursts of activity, and do not provide for ongoing mainte-
nance or investment past the completion of the campaign goal or prize condition.?

A crowdfunding campaign can sometimes be a good way to get a project launched, but generally is not
away to fund development after theinitial launch. Successive crowdfunding campaigns for later stages

19That is, a"hard fork"; see the section called “"Development Forks” versus "Hard Forks' [219]

20https://en.wi kipedia.org/wiki/Comparison_of_crowdfunding_services.

21one service trying to solve that problem is https://snowdrift.coop/, which aims to provide sustainable funding for freely-licensed
works using a carefully designed matching pledge model. Whether Snowdrift will succeed is unknowable as of thiswriting in
mid-2015, since the serviceis still in apreliminary stage, but | am watching it with interest. Snowdrift also did a thorough survey,
in the Fall of 2013, of funding platforms for free software, and posted their results at https://snowdrift.coop/p/snowdrift/w/en/other-
crowdfunding; it'sworth aread if you're interested in this topic.

133

https://goteo.org/
https://kickstarter.com/
https://kickstarter.com/
https://www.indiegogo.com/
https://www.bountysource.com/
https://en.wikipedia.org/wiki/Comparison_of_crowdfunding_services
https://snowdrift.coop/
https://snowdrift.coop/p/snowdrift/w/en/othercrowdfunding
https://snowdrift.coop/p/snowdrift/w/en/othercrowdfunding

Organizations and Mon-
ey: Businesses, Non-
Profits, and Governments

of development or for releases will inevitably tire out even awilling and supportive audience. Thereis
areason why long-running charities, for example the public radio network in the United States, seek to
develop sustaining funders (euphemistically called "members" despite rarely having any governance
role) to provide along-term, stable revenue stream, and then raise funds for specific one-time efforts
separately from that.

If you do launch a crowdfunding campaign, take a close look at how other open source projects have
run theirs. There are a number of useful techniques that can be learned from the successful ones. For
example, most campaign sites have a mechanism for offering different rewards to backers at different
monetary levels. Y ou could offer amention in a SUPPORTERS file in the project, and perhaps at high-
er levels amention on athank-you page on the project's web site. But more creatively — | first heard
thisideafrom Michael Bernstein, and used it — you can offer to dedicate a commit to each backer at
or above acertain level, by thanking the backer directly in the commit's log message. The nice thing
about thisis that it's decentralized and easy to administer: any developer on the project can help fulfill
that reward. Individual developers can also offer free or discounted consulting about the project asa
reward. However, if you are one of those developers, be careful not to sell too much of your time: the
point of the campaign is to raise funds for development, not to turn the devel opment team into a con-
sulting team.

One thing that many crowdfunding campaigns do that | think is not appropriate for free software
projectsisto sell early access. That is, one of the rewards will be a"sneak preview" or "beta access' to
in-progress versions, before the public release. The problem with thisis that, for open source projects,
the public is supposed to already have access to in-progress work. Access to an open source project
should be limited by the time and interest of the parties seeking the information, not by the project. So
learn what you can from other crowdfunding campaigns, but remember that some of the techniques
used by campaigns for non-free-software products may not be suitable for an open source project that
wants to keep the good will of its users and devel opment community.

Finally, aword of caution: if your project accepts donations, do some public planning of how the mon-
ey will be used before it comes in. Discussions about how to allocate money tend to go alot more
smoothly when held before there's actual money to spend; also, if there are significant disagreements,
it's better to find that out when the money is still theoretical than when it's real.

134

Chapter 6. Communications

An open source project must do many things: recruit users and devel opers, encourage new contribu-
tors to become more deeply involved, allow free-flowing discussion while still reaching necessary de-
cisions, maintain a body of knowledge and convention that guides newcomers and experts alike, and,
of course, produce working software.

Coordinating people to accomplish all this together requires many techniques, and because open source
collaboration is ultimately based on software code, most of those techniques revolve around the written
word. We'll start there.

Written Culture

The ability to write clearly is one of the most important skills one can have in an open source environ-
ment. In the long run it may matter more than programming talent. A great programmer with lousy
communications skills can get only one thing done at atime, and even then may have trouble convinc-
ing othersto pay attention. But a mediocre programmer with good communications skills can coordi-
nate and persuade many people to do many different things, and thereby have a significant effect on a
project's direction and momentum.

There does not seem to be much correlation, in either direction, between the ability to write good code
and the ability to communicate with one's fellow human beings. There is some correlation between
programming well and describing technical issueswell, but describing technical issuesis only one part
of the communications in a project. Much more important is the ability to empathize with one's au-
dience, to see one's own posts and comments as others see them, and to cause others to see their own
posts with similar objectivity. Equally important is noticing when a given medium or communications
method is no longer working well, perhaps because it doesn't scale as the number or diversity of users
increases, and taking the time to do something about it.

All of thisisobviousin theory. What makes it hard in practice is that free software devel opment en-
vironments are bewilderingly diverse both in audiences and in communications mechanisms. Should
agiven thought be expressed in a post to the mailing list, as an annotation in the bug tracker, or asa
comment in the code? When answering a question in a public forum, how much knowledge can you
assume on the part of the reader, given that "the reader" is not only the person who asked the question
in thefirst place, but al those who might see your response? How can the developers stay in construc-
tive contact with the users, without getting swamped by feature requests, spurious bug reports, and
general chatter? How do you tell when a communications medium has reached the limits of its capaci-
ty, and what do you do about it?

Solutions to these problems are usually partial, because any particular solution is eventually made ob-
solete by project growth or by changesin project structure. They are also often ad hoc, because they're
improvised responses to dynamic situations. All participants need to be aware of when and how com-
munications can become bogged down, and be involved in solutions. Helping people do thisisabig
part of managing an open source project.

135

Communications

The sections that follow discuss both how to conduct your own communications, and how to make
maintenance of communications mechanisms a priority for everyone in the proj ect.!

You Are What You Write

Consider this: most of what others know about you on the Internet comes from what you write. Y ou
may be brilliant, perceptive, and charismatic in person — but if your emails are rambling and unstruc-
tured, people will assume that's the real you. Or perhaps you are rambling and unstructured in person,
but no one need ever know that if your posts are lucid and informative.

Devoting some care to your writing will pay off hugely. Long-time free software hacker Jim Blandy
tellsthe following story:

Back in 1993, | was working for the Free Software Foundation, and we were be-
ta-testing version 19 of GNU Emacs. We'd make a beta release every week or so,
and people would try it out and send us bug reports. There was this one guy whom
none of us had met in person but who did great work: his bug reports were always
clear and led us straight to the problem, and when he provided a fix himself, it was
almost always right. He was top-notch.

Now, before the FSF can use code written by someone else, we have them do some
legal paperwork to assign their copyright interest to that code to the FSF. Just taking
code from complete strangers and dropping it inis arecipe for legal disaster.

So | emailed the guy the forms, saying, "Here's some paperwork we need, here's
what it means, you sign this one, have your employer sign that one, and then we can
start putting in your fixes. Thanks very much."

He sent me back a message saying, "I don't have an employer."

So | said, "Okay, that's fine, just have your university sign it and send it back."

After abit, he wrote me back again, and said, "Well, actually... I'm thirteen years old
and | live with my parents.”

Because that kid didn't write like a thirteen-year-old, no one knew that's what he was. Following are
some ways to make your writing give a good impression too.

Structure and Formatting

Don't fall into the trap of writing everything as though it were a cell phone text message. Write in com-
plete sentences, capitalizing the first word of each sentence, and use paragraph breaks where needed.

1 There has been some interesting academic research on this topic; for example, see Group Awareness in Distributed Software Devel-
opment by Gutwin, Penner, and Schneider. This paper was online for awhile, then unavailable, then online again at http://www.st.c-
s.uni-sh.de/edu/empirical -se/2006/PDFs/gutwin04.pdf. So try there first, but be prepared to use a search engineiif it moves again.

136

http://www.st.cs.uni-sb.de/edu/empirical-se/2006/PDFs/gutwin04.pdf
http://www.st.cs.uni-sb.de/edu/empirical-se/2006/PDFs/gutwin04.pdf

Communications

Thisis most important in emails and other composed writings. In chat rooms or similarly ephemeral
forums, it's generally okay to leave out capitalization, use compressed forms of common expressions,
etc. Just don't carry those habits over into more formal, persistent forums. Emails, documentation, bug
reports, and other pieces of writing that are intended to have a permanent life should be written using
standard grammar and spelling, and have a coherent narrative structure. Thisis not because there's any-
thing inherently good about following arbitrary rules, but rather that these rules are not arbitrary: they
evolved into their present forms because they make text more readable, and you should adhere to them
for that reason. Readability is desirable not only because it means more people will understand what
you write, but because it makes you look like the sort of person who takes the time to communicate
clearly: that is, someone worth paying attention to.

Good grammar also minimizes ambiguity. Thisis especially important in technical writing, where
plausible alternatives will often be juxtaposed, and the distinction between cause and effect may not be
immediately clear from context alone. A grammatical structure that represents thingsin precisely the
way the writer intended helps everyone avoid confusion.

For email in particular, experienced open source devel opers have settled on certain formatting conven-
tions:

* Send plain text mails only, not HTML, RichText, or other formats that might get mangled by certain
online archives or text-based mail readers. When including screen output, snippets of code, or oth-
er preformatted text, offset it clearly, so that even alazy eye can easily see the boundaries between
your prose and the material you're quoting. If the overall structure of your post is still visible from
five meters away, you're doing it right.

* For preformatted blocks, such as quoted code or error messages, try to stay under 80 columns wide,
which has become the de facto standard terminal width (that is, some people may use wider dis-
plays, but no one uses a narrower one). By making your lines alittle less than 80 columns, you leave
room for afew levels of quoting characters to be added in others' replies without forcing a rewrap-
ping of your preformatted text.

» When quoting someone else's mail, insert your responses where they're most appropriate, at sever-
al different places if necessary, and trim off the parts of their mail you didn't use. If you're writing a
quick response that applies to their entire post, and your response will be sensible even to someone
who hasn't read the original, then it's okay to top-post (that is, to put your response above the quot-
ed text of their mail); otherwise, quote the relevant portion of the original text first, followed by your
response.

 Construct the Subject lines of new mails carefully. The Subject line isthe most important linein
your mail, because it allows each other person in the project to decide whether or not to read more.
Modern mail reading software organizes groups of related messages into threads, which can be de-
fined not only by a common Subject, but by various other headers (which are sometimes not dis-
played). It followsthat if athread starts to drift to a new topic, you can — and should — adjust the
Subject line accordingly when replying. The thread's integrity will be preserved, due to those oth-
er headers, but the new Subject will help people looking at an overview of the thread know that
the topic has drifted. Likewise, if you really want to start a new topic, do it by posting a fresh mail,
not by replying to an existing mail and changing the Subject. Otherwise, your mail would still be
grouped in to the same thread as what you're replying to, and thus fool people into thinking it's about

137

Communications

something it's not. Again, the penalty would not only be the waste of their time, but the slight dent in
your credibility as someone fluent in using communications toals.

Content

Well-formatted mails attract readers, but content keeps them. No set of fixed rules can guarantee good
content, of course, but there are some principles that make it more likely.

Make things easy for your readers. There's aton of information floating around in any active open
source project, and readers cannot be expected to be familiar with most of it — indeed, they cannot al-
ways be expected to know how to become familiar. Wherever possible, your posts should provide in-
formation in the form most convenient for readers. If you have to spend an extratwo minutesto dig up
the URL to a particular thread in the mailing list archives, in order to save your readers the trouble of
doing so, it'sworth it. If you have to spend an extra 5 or 10 minutes summarizing the conclusions so
far of acomplex thread, in order to give people context in which to understand your post, then do so.
Think of it thisway: the more successful a project is, the higher the reader-to-writer ratio will bein any
given forum. If every post you makeis seen by N people, then as N rises, the worthwhileness of ex-
pending extra effort to save those people time rises with it. As people see you imposing this standard
on yourself, they will work to match it in their own communications. The result is, ideally, an increase
in the global efficiency of the project: when there is a choice between N people making an effort and
one person doing so, the project prefers the latter.

Don't engage in hyperbole. Exaggerating in online postsis a classic arms race. For example, a person
reporting a bug may worry that the developers will not pay sufficient attention, so he'll describeit asa
severe, showstopper problem that is preventing him (and all his friends/coworkers/cousins) from using
the software productively, when it's actually only amild annoyance.

But exaggeration is not limited to users — programmers often do the same thing during technical de-
bates, particularly when the disagreement is over a matter of taste rather than correctness:

"Doing it that way would make the code totally unreadable. It'd be a maintenance
nightmare, compared to J. Random'’s proposal..."

The same sentiment would actually be stronger if phrased less sharply:

"That works, but it'sless than ideal in terms of readability and maintainability, |
think. J. Random's proposal avoids those problems because it..."

You will not be able to rid the project of hyperbole completely, and in general it's not necessary to do
so. Compared to other forms of miscommunication, hyperboleis not globally damaging — it hurts
mainly the perpetrator. The recipients can compensate, it's just that the sender loses a little more cred-
ibility each time. Therefore, for the sake of your own influence in the project, try to err on the side of
moderation. That way, when you do need to make a strong point, people will take you serioudly.

Edit twice. For any message longer than a medium-sized paragraph, reread it from top to bottom be-
fore sending it but after you think it's done the first time. Thisis familiar advice to anyone who's tak-
en a composition class, but it's especially important in online discussion. Because the process of on-

138

Communications

line composition tends to be highly discontinuous (in the course of writing a message, you may need
to go back and check other mails, visit certain web pages, run a command to capture its output, etc),
it's especially easy to lose your sense of narrative place. Messages that were composed discontinuous-
ly and not checked before being sent are often recognizable as such, much to the chagrin (or so one
would hope) of their authors. Take the time to review what you send. The more your posts hold togeth-
er structurally, the more they will be read by others.

Tone

After writing thousands of messages, you will probably find your style tending toward the terse. This
seems to be the norm in most technical forums, and there's nothing wrong with it per se. A degree of
terseness that would be unacceptable in normal social interactionsis simply the default for free soft-
ware hackers. Here's aresponse | once drew on amailing list about some free content management
software, quoted in full:

Can you possibly elaborate a bit more on exactly what problems you ran into, etc?
Also:

What version of Slash are you using? | couldn't tell from your original message.
Exactly how did you build the apache/mod_perl source?

Did you try the Apache 2.0 patch that was posted about on slashcode.com?

Shane

Now that's terse! No greeting, no sign-off other than his name, and the message itself isjust a series of
guestions phrased as compactly as possible. His one declarative sentence was an implicit criticism of
my original message. And yet, | was happy to see Shane's mail, and didn't take histersenessasasign
of anything other than him being a busy person. The mere fact that he was asking questions, instead of
ignoring my post, meant that he was willing to spend some time on my problem.

Will all readers react positively to this style? Not necessarily; it depends on the person and the con-
text. For example, if someone has just posted acknowledging that he made a mistake (perhaps he wrote
abug), and you know from past experience that this person tends to be a bit insecure, then while you
may still write a compact response, you should make sure to leaven it with some sort of acknowledge-
ment of hisfeelings. The bulk of your response might be a brief, engineer's-eye analysis of the situa-
tion, asterse as you want. But at the end, sign off with something indicating that your tersenessis not
to be taken as coldness. For example, if you've just given reams of advice about exactly how the per-
son should fix the bug, then sign off with "Good luck, <your hame here>" to indicate that you wish
him well and are not mad. A strategically placed smiley face or other emoticlue can often be enough to
reassure an interlocutor, too.

It may seem odd to focus as much on the participant's feelings as on the surface of what they say, but,
to put it baldly, feelings affect productivity. Feelings are important for other reasons too, but even con-
fining ourselves to purely utilitarian grounds, we may note that unhappy people write worse software

139

Communications

and tackle fewer bugs. Given the restricted nature of most el ectronic media, though, there will often be
no overt clue about how a person isfeeling. Y ou will have to make an educated guess based on @) how
most people would fedl in that situation, and b) what you know of this particular person from past in-
teractions.

Some people prefer amore hands-off attitude, and simply deal with everyone at face value, the idea
being that if a participant doesn't say outright that he feels a particular way, then one has no business
treating him as though he does. | don't buy this approach, for a couple of reasons. One, people don't be-
have that way inreal life, so why would they online? Two, since most interactions take place in public
forums, people tend to be even more restrained in expressing emotions than they might bein private.
To be more precise, they are often willing to express emotions directed at others, such as gratitude or
outrage, but not emations directed inwardly, such as insecurity or pride. Y et most humans work bet-
ter when they know that others are aware of their state of mind. By paying attention to small clues, you
can usually guess right most of the time, and motivate people to stay involved to a greater degree than
they otherwise might.

| don't mean, of course, that your role isto be a group therapist, constantly helping everyoneto getin
touch with their feelings. But by paying careful attention to long-term patternsin people's behavior,
you will begin to get a sense of them asindividuals even if you never meet them face-to-face. And by
being sensitive to the tone of your own writing, you can have a surprising amount of influence over
how others feel, to the ultimate benefit of the project.

Recognizing Rudeness

One of the defining characteristics of open source culture isits distinctive notions of what does and
does not constitute rudeness. While the conventions described below are not unique to free software
development, nor even to software in general — they would be familiar to anyone working in mathe-
matics, the hard sciences, or engineering disciplines — free software, with its porous boundaries and
constant influx of newcomers, is an environment where these conventions are especially likely to be
encountered by people unfamiliar with them. (Thisis one reason why it's good to be generous when
trying to figure out whether someone has violated the code of conduct, in a project that has one — see
the section called “ Codes of Conduct” [33].)

Let's start with the things that are not rude:

Technical criticism, even when direct and unpadded, is not rude. Indeed, it can be aform of flattery:
the critic is saying, by implication, that the recipient isworth taking seriously — is worth spending
sometime on. That is, the more viable it would have been to simply ignore someone's post, the more
of acompliment it becomes to take the time to criticize it instead (unless the critique descendsinto an
ad hominem attack or some other form of obvious rudeness, of course).

Blunt, unadorned questions, such as Shane's questions to mein the previously quoted email, are not
rude either. Questions that in other contexts might seem cold, rhetorical, or even mocking, are often
intended seriously, and have no hidden agenda other than eliciting information as quickly as possible.
The famous technical support question "Isyour computer plugged in?" is a classic example of this.
The support person really does need to know if your computer is plugged in, and after the first few
days on the job, has gotten tired of prefixing her question with polite blandishments ("1 beg your par-

140

Communications

don, | just want to ask afew simple questions to rule out some possihilities. Some of these might seem
pretty basic, but bear with me..."). At this point, she doesn't bother with the padding anymore, she just
asks straight out: isit plugged in or not? Equivalent questions are asked al the time on free software
mailing lists. The intent is not to insult the recipient, but to quickly rule out the most obvious and most
common explanations. Recipients who understand this and react accordingly win points for taking a
broad-minded view without prompting. But recipients who react badly must not be reprimanded, ei-
ther. It'sjust acollision of cultures, not anyone's fault. Explain amiably that your question (or criti-
cism) had no hidden meanings; it was just meant to get (or transmit) information as efficiently as pos-
sible, nothing more.

So what isrude?

By the same principle under which detailed technical criticismisaform of flattery, failure to provide
quality criticism can be akind of insult. | don't mean simply ignoring someone's work, be it a propos-
al, code change, new ticket filing, or whatever. Unless you explicitly promised a detailed reactionin
advance, it's usually okay to simply not react at all. People will assume you just didn't have time to
say anything. But if you do react, don't skimp: take the time to really analyze things, provide concrete
examples where appropriate, dig around in the archives to find related posts from the past, etc. Or if
you don't have timeto put in that kind of effort, but still need to write some sort of brief response, then
state the shortcoming openly in your message ("1 think there's aticket filed for this, but unfortunately
didn't have time to search for it, sorry"). The main thing is to explicitly recognize the existence of the
cultural norm, either by fulfilling it or by openly acknowledging that one has fallen short this time. Ei-
ther way, the norm is strengthened. But failing to meet that norm while at the same time not explaining
why you failed to meet it is like saying the topic (and those participating in it) was not worth much of
your time — that your time is more valuable than theirs. Better to show that your time is valuable by
being terse than by being lazy.

There are many other forms of rudeness, of course, but most of them are not specific to free software
development, and common sense is a good enough guide to avoid them. See a so the section called
“Nip Rudenessin the Bud” [32], if you haven't already.

Face

Thereisaregion in the human brain devoted specifically to recognizing faces. It is known informally
asthe "fusiform face area" and apparently its capabilities are at least partly inborn, not learned. It turns
out that recognizing individual peopleissuch acrucial survival skill that we have evolved specialized
hardware to do it.

Internet-based collaboration is therefore psychologically odd, because it involves tight cooperation be-
tween human beings who almost never get to identify each other by the most natural, intuitive meth-
ods: facial recognition first of all, but also sound of voice, posture, etc.

To compensate for this, try to use a consistent screen name everywhere. |deally it would be the front
part of your email address (the part before the @-sign), your chat handle, your repository committer
name, your ticket tracker username, and so on. This nhameis your online "face": a short identifying
string that serves some of the same purpose as your real face, although it does not, unfortunately, stim-
ulate the same built-in hardware in the brain.

141

Communications

The screen name should be some intuitive permutation of your real name (mine, for example, is "kfo-
gel"). In some situations it will be accompanied by your full name anyway, for example in mail head-
ers.

From "Karl Fogel" <kfogel @hateverdonai n. conp

Actually, there are two things going on in that example. As mentioned earlier, the screen name match-
estherea namein an intuitive way. But aso, the real nameisreal. That is, it's not some made-up ap-
pellation like:

From "W nder Hacker" <wonder hacker @hat ever donai n. cone

There's afamous cartoon by Paul Steiner, from the July 5, 1993 issue of The New Yorker, that shows
one dog logged into a computer terminal, looking down and telling another conspiratorially: "On the
Internet, nobody knows you're adog." Thiskind of thought probably lies behind alot of the self-ag-
grandizing, meant-to-be-hip online identities people give themselves — asif calling onesalf "Won-

der Hacker" will actually cause people to believe one is awondrous hacker. But the fact remains; even
if no one knows you're adog, you're still adog. A fantastical online identity never impresses readers.
Instead, it makes them think you're more into image than substance, or that you're simply insecure.
Use your real name for al interactions, or if for some reason you prefer pseudonymity, then make up a
name and use it consistently.

If you have an official title (e.g., "doctor", "professor”, "director"), don't flaunt it, nor even mention it
except when it'sdirectly relevant to the conversation. Hackerdom in general, and free software culture
in particular, tends to view title displays as exclusionary and as a sign of insecurity. It's okay if your ti-
tle appears as part of a standard signature block at the end of every mail you send, but never useit asa
tool to bolster your position in a discussion — the attempt is guaranteed to backfire. Y ou want folks to
respect the person, not thetitle.

Speaking of signature blocks: keep them small and tasteful, or better yet, nonexistent. Avoid large le-
gal disclaimers tacked on to the end of every mail, especially when they express sentiments incompat-
ible with participation in afree software project. For example, the following classic of the genre ap-
pears at the end of every post a particular user makes to a certain project mailing list:

IMPORTANT NOTICE

If you have received this e-mail in error or wish to read our e-mail disclaimer state-
ment and monitoring policy, please refer to the statement below or contact the
sender.

This communication is from Deloitte & Touche LLP. Deloitte & ToucheLLPisa
limited liability partnership registered in England and Wales with registered number
0OC303675. A list of members names is available for inspection at Stonecutter Court,
1 Stonecutter Street, London EC4A 4TR, United Kingdom, the firm's principal place
of business and registered office. Deloitte & Touche LLP is authorised and regulated
by the Financial Services Authority.

142

Communications

This communication and any attachments contain information which is confidential
and may also be privileged. It isfor the exclusive use of the intended recipient(s).

If you are not the intended recipient(s) please note that any form of disclosure, dis-
tribution, copying or use of this communication or the information in it or in any at-
tachments is strictly prohibited and may be unlawful. If you have received this com-
munication in error, please return it with the title "received in error” to IT.SECURI-
TY.UK @del oitte.co.uk then delete the email and destroy any copies of it.

E-mail communications cannot be guaranteed to be secure or error free, asinforma-
tion could be intercepted, corrupted, amended, lost, destroyed, arrive late or incom-
plete, or contain viruses. We do not accept liability for any such matters or their con-
sequences. Anyone who communicates with us by e-mail is taken to accept the risks
in doing so.

When addressed to our clients, any opinions or advice contained in this e-mail and
any attachments are subject to the terms and conditions expressed in the governing
Deloitte & Touche LLP client engagement |l etter.

Opinions, conclusions and other information in this e-mail and any attachments
which do not relate to the official business of the firm are neither given nor endorsed
by it.

For someone who's just showing up to ask a question now and then, that huge disclaimer looks a bit
silly but probably doesn't do any lasting harm. However, if this person wanted to participate actively
in the project, that legal boilerplate would start to have a more insidious effect. It would send at |east
two potentially destructive signals: first, that this person doesn't have full control over histools — he's
trapped inside some corporate mailer that tacks an annoying message to the end of every email, and he
hasn't got any way to route around it — and second, that he has little or no organizational support for
his free software activities. True, the organization has apparently not banned him outright from posting
to public lists, but it has made his posts look distinctly unwelcoming, as though the risk of letting out
confidential information must trump all other priorities.

If you work for an organization that insists on adding such signature blocks to all outgoing mail, and
you can't get the policy changed, then consider using your personal email account to post, even if
you're being paid by your employer for your participation in the project.

Avoiding Common Pitfalls

Certain anti-patterns appear again and again in threaded discussion forums. Below are the ones that
seem to come up most often in open source project forums, and some advice on how to handle them.

Don't Post Without a Purpose

A common pitfall in online project participation is to think that you have to respond to everything. Y ou
don't. First of all, there will usually be more threads going on than you can keep track of, at least after
the project really gets going. Second, even in the threads that you have decided to engage in, much of
what people say does not require a response. Development forums in particular tend to be dominated
by four kinds of messages:

143

Communications

1. Messages asking a question

2. Messages proposing something non-trivial

3. Messages expressing support or opposition to something someone else has said
4. Summing-up messages

None of these inherently requires your response, particularly if you can be fairly sure, based on watch-
ing the thread so far, that someone elseislikely to say what you would have said anyway. (If you're
worried that you'll be caught in await-wait loop because al the others are using this tactic too, don't
be; there's almost always someone out there who'll feel like jumping into the fray.) A response should
be motivated by a definite purpose. Ask yourself first: do you know what you want to accomplish?
And second: will it not get accomplished unless you say something?

Two good reasons to add your voice to athread are a) when you see aflaw in a proposal and suspect
that you're the only one who sees it, and b) when you see that miscommunication is happening be-
tween others, and know that you can fix it with a clarifying post. It's also generally fine to post just to
thank someone for doing something, or to say "Metoo!" if you want to strengthen a developing con-
sensus, because areader can tell right away that such posts do not require any response or further ac-
tion, and therefore the mental effort demanded by the post ends cleanly when the reader reaches the
last line of the mail. But even then, think twice before saying something; it's always better to leave
people wishing you'd post more than wishing you'd post less.?

Productive vs Unproductive Threads

On abusy mailing list, you have two imperatives. One, obvioudly, isto figure out what you need to
pay attention to and what you can ignore. The other is to behave in away that avoids causing noise:
not only do you want your own posts to have a high signal/noise ratio, you also want them to be the
sorts of messages that stimulate other people to either post with asimilarly high signal/noise ratio, or
not post at all.

To see how to do that, |et's consider the context in which it is done. What are some of the hallmarks of
unproductive threads?

» Arguments that have already been made start to be repeated in the same thread, as though the poster
thinks no one heard them the first time.

* Increasing levels of hyperbole and intensity as the stakes get smaller and smaller.

« A magjority of comments coming from people who do little or nothing in the project, while the peo-
ple who tend to get things done are silent.

» Many ideas discussed without clear proposals ever being made. (Of course, any interesting idea
starts out as an imprecise vision; the important question is what direction it goes from there. Does

2The second half of Poul-Henning Kamp's "bikeshed" post, referenced from the section called “ The Smaller the Topic, the Longer
the Debate” [146], offers some further thoughts about how to behave on a busy mailing list.

144

Communications

the thread seem to be turning the vision into something more concrete, or isit spinning off into sub-
visions, side-visions, and ontological disputes?)

Just because athread is not productive at first doesn't mean it's a waste of time. It might be about an
important topic, in which case the fact that it's not making any headway is all the more troublesome.

Guiding athread toward usefulness without being pushy is an art. It won't work to simply admonish
people to stop wasting their time, or to ask them not to post unless they have something constructive
to say. Y ou may, of course, think these things privately, but if you say them out loud then you will be
offensive — and ineffective. Instead, you have to suggest conditions for further progress: give people
aroute, a path to follow that leads to the results you want, yet without sounding like you're dictating
conduct. The distinction is largely one of tone. For example, thisis bad:

This discussion is going nowhere. Can we please drop this topic until someone has a
patch to implement one of these proposals? There's no reason to keep going around
and around saying the same things. Code speaks louder than words, folks.

Whereas this is good:

Several proposals have been floated in this thread, but none have had all the details
fleshed out, at least not enough for an up-or-down vote. Yet we're also not saying
anything new now; we're just reiterating what has been said before. So the best thing
at this point would probably be for further poststo contain either a complete speci-
fication for the proposed behavior, or a patch. Then at least we'd have a definite ac-
tion to take (i.e., get consensus on the specification, or apply and test the patch).

Contrast the second approach with the first. The second way does not draw a line between you and

the others, or accuse them of taking the discussion into a spiral. It talks about "we", which isimpor-
tant whether or not you actually participated in the thread before now, because it reminds everyone that
even those who have been silent thus far still have a stake in the thread's outcome. It describes why the
thread is going nowhere, but does so without pejoratives or judgements — it just dispassionately states
some facts. Most importantly, it offers a positive course of action, so that instead of people feeling like
discussion is being closed off (arestriction against which they can only be tempted to rebel), they will
feel asif they're being offered away to take the conversation to a more constructive level, if they're
willing to make the effort. Thisis a standard that most productive people will naturally want to meet.

Sometimes you'll be equally happy if athread either makes it to the next level of constructiveness or
just goes away. The purpose of your post, then, isto make it do one or the other. If you can tell from
the way the thread has gone so far that no one is actually going to take the steps you suggested, then
your post effectively shuts down the thread without seeming to do so. Of course, there isn't any fool-
proof way to shut down athread, and even if there were, you wouldn't want to use it. But asking partic-
ipants to either make visible progress or stop posting is perfectly defensible, if done diplomatically. Be
wary of quashing threads prematurely, however. Some amount of speculative chatter can be produc-
tive, depending on the topic, and asking for it to be resolved too quickly will stifle the creative process,
aswell as make you look impatient.

Don't expect any thread to stop on adime. There will probably still be afew posts after yours, either
because mails got crossed in the pipe, or because people want to have the last word. Thisis nothing to

145

Communications

worry about, and you don't need to post again. Just let the thread peter out, or not peter out, as the case
may be. Y ou can't have complete control; on the other hand, you can expect to have a statistically sig-
nificant effect across many threads.

The Smaller the Topic, the Longer the Debate

Although discussion can meander in any topic, the probability of meandering goes up as the techni-
cal difficulty of the topic goes down. After al, the greater the technical complexity, the fewer partici-
pants can really follow what's going on. Those who can are likely to be the most experienced devel op-
ers, who have already taken part in such discussions many times before, and know what sort of behav-
ior islikely to lead to a consensus everyone can live with.

Thus, consensus is hardest to achieve in technical questions that are simple to understand and easy to
have an opinion about, and in "soft" topics such as organization, publicity, funding, etc, people can
participate in those arguments forever, because there are no qualifications necessary for doing so, no
clear ways to decide (even afterward) if a decision was right or wrong, and because simply outwaiting
or outposting other discussants is sometimes a successful tactic.

The principle that the amount of discussion isinversely proportional to the complexity of the topic has
been around for along time, and is known informally as the Bikeshed Effect. Here is Poul-Henning
Kamp's explanation of it, from a now-famous post made to BSD devel opers:

It'salong story, or rather it's an old story, but it is quite short actually. C. Northcote
Parkinson wrote a book in the early 1960'ies, called "Parkinson's Law", which con-
tainsalot of insight into the dynamics of management.

[.]

In the specific example involving the bike shed, the other vital component is an
atomic power-plant, | guess that illustrates the age of the book.

Parkinson shows how you can go in to the board of directors and get approval for
building a multi-million or even billion dollar atomic power plant, but if you want to
build a bike shed you will be tangled up in endless discussions.

Parkinson explains that this is because an atomic plant is so vast, so expensive, and
so complicated that people cannot grasp it, and rather than try, they fall back on the
assumption that somebody else checked all the details before it got this far. Richard
P. Feynmann gives a couple of interesting, and very much to the point, examples re-
lating to Los Alamos in his books.

A bike shed on the other hand. Anyone can build one of those over a weekend, and
still have time to watch the game on TV. So no matter how well prepared, no matter
how reasonable you are with your proposal, somebody will seize the chance to show
that he is doing hisjob, that he is paying attention, that heis here.

In Denmark we call it "setting your fingerprint". It is about personal pride and pres-
tige, it is about being able to point somewhere and say "There! | did that." It isa

146

Communications

strong trait in politicians, but present in most people given the chance. Just think
about footsteps in wet cement.

(Kamp's complete post is very much worth reading; see https://bikeshed.com/.)

Anyone who's ever taken regular part in group decision-making will recognize what Kamp is talking
about. However, it is usually impossible to persuade everyone to avoid painting bikesheds. The best
you can do is point out that the phenomenon exists (when you see it happening) and persuade the se-
nior developers — the people whose posts carry the most weight — to drop their paintbrushes early,
so at least they're not contributing to the noise. Bikeshed painting parties will never go away entirely,
but you can make them shorter and less frequent by spreading an awareness of the phenomenon in the
project's culture.

Avoid Holy Wars

A holy war is adispute, often but not always over arelatively minor issue, which is not resolvable on
the merits of the arguments, but about which people feel passionate enough to continue arguing any-
way in the hope that their side will prevail.

Holy wars are not quite the same as bikeshed painting. People painting bikesheds may be quick to
jump in with an opinion, but they won't necessarily feel strongly about it, and indeed will sometimes
express other, incompatible opinions, to show that they understand all sides of theissue. In aholy war,
on the other hand, understanding the other sidesis a sign of weakness. In a holy war, everyone knows
there is One Right Answer; they just don't agree on what it is.

Once a holy war has started, it generally cannot be resolved to everyone's satisfaction. It does no good
to point out, in the midst of aholy war, that a holy war is going on. Everyone knows that already. Un-
fortunately, a common feature of holy wars is disagreement on the very question of whether the dis-
pute is resolvable by continued discussion. Viewed from outside, it is clear that neither side is chang-
ing the other's mind. Viewed from inside, the other side is being obtuse and not thinking clearly, but
they might come around if browbeaten enough. Now, | am not saying there's never aright sidein
aholy war. Sometimes there is— in the holy wars I've participated in, it's always been my side, of
course. But it doesn't matter, because there's no algorithm for convincingly demonstrating that one side
or the other isright.

A common, but unsatisfactory, way people try to resolve holy warsisto say "We've already spent far
more time and energy discussing this than it's worth! Can we please just drop it?' There are two prob-
lemswith this. First, that time and energy has already been spent and can never be recovered.® The on-
ly question now is, how much more effort remains? If some people fedl that just alittle more discus-
sion will resolve the issue in their favor, then it still makes sense (from their point of view) to continue.

The second problem with asking for the matter to be dropped is that this is often equivalent to allowing
one side, the status quo, to declare victory by inaction. And in some cases, the status quo is known to
be unacceptable anyway: everyone agrees that some decision must be made, some action taken. Drop-
ping the subject would be worse for everyone than simply giving up the argument would be for any-
one. But since that dilemma appliesto all equaly, it's still possible to end up arguing forever about
what to do.

3 https://en.wikipedia.org/wiki/Sunk_cost#Fallacy_effect

147

https://bikeshed.com/
https://en.wikipedia.org/wiki/Sunk_cost#Fallacy_effect

Communications

So how should you handle holy wars?
Thefirst answer is, try to set things up so they don't happen. Thisis not as hopeless as it sounds:

Y ou can anticipate certain standard holy wars: they tend to come up over programming languages, li-
censes (see the section called “ The GPL and License Compatibility” [229]), reply-to munging (see

the section called “ The Great Reply-to Debate” [56]), and a few other topics. Each project usually has
aholy war or two all of its own, which longtime developers will quickly become familiar with. The
techniques for stopping holy wars, or at least limiting their damage, are pretty much the same every-
where. Even if you are positive your side is right, try to find some way to express sympathy and under-
standing for the points the other side is making. Often the problem in a holy war is that because each
side has built itswalls as high as possible and made it clear that any other opinion is sheer foolishness,
the act of surrendering or changing one's mind becomes psychologically unbearable: it would be an ad-
mission not just of being wrong, but of having been certain and still being wrong. The way you can
make this admission palatable for the other side is to express some uncertainty yourself — precisely by
showing that you understand the arguments they are making and find them at least sensible, if not fi-
nally persuasive. Make a gesture that provides space for areciprocal gesture, and usually the situation
will improve. Y ou are no more or less likely to get the technical result you wanted, but at least you can
avoid unnecessary collateral damage to the project's morale.

When a holy war can't be avoided, decide early how much you care, and then be willing to publicly
give up. When you do so, you can say that you're backing out because the holy war isn't worth it, but
don't express any hitterness and don't take the opportunity for alast parting shot at the opposing side's
arguments. Giving up is effective only when done gracefully.

Programming language holy wars are a bit of a special case, because they are often highly techni-

cal, yet many people feel qualified to take part in them, and the stakes are very high, since the result
may determine what language a good portion of the project's code is written in. The best solution is
to choose the language early, with buy-in from influential initial developers, and then defend it on the
grounds that it's what you are all comfortable writing in, not on the grounds that it's better than some
other language that could have been used instead. Never let the conversation degenerate into an aca-
demic comparison of programming languages; that's a death topic that you must simply refuse to be
drawn into.

For more historical background on holy wars, see http://catb.org/~esr/jargon/html/H/holy-wars.html,
and the paper by Danny Cohen that popularized the term, https.//www.ietf.org/rfc/ien/ien137.txt.

The "Noisy Minority" Effect

In any mailing list discussion, it's easy for a small minority to give the impression that there is a great
deal of dissent, by flooding the list with numerous lengthy emails. It's a bit like a filibuster, except that
theillusion of widespread dissent is even more powerful, because it's divided across an arbitrary num-
ber of discrete posts and most people won't bother to keep track of who said what, when. They'll just
have a vague impression that the topic is very controversial and wait for the fussto die down.

The best way to counteract this effect isto point it out very clearly and provide quantitative evidence
showing how small the actual number of dissentersis, compared to those in agreement. In order to in-
crease the disparity, you may want to privately poll people who have been mostly silent, but who you

148

http://catb.org/~esr/jargon/html/H/holy-wars.html
https://www.ietf.org/rfc/ien/ien137.txt

Communications

suspect would agree with the majority. Don't say anything that suggests the dissenters were deliberate-
ly trying to inflate the impression they were making. Chances are they weren't, and even if they were,
there would be no strategic advantage to pointing it out. All you need do is show the actual numbersin
a side-by-side comparison, and people will realize that their impression of the situation does not match
reality.

This advice doesn't just apply to issues with clear for-and-against positions. It applies to any discus-
sion where afussis being made but it's not clear that most people consider the issue under discussion
to be area problem. After awhile, if you agree that the issue is not worthy of action, and can see that
it has failed to get much traction (even if it has generated alot of mails), you can just observe publicly
that it's not getting traction. If the "Noisy Minority" effect has been at work, your post will seem like
abreath of fresh air. Most people's impression of the discussion up to that point will have been some-
what murky: "Huh, it sure feels like there's some big deal here, because there sure are alot of posts, but
| can't see any clear progress happening.” By explaining how the form of the discussion made it appear
more turbulent than it really was, you retrospectively give it a new shape, through which people can re-
cast their understanding of what transpired.

Don't Bash Competing Open Source Products

Refrain from giving negative opinions about competing open source software. It's perfectly okay to
give negative facts — that is, easily confirmable assertions of the sort often seen in honest comparison
charts. But negative characterizations of aless rigorous nature are best avoided, for two reasons. First,
they areliable to start flame wars that detract from productive discussion. Second, and more important-
ly, some of the developersin your project may turn out to work on the competing project as well, or
developers from the other project may be considering contributing in yours.

Thiskind of crossover is more likely than it at first might seem. The projects are already in the same
domain (that's why they're in competition), and developers with expertise in a domain tend to make
contributions wherever their expertise is applicable. Even when there is no direct developer overlap,
itislikely that developers on your project are at least acquainted with developers on related projects.
Their ability to maintain constructive personal ties could be hampered by overly negative marketing

messages.

Bashing competing closed-source products seems to be somewhat widely accepted in the open source
world. Personally, | deplore this tendency (though again, there's nothing wrong with straightforward
factual comparisons), not merely because it's rude, but also because it's dangerous for a project to start
believing its own hype and thereby ignore the ways in which the proprietary competition may be tech-
nically superior.

In general, watch out for the effect that your project's marketing statements can have on your own de-
velopment community. People may be so excited at being backed by marketing dollars that they lose
objectivity about their software's true strengths and weaknesses. It is normal, and even expected, for a
company's devel opers to exhibit a certain detachment toward marketing statements, even in public fo-
rums. Clearly, they should not come out and contradict the marketing message directly (unlessit's ac-
tually wrong, though one hopes that sort of thing would have been caught earlier). But they may poke
fun at it from time to time, as away of bringing the rest of the development community back down to
earth.

149

Communications

See also the related advice in the section called “Don't Bash Competing Vendors' Efforts’ [121].

Difficult People

Difficult people are no easier to deal with in electronic forums than they are in person. By "difficult"

| don't mean "rude". Rude people are annoying, but they're not necessarily difficult. This book has al-
ready discussed how to handle them: comment on the rudeness the first time, and from then on, either
ignore them or treat them the same as anyone else. If they continue being rude, they will usually make
themselv? so unpopular as to have no influence on others in the project, so they are a self-containing
problem.

Theredlly difficult cases are people who are not overtly rude, but who manipulate or abuse the
project's processes in away that ends up costing other people time and energy yet do not bring any
benefit to the project.®

Often, such people look for wedgepoints in the project's procedures, to give themselves more influence
than they might otherwise have. Thisis much more insidious than mere rudeness, because neither the
behavior nor the damage it causes is apparent to casual observers. A classic example is the filibuster,

in which someone (always sounding as reasonabl e as possible, of course) keeps claiming that the mat-
ter under discussion is not ready for resol ution,® and offers more and more possible solutions, or new
viewpoints on old solutions, when what isreally going on is that he senses that a consensus or a ballot
is about to form and he doesn't like where it's headed. Another example is when there's a debate that
won't converge on consensus, but the group triesto at least clarify the points of disagreement and pro-
duce a summary for everyone to refer to from then on. The obstructionist, who knows the summary
may lead to aresult he doesn't like, will often try to delay even the summary by relentlessly complicat-
ing the question of what should beinit, either by objecting to reasonable suggestions or by introducing
unexpected new items.

Handling Difficult People

To counteract such behavior, it helps to understand the mentality of those who engagein it. People
generally do not do it consciously. No one wakes up in the morning and says to himself: "Today I'm
going to cynically manipulate procedural formsin order to be an irritating obstructionist."

Instead, such behavior is often prompted by akind of insecurity, afeeling (not necessarily based in
reality) of being shut out of group interactions and decisions. The person feels heis not being taken

4 the section called “Codes of Conduct” [33] discusses how to handle people whose problematic behavior goes beyond mere rude-
ness.

SFor an extended discussion of one particular subspecies of difficult person, see Amy Hoy's hilariously on-target https://
slash7.conV2006/12/22/vampires/. Quoting Hoy: "It's so regular you could set your watch by it. The decay of acommunity isjust as
predictable as the decay of certain stable nuclear isotopes. As soon as an open source project, language, or what-have-you achieves a
certain notoriety — its haf-life, if you will — they swarm in, seemingly draining the very life out of the community itself. They are
the Help Vampires. And I'm here to stop them..."

8 recently learned the delightful and very useful term sealioning, which refers to a particular type of filibuster: repeated insistence
that more evidence is needed, or asking endless questions with the alleged purpose of clarifying but with the actual purpose of delay-
ing. See https://en.wikipedia.org/wiki/Sealioning. Persons engaging in sealioning may not even be consciously aware that their be-
havior is not actually good-faith participation in debate.

150

https://slash7.com/2006/12/22/vampires/
https://slash7.com/2006/12/22/vampires/
https://en.wikipedia.org/wiki/Sealioning

Communications

serioudly, or, in the more severe cases, that there is almost a conspiracy against him — that the other
project members have decided to form an exclusive club, of which he is not amember. Thisthen justi-
fies, in his mind, interpreting rules with maximum literalness and engaging in aformal manipulation of
the project's procedures, in order to make everyone else take him seriously. In extreme cases, the per-
son can even believe that he isfighting alonely battle to save the project from itself.

It isthe nature of such an attack from within that not everyone will notice it at the same time, and some
people may not seeit at all unless presented with very strong evidence. This means that neutralizing it
can be quite a bit of work. It's not enough to persuade yourself that it's happening; you have to marshal
enough evidence to persuade others too, and then you have to distribute that evidence in a thoughtful

way.

Given that it's so much work to fight, it's often better just to tolerate it for awhile. Think of it like a
parasitic but mild disease: if it's not too debilitating, the project can afford to remain infected, and med-
icine might have harmful side effects.

However, when it gets too damaging to tolerate, then it's time for action. Start gathering notes on

the patterns you see. Make sure to include references to public archives — thisis one of the reasons
projects keep records, so you should use them. Once you've got a good case built, start having private
conversations with other project participants. Don't tell them what you've observed; instead, first ask
them what they've observed. This may be your last chance to get unfiltered feedback about how others
see the troublemaker's behavior; once you start openly talking about it, opinion will become polarized
and no one will be able to remember what they formerly thought about the matter.

If private discussions indicate that at |east some others see the problem too, then it's time to do some-
thing. That's when you have to get really cautious, because it's very easy for this sort of person to make
it appear as though you're picking on them unfairly. Whatever you do, never accuse them of malicious-
ly abusing the project's procedures, of behaving in a paranoid manner, or, in general, of any of the oth-
er things that you suspect are probably true. Y our strategy should be to look both more reasonable and
more concerned with the overall welfare of the project than they are, with the goal of either reforming
the person's behavior or getting them to go away permanently. Depending on the other devel opers and
your relationship with them, it may be advantageous to gather alies privately first. Or it may not; that
might just createill will behind the scenes, if people think you're engaging in an improper whispering
campaign.

Remember that although the other person may be the one behaving destructively, you will be the one
who appears destructive if you make a public charge that you can't back up. Be sure to have plenty of
examples to demonstrate what you're saying, and say it as gently as possible while till being direct.
Y ou may not persuade the person in question, but that's okay as long as you persuade everyone el se.

Case study

| remember only afew situations, in almost 30 years of working in free software, where things got so
bad that we actually had to ask someone to stop posting altogether. In the example I'll use here, the
person was not rude, and sincerely wanted only to be helpful. He just didn't know when to post and
when not to post. Our forums were open to the public, and he was posting so often, and asking ques-
tions on so many different topics, that it was getting to be a noise problem for the community. We'd al-

151

Communications

ready tried asking him nicely to do alittle more research for answers before posting, but that had no ef-
fect.

The strategy that finally worked is a perfect example of how to build a strong case on neutral, quanti-
tative data. One of the developers, Brian Fitzpatrick, did some digging in the archives, and then sent
the following message privately to afew other developers. The offender (the third name on the list be-
low, shown here as"J. Random™) had very little history with the project, and had contributed no code
or documentation. Y et he was the third most active poster on the mailing lists:

From "Brian W Fitzpatrick" <fitz@oll ab.net>

To: [... recipient list onmitted for anonymty ...]
Subj ect: The Subversion Energy Sink

Date: Wed, 12 Nov 2003 23:37:47 -0600

In the last 25 days, the top 6 posters to the svn
[dev| users] list have been:

294 Karl Fogel

236 "C. Mchael Pilato"
220 "J. Randont

176 Branko G bej

130 Philip Martin

126 Ben Col li ns-Sussnan

I would say that five of these people are contributing to
Subversion hitting 1.0 in the near future.

I would al so say that one of these people is consistently
drawing tine and energy fromthe other 5, not to nmention the
list as a whole, thus (albeit unintentionally) slow ng the
devel opnent of Subversion. | did not do a threaded

anal ysis, but vgrepping nmy Subversion nail spool tells ne
that every mail fromthis person is responded to at |east
once by at least 2 of the other 5 people on the above |ist.

I think sone sort of radical intervention is necessary here,
even if we do scare the aforenentioned person away.
Ni ceti es and ki ndness have al ready proven to have no effect.

dev@ubversion is a mailing list to facilitate devel opnent
of a version control system not a group therapy session.

-Fitz, attenpting to wade through three days of svn mail
that he let pile up

Though it might not seem so at first, J. Random's behavior was a classic case of abusing project pro-
cedures. He wasn't doing something obvious like trying to filibuster a vote, but he was taking advan-

152

Communications

tage of the mailing list's policy of relying on self-moderation by its members. We l€ft it to each indi-
vidua's judgement when to post and on what topics. Thus, we had no procedural recourse for dealing
with someone who either did not have, or would not exercise, such judgement. There was no rule one
could point to and say the person was violating it, yet everyone except him knew that his frequent post-
ing was getting to be a serious problem.

Fitz's strategy was, in retrospect, masterful. He gathered damning quantitative evidence, but then dis-
tributed it discreetly, sending it first to afew people whose support would be key in any drastic action.
They agreed that some sort of action was necessary, and in the end we called J. Random on the phone,
described the problem to him directly, and asked him to simply stop posting. He never realy did un-
derstand the reasons why; if he had been capable of understanding, he probably would have exercised
appropriate judgement in the first place. But he agreed to stop posting, and the mailing lists became
useable again. Part of the reason this strategy worked was, perhaps, the implicit threat that we could
start restricting his posts via the forum's moderation features. But the reason we were able to have that
option in reserve was that Fitz had gathered the necessary support from key people first.

Handling Growth

The price of successis heavy in the open source world. As your software gets more popular, the num-
ber of people who show up looking for information increases dramatically, while the number of people
able to provide information increases much more slowly. Furthermore, even if the ratio were evenly
balanced, there is still afundamental scalability problem with the way most open source projects han-
dle communications. Consider mailing lists, for example. Most projects have amailing list for gener-

al user questions — sometimes the list's name is "users', "discuss’, "help”, or something else. What-
ever its name, the purpose of the list is always the same: to provide a place where people can get their
guestions answered, while others watch and (presumably) absorb knowledge from observing these ex-
changes.

These mailing lists work very well up to afew thousand users and/or a couple of hundred posts a day.
But somewhere after that, the system starts to break down, because every subscriber sees every post; if
the number of posts to the list begins to exceed what any individual reader can processin aday, thelist
becomes a burden to its members. Imagine, for instance, if Microsoft had such amailing list for Win-
dows. Windows has hundreds of millions of users; if even one-tenth of one percent of them had ques-
tionsin a given twenty-four hour period, then this hypothetical list would get hundreds of thousands
of posts per day! Such alist could never exist, of course, because no one would stay subscribed to it.
This problem is not limited to mailing lists; the same logic applies to chat rooms, other discussion fo-
rums, indeed to any system in which a group hears questions from individuals. The implications are
ominous: the usual open source model of massively parallelized support smply does not scale to the
levels needed for world domination.”

There is no explosion when forums reach the breaking point. Thereisjust a quiet negative feedback
effect: people unsubscribe from the lists, or leave the chat room, or at any rate stop bothering to ask
guestions, because they can see they won't be heard in al the noise. As more and more people make

"An interesti ng experiment would be a probablistic mailing list, that sends each new thread-originating post to a random subset of
subscribers, based on the approximate traffic level they signed up for, and keeps just that subset subscribed to the rest of the thread;
such aforum could in theory scale without limit. If you try it, let me know how it works out.

153

Communications

this highly rational choice, the forum's activity will seemto stay at a manageable level. But it appears
manageabl e precisely because the rational (or at least, experienced) people have started going else-
where for information — while the inexperienced people stay behind and continue posting. In other
words, one side effect of continuing to use unscal able communications models as a project growsis
that the average quality of communications tends to go down. As the benefit/cost ratio of using high-
population forums goes down, naturally those with the experience to do so start to look elsewhere for
answersfirst.

Adjusting communications mechanisms to cope with project growth therefore involves two related
strategies:

1. Recognizing when particular parts of aforum are not suffering unbounded growth, even if the fo-
rum as awhole is, and separating those parts off into new, more specialized forums (i.e., don't let
the good be dragged down by the bad).

2. Making sure there are many automated sources of information available, and that they are kept or-
ganized, up-to-date, and easy to find.

Strategy (1) isusually not too hard. Most projects start out with one main forum: ageneral discus-
sion mailing list, on which feature ideas, design questions, and coding problems can all be hashed out.
Everyone involved with the project isin that forum. After awhile, it usually becomes clear that the list
has evolved into several distinct topic-based sublists. For example, some threads are clearly about de-
velopment and design; others are user questions of the "How do | do X?' variety; maybe there's athird
topic family centered around processing bug reports and enhancement requests; and so on. A given
individual, of course, might participate in many different thread types, but the important thing is that
thereis not alot of overlap between the types themselves. They could be divided into separate forums
without causing harmful balkanization, because the threads rarely cross topic boundaries.

Actually doing thisdivision is atwo-step process. Y ou create the new list (or chat room, or whatev-

er itisto be), and then you spend whatever time is necessary gently nagging and reminding peopleto
use the new forums appropriately. That latter step can last for weeks, but eventually people will get the
idea. You simply have to make a point of always telling the sender when a post is sent to the wrong
destination, and doing so visibly, so that other people are encouraged to help out with routing. It's also
useful to have aweb page providing aguide to al the forums available; your responses can ssimply ref-
erence that web page and, as a bonus, the recipient may learn something about looking for guidelines
before posting.

Strategy (2) is an ongoing process, lasting the lifetime of the project and involving many participants.
Of courseit is partly a matter of having up-to-date documentation (see the section called “ Documenta-
tion” [23]) and making sure to point people there. But it is aso much more than that; the sections that
follow discuss this strategy in detail.

Conspicuous Use of Archives

Typically, all communicationsin an open source project, except private chat conversations, are
archived. The archives are public and searchable, and have referential stability: that is, once agiven
piece of information is recorded at a particular address (URL), it stays at that address forever.

154

Communications

Use those archives as much as possible, and as conspicuously as possible. Even when you know the
answer to some question off the top of your head, if you think there's areference in the archives that
contains the answer, spend the timeto dig it up and present it. Every time you do that in a publicly vis-
ible way, some people learn for the first time that the archives are there, and that searching in them can
produce answers. Also, by referring to the archives instead of rewriting the advice, you reinforce the
social norm against duplicating information. Why have the same answer in two different places? When
the number of placesit can be found is kept to a minimum, people who have found it before are more
likely to remember what to search for to find it again. Well-placed references also contribute to im-
proving search results, because they strengthen the targeted resource's ranking in Internet search en-
gines.

There are times when duplicating information makes sense, however. For example, suppose there's a
response already in the archives, not from you, saying:

It appears that your Scanley indexes have becone frobnicated.
To unfrobnicate them run these steps:

1. Shut down the Scanl ey server.
2. Run the 'defrobnicate' programthat ships with Scanley.
3. Start up the server.

Then, months later, you see another post indicating that someone's indexes have become frobnicated.
Y ou search the archives and come up with the old response above, but you realize it's missing some
steps (perhaps by mistake, or perhaps because the software has changed since that post was written).
The classiest way to handle thisisto post a new, more complete set of instructions, and explicitly ob-
solete the old post by mentioning it:

It appears that your Scanley indexes have becone frobnicated.
W saw this problem back in July, and J. Random posted a
solution at http://bl ahbl ahbl ah/blah. Belowis a nore

conpl ete description of how to unfrobnicate your indexes,
based on J. Random s instructions but extending thema bit:

Shut down the Scanl ey server.

Becone the user the Scanley server normally runs as.
Run the 'defrobnicate' programon the indexes.

Run Scanl ey by hand to see if the indexes work now.
Restart the server.

abhwNE

(Inanidea world, it would be possible to attach a note to the old post, saying that there is newer infor-
mation available and pointing to the new post. However, | don't know of any archiving software that
offers an "obsoleted by" tag. Thisis another reason why creating dedicated web pages with answersto
common questionsis agood idea®)

8Many technical questions about open source software also have answers posted on Stack Overflow (https://stackoverflow.com/),
acollaborative knowledge-sharing site. If you happen to know about an item on Stack Overflow that needs to be updated due to

155

https://stackoverflow.com/

Communications

Archives are probably most often searched for answers to technical questions, but their importance to
the project goes well beyond that. If aproject's formal guidelines are its statutory law, the archives are
its common law: arecord of all decisions made and how they were arrived at. In any recurring discus-
sion, it's pretty much obligatory nowadays to start with an archive search. This allows you to begin

the discussion with a summary of the current state of things, anticipate objections, prepare rebuttals,
and possibly discover angles you hadn't thought of. Also, the other participants will expect you to have
done an archive search. Even if the previous discussions went nowhere, you should include pointers to
them when you re-raise the topic, so people can see for themselves a) that they went nowhere, and b)
that you did your homework, and therefore are probably saying something now that has not been said
before.

Treat All Resources Like Archives

All of the preceding advice applies to more than just mailing list archives. Having each particular piece
of information be located at a stable, conveniently findable address (or permalink) should be an orga-
nizing principle for al of the project'sinformation. Let's take the project FAQ as a case study.

How do people use aFAQ?
1. They want to search in it for specific words and phrases.
Therefore: the FAQ should be available in some sort of textual format.

2. They expect search engines such as Google to know about the FAQ's content, so that searches can
result in FAQ entries.

Therefore: the FAQ should be available as a web page.

3. They want to browse it, soaking up information without necessarily looking for answers to specific
guestions.

Therefore: the FAQ should not only be available as a web page, it should be designed for easy
browsability and have a table of contents.

4. They want to be able to refer other people directly to specific itemsin the FAQ.
Therefore: each individual entry in the FAQ should be reachable via a unique URL (e.g., using
HTML IDs and named anchors, which are tags that allow people to reach a particular location on

the page).

5. They want to be able to add new materia to the FAQ, though note that this happens much less often
than answers are looked up — FAQs are far more often read from than written to.

Therefore: the source files for the FAQ should be conveniently available (see the section called
“Version Everything” [66]), in a format that's easy to edit.

changes in the software, then posting the new answer in that item may be worthwhile. Stack Overflow is often the first place people
go to find answers, and its answers tend to rank very highly in search engines, at least as of thiswriting in early 2022 and for some
years preceding.

156

Communications

Formatting the FAQ like thisisjust one example of how to make a resource presentable. The same
properties — direct searchability, availability to major Internet search engines, browsability, referential
stability, and (where applicable) editability — apply to other web pages, to the source code tree, to the
bug tracker, to Q& A forums, etc. It just happens that most mailing list archiving software long ago rec-
ognized the importance of these properties, which iswhy mailing lists tend to have this functionality
natively, while other formats may require alittle extra effort on the maintainer's part. Chapter 8, Man-
aging Participants [193] discusses how to spread that maintenance burden across many participants.

Codifying Tradition

Asaproject acquires history and complexity, the amount of data each new incoming participant must
absorb increases. Those who have been with the project along time were able to learn, and invent,
the project's conventions as they went along. They will often not be consciously aware of what a huge
body of tradition has accumulated, and may be surprised at how many missteps recent newcomers
seem to make. Of course, theissueis not that the newcomers are of any lower quality than before; it's
that they face a bigger acculturation burden than newcomers did in the past.

The traditions a project accumulates are as much about how to communicate and organize information
asthey are about coding standards and other technical minutiae. We've aready |ooked at both sorts of
standards, in the section called “Developer Documentation” [26] and the section called “Writing 1t All
Down” [92] respectively, and examples are given there. What this section is about is how to keep such
guidelines up-to-date as the project evolves, especially guidelines about how communications are man-
aged, because those are the ones that change the most as the project grows in size and complexity.

First, watch for patterns in how people get confused. If you see the same situations coming up over and
over, especially with new participants, chances are there is a guideline that needs to be documented but
isn't. Second, don't get tired of saying the same things over and over again, and don't sound like you're
tired of saying them. Y ou and other project veterans will have to repeat yourselves often; thisisan in-
evitable side effect of the arrival of newcomers.

Every web page, every mailing list message, and every chat room should be considered advertising
space — not for commercial advertisements, but for ads about your project's own resources. What you
put in that space depends on the demographics of those likely to read it. An chat room for user ques-
tions, for example, islikely to get people who have never interacted with the project before — often
someone who has just installed the software, and has a question she'd like answered immediately (after
al, if it could wait, she'd have sent it to amailing list instead, which would probably use less of her to-
tal time, although it would take longer for an answer to come back). Most people don't make a perma-
nent investment in a support chat; they show up, ask their question, and leave.

Therefore, the room's topic banner® should be aimed at people looking for technical answers about the
software right now, rather than at, say, people who might get involved with the project in along term
way and for whom community interaction guidelines might be more appropriate.

With mailing lists, the "ad space” is atiny footer appended to every message. Most projects put sub-
scription/unsubscription instructions there, and perhaps a pointer to the project's home page or FAQ

Not all chat platforms support per-room topic banners. The advice given here applies only to those that do.

157

Communications

page as well. Y ou might think that anyone subscribed to the list would know where to find those
things, and they probably do — but many more people than just subscribers see those mailing list mes-
sages. An archived post may be linked to from many places; indeed, some posts become so widely
known that they eventually have more readers off the list than on it.

Formatting can make a big difference. For example, in the Subversion project, we were having limited
success using the bug-filtering technique described in the section called “ Pre-Filtering the Bug Track-
er” [75]. Many bogus bug reports were till being filed by inexperienced people, because Subversion
was experiencing dramatic user growth, and each time it happened, the filer had to be educated in ex-
actly the same way as the 500 people before him. One day, after one of our developers had finally got-
ten to the end of his rope and flamed some poor user who didn't read the ticket tracker guidelines care-
fully enough, another devel oper decided this pattern had gone on long enough. He suggested that we
reformat the ticket tracker front page so that the most important part, the injunction to discuss the bug
on the mailing lists or chat rooms before filing, would stand out in huge, bold red letters, on a bright
yellow background, centered prominently above everything else on the page. We did so (it's been re-
formatted a bit since then, but it's still very prominent — you can see the results at https.//subversion.a-
pache.org/reporting-issues.html), and the result was a noticeable drop in the rate of bogus ticket filings.
The project still got them, of course, but the rate slowed considerably, even as the number of usersin-
creased. The outcome was not only that the bug database contained less junk, but that those who re-
sponded to ticket filings stayed in a better mood, and were more likely to remain friendly when re-
sponding to one of the now-rare bogus filings. Thisimproved both the project's image and the mental
health of its participants.

The lesson for us was that merely writing up the guidelines was not enough. We a so had to put them
where they'd be seen by those who need them most, and format them in such away that their status as
introductory material would be immediately clear to people unfamiliar with the project.

Static web pages are not the only venue for advertising the project's customs. A certain amount of in-
teractive monitoring (in the friendly-reminder sense, not the prison-panopticon sense) is also required.
All peer review, even the commit reviews described in the section called “ Practice Conspicuous Code
Review” [34], should include review of peopl€e's adherence to project norms, especially with regard to
communications conventions.

Another example from the Subversion project: we settled on a convention of “r12908" to mean "revi-
sion 12908 in the version control repository.” The lower-case "r" prefix is easy to type, and because
it's half the height of the digits it makes an easily-recognizable block of text when combined with the
digits. Of course, settling on the convention doesn't mean that everyone will begin using it consistently
right away. Thus, when a change comes in with a commit message like this;

Typo fixes fromJ. Random Contri butor

* trunk/contrib/client-side/psvn/psvn.el:
Fi xed sone typos fromrevision 12828.

158

https://subversion.apache.org/reporting-issues.html
https://subversion.apache.org/reporting-issues.html

Communications

...part of reviewing that commit isto say "By the way, please use 'r12828', not 'revision 12828' when
referring to past changes." Thisisn't just pedantry; it's important as much for automatic parsability as
for human readership.*’

By following the general principle that there should be canonical referral methods for common entities,
and that these referral methods should be used consistently everywhere, the project in effect exports
certain standards. Those standards enable people to write tools that present the project's communica-
tions in more useable ways — for example, arevision formatted as "r12828" could be transformed into
alivelink into the repository browsing system. This would be harder to do if the revision were written
as "revision 12828", both because that form could be divided across aline break, and because it's less
distinct (the word "revision" will often appear aone, and groups of numbers will often appear alone,
whereas the combination "r12828" can only mean arevision number). Similar concerns apply to ticket
numbers, FAQ items, etc.'*

(Note that for Git commit I1Ds, the widely-accepted standard syntax is"comm t ¢03dd89305, that
is, the word "commit", followed by a space, followed by the first 8-10 characters of the commit hash.
Some very busy projects have standardized on 12 characters, to avoid collisions; the only time all 40
characters of the hash are used is in non-human-readable contexts, like saving a commit 1D in an auto-
mated release-tracking system or something.)

Even for entities where there is not an obvious short, canonical form, people should still be encouraged
to provide key pieces of information consistently. For example, when referring to amailing list mes-
sage, don't just give the sender and subject; also give the archive URL and the Message-ID header. The
last allows people who have their own copy of the mailing list (people sometimes keep offline copies,
for example to use on alaptop while traveling) to unambiguously identify the right message in a search
even if they don't have access to the online archives. The sender and subject wouldn't be enough, be-
cause the same person might make severa posts in the same thread, even on the same day.

The more a project grows, the more important this sort of consistency becomes. Consistency means
that everywhere people look, they see the same patterns being followed, and start to follow those pat-
terns themselves. This, in turn, reduces the number of questions they need to ask. The burden of hav-
ing amillion readersis no greater than that of having one; scalability problems start to arise only when
a certain percentage of those readers ask questions. As a project grows, therefore, it must reduce that
percentage by increasing the density and findability of information, so that any given person is more
likely to find what she needs without having to ask.

Choose the Right Forum

One of the trickiest things about managing an open source project is getting peopl e to be thoughtful
about which forum they choose for different kinds of communications. It's tricky partly because it's not
immediately obvious that it matters. During any given conversation, the participants are mostly con-
cerned with what the people involved are saying, and won't usually stop to think about whether or not
the forum itself gives others who might want to take part the opportunity to do so.

10 For more about how to write good commit messages, see Chris Beams' excellent post "How to Write a Git Commit Message" at
https://chris.beams.io/posts/git-commit/. Many projects refer to that post as their baseline standard for commit messages.

1A more extended example of the kinds of benefits such standards make possible is the Contribulyzer example mentioned in the sec-
tion called “ The Automation Ratio” [200].

159

https://chris.beams.io/posts/git-commit/

Communications

For example, areal-time forum like chat is terrific for quick questions, for opportunistic synchroniza-
tion of work, for reminding someone of something they promised to do, etc. But it's not agood forum
for making decisions that affect the whole project, because the people who take part in a conversation
in chat are just whoever happened to be in the room at that moment — which is very dependent on
work schedules, time zones, etc. On the other hand, the development mailing list is agreat place for
making formal project-wide decisions, sinceit's archived and every interested party will have an op-
portunity to see and respond to the relevant posts, even though email is not as well-suited to quick, re-
al-timeinteractions aschat is.

Another example comes up frequently in bug tracker usage, especially in the last decade or so as bug
trackers have become well-integrated with email. Sometimes people will be drawn into a discussion

in abug ticket'? and because they simply see project-related emails coming in to their email client,
they treat the discussion as though it's happening on the real development list. But it's not: anyone who
wasn't watching that bug and who wasn't explicitly invited into the conversation usually won't even be
aware it's happening. If things are discussed in that bug ticket that go beyond the scope of just that one
bug, those things will be discussed without input from people who should have had at |east the chance
to participate.

The solution to thisis to encourage conscious, intentional forum changes. If a discussion startsto get
into questions beyond the scope of its original forum, then at some point someone involved should ask
that the conversation move over to the main development list or some other more appropriate forum.

It's not enough for you to do this on your own. Y ou have to create a culture where it's normal for
everyoneto do it, so everyone thinks about forum appropriateness as a matter of course, and feels com-
fortable raising questions of forum whenever necessary in any discussion. Obviously, documenting the
practice will help (see the section called “Writing It All Down” [92]), but you'll probably also need to
remind people of it often, especially when your project is starting out. A good rule of thumb is: if the
conversation looks convergent, then it's okay to keep it in the bug ticket or other original forum. But

if it looks likely to diverge (e.g., widening into philosophical issues about how the software should be-
have, or raising design issues that go beyond just the one bug) for awhile before it converges, then ask
that the discussion be moved to a better forum, usually the development mailing list.

Cross-Link Between Forums

When adiscussion moves from one place to another, cross-link between the old and new place. For
example, if discussion moves from the ticket tracker to the mailing list, link to the mailing list thread
from the ticket, and mention the original ticket at the start of the new list thread. It'simportant for
someone f